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PREFACE 

This volume contains a collection of papers presented at the Nankai Symposium 
on "Lattice Statistics and Mathematical Physics," which was organized to honor 
the seventieth birthday of Professor Fa Yueh Wu ({ESS)- This conference took 
place at the Nankai Institute of Mathematics in Tianjin, China, hosted by its Vice 
Director Professor Mo-Lin Ge, October 7-11, 2001, co-organized with APCTP and 
Beijing Normal University. 

We are grateful to the support of the K. C. Wong Education Foundation, the 
APCTP and the NSF of China. 

Jacques H. H. Perk 
Mo-Lin Ge 

May 2002 
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1. Brief Biography 

Fa-Yueh Wu (a.k.a. Fred Wu) was born January 1932. He moved with his parents 
and the Chinese government throughout the Sino-Japanese war and the civil war 
from 1938 to 1949. It may be noted that he graduated from Nankai Junior High 
School in Chungking, making him an "alumnus of Nankai." After graduating from 
high school in 1949, he eventually moved with his parents to Taiwan. 

There he entered the Chinese Naval College of Technology in 1949, obtaining a 
B.S. degree in Electrical Engineering in 1954, and receiving the commission as an 
Ensign in the navy. 

Wu was sent by the Chinese navy to the U.S. in 1955 to receive training at the 
Naval School of Electronics in San Francisco and the Instructors' School in San 
Diego, returning to Taiwan in 1956 to teach Electronics at the Naval Academy. He 
was a full-fledged expert on radar and sonar at that time, with a skill he has found 
useful recently in resoldering and fixing his broken remote car key. 

Fred Wu was (and probably still is) a good player of Chinese chess. He was a 
regional champion in Taiwan in 1951, and later the 1956 champion of all armed 
forces in Taiwan while a naval ensign. His favorite pastime in his graduate student 
years was to play chess "blind" with classmates while working on his homework. 
He has challenged the participants of the symposium to see if he is still as sharp as 
he used to be. But nobody took up the challenge. 

The very next year, in 1957, he entered the graduate school of the National 
Tsing Hua University in Taiwan, obtaining an M.S. degree in physics two years 
later. 

In 1959 he entered Washington University in St. Louis as a physics graduate 
student, where he studied under the late Professor Eugene Feenberg, working on 
many-body problems and obtaining his Ph.D. in physics in 1963. He taught for four 
years at Virginia Polytechnic Institute before coming to Northeastern University 
in 1967, where he is presently the Matthews University Distinguished Professor of 
Physics. 

'P repared by Jacques H.H. Perk, Department of Physics, Oklahoma State University, 145 PS, 
Stillwater, OK 74078-3072, USA, email: perk@okstate.edu. Financial support by the conference 
organization, by the K. C. Wong Educational Foundation, and by NSF Grant No. PHY 01-00041 
is gratefully acknowledged. 
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vi F.-Y. Wu 

Wu has accumulated a publication lista of over 200 papers and monographs. His 
earliest paper is in Chinese and published by him in 1955 while an Ensign in the 
Chinese navy. This paper1 bears the title "On the discussions of 'free waveforms'." 
While Wu is known mostly for his publications in statistical mechanics, his works on 
many-body problems, especially those on liquid helium, have also been influential 
for many years, see e.g. Ref. 3, which was part of his Ph.D. thesis research. He 
has even published one experimental paper5 with the title "Four slow neutron 
converters." 

Wu came to Northeastern to work with Elliott Lieb in 1967, and in 1968 they 
published a classic joint paper on the ground state of the Hubbard model.11 This 
paper has become prominent in the theory of high-Tc superconductors. Anderson 
has attributed to it "predicting" the existence of quarks, in his Physics Today 
article on the Centennial of the discovery of electrons. Lieb and Wu also wrote a 
monograph on vertex models in 1970, which has become a principal reference in 
the field for decades.30 

Since Wu came to the U.S. in 1959 as an ensign in the Chinese navy and was 
not decommissioned then, he was promoted in rank while a graduate student and 
a faculty member, eventually reaching the rank of Lieutenant in 1963. Therefore, 
much of his early work including the monograph with Lieb was done by a Lieutenant 
of the Chinese navy. Eventually, he could not be promoted further since for that he 
had to take an exam and the Navy was not sure whether he could pass it. He was 
later decommissioned from the rank of Navy Lieutenant in 1971. Thus the Chinese 
Navy saved a bunch of retirement benefits paid to retirees depending on the length 
of their service. 

Wu has worked on a wide-range of topics in many-body theory and statistical 
mechanics, including contributions in lattice statistics, graph theory, combinatorics, 
number theory, knot theory, and the interrelation between these topics. 

Wu's 1982 review on the Potts model is also well-known.88 This paper has been 
receiving over a hundred citations for many years ever since it was published.15 In 
1992 Wu published another well-received review on knot theory.153 Fred Wu has 
since been referred to as being "knotty" by Professor Lebowitz, which might be 
said to be a little "naughty" of Joel. 

2. Some other selected publications 

Another classic is the paper on the Free Fermion Model.16 This was later extended 
to its checkerboard version during one of Wu's many visits to Taiwan.49'51 Fred 
Wu was a close friend of the late Professor Piet Kasteleyn, who was co-advising my 
thesis work with Professor Hans Capel in Leiden at the time. Kasteleyn noted the 

aThis list has been appended and a selection of this work has been cited in the following, reflecting 
the taste of the present editor. 
b I n 1982, the year the Potts review was published, it was the fifth most-cited paper among papers 
published in all of physics according to E. Garfield, [Current Comments 48 , 3 (1984)]. 
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similarity of my first major paper0 on the alternating XY-chain and the preprints 
of the above works. Both showed multiple phase transitions. 

Well-known is also the Baxter-Wu Model, i.e. the Ising model with three-spin 
interactions on a triangular lattice.44 '48 Another classic paper, by Baxter, Kelland 
and Wu, concerns the graphical construction of the equivalence of the partition 
functions of the Potts model and a certain staggered six-vertex model.56 Many 
people consider this construction easier than the algebraic method of Temperley 
and Lieb. Both methods are widely used these days. This paper is also at the basis 
of my first joint work with Fred Wu.102 Here we generalized this equivalence to 
include the nonintersecting string (NIS) model of Stroganov and Schultz, alias the 
Close-Packed Loop Model. 

The six-vertex model is boundary-condition dependent. However, Brascamp, 
Kunz and Wu established for the first time that at sufficiently low temperatures or 
sufficiently high fields the six-vertex models with either periodic or free boundary 
conditions are equivalent.42 

Another remarkable result of Wu is that a very general staggered eight-vertex 
model in the Ising language (introduced in 1971 by Kadanoff and Wegner and by 
Wu28 in two back-to-back papers), but with the special magnetic field mkB,T/2 of 
Lee and Yang added, is equivalent to Baxter's symmetric eight-vertex model and 
hence solvable.104 The general eight-vertex model without this field is not known 
to be solvable. 

The dimer model on the honeycomb lattice was first solved by Kasteleyn. This 
has recently been generalized by Huang, Wu, Kunz and Kim to the case where the 
dimers have nearest-neighbor interaction.172 This model relates to a degenerate case 
of the six-vertex model, requiring a special Bethe Ansatz analysis. The resulting 
phase diagram of this five-vertex model is quite complicated. This work has also 
been used in papers by Huang, Popkov and Wu on the three-dimensional dimer 
model.175 '180 Its phase diagram is also quite complex. 

In 1999, Lu and Wu initiated work on dimer and Ising models on nonorientable 
surfaces,191 '200,202 and generalized a reciprocity theorem in dimer combinatorics 
due to R. Stanley and J. Propp.203 There is now much activity in this area, inspired 
by this work, as there is much interest in finite-size corrections and conformal field 
theories on more complicated surfaces. 

This is, of course, only a limited selection. A more precise understanding of 
the impact of Wu's work can be obtained by going over the following publication 
list and from the many papers in the volume. Therefore, I can speak on behalf of 
the other editor Professor Ge and the many participants of the symposium: Happy 
birthday and thank you, Professor Wu, for your many special insights and for being 
a friend of us all and not just a colleague. 

CJ.H.H. Perk, H.W. Capel, M.J. Zuilhof, and Th.J. Siskens, Physica A 81, 319-348 (1975). 
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In this paper, we introduce the cyclic basic hypergeometric series p + i $ p with q —> u> 
where uiN = 1. This is a terminating series with N terms, whose summand has period 
N. We show how the Fourier transform of the weights of the integrable chiral Pot ts 
model are related to the 2 ^ 1 , which is summable. We show that 3^2 satisfies certain 
transformation formulae. We then show that the Saalschiitzian 4^3 series is summable 
at argument z = ui. This then gives the simplest proof of the star-triangle relation in the 
chiral Potts model. Finally, we let N —> 00, where the star-triangle equation becomes a 
two-sided identity for the hypergeometric series. 

1 . I n t r o d u c t i o n 

1 . 1 . Definitions 

T h e genera l ized h y p e r g e o m e t r i c se r ies is de f ined 1 ' 2 a s 

p + l T p 
al) - - - J O-p+1 

& ! , • • • ,bp E (ai)r • • (aP+i)i j 

l=0 (bi)i---(bP)ill 

w h e r e 

(a)i = T(a + l)/T(a) = a(a + 1) • • • (a +1 - 1) , 

whi le t h e bas ic h y p e r g e o m e t r i c h y p e r g e o m e t r i c series is 

p+1 y p 
a i , - - - , a p + i 

j 3 i , - - , / 3 p " 
E°° (<xi;q)r •• (aP+i; g)i t 

l=0(Pi\q)r--{Pr;q)i{q\q)iZ' 

in which 

, , = f (1 - x)(l - xq) • • • (1 - xq1-1), I > 0, 
1 ' q)l ~ \ 1/[(1 - xq-^0. - xq-*) • • • ( ! - xq% l < 0 . 

(1) 

(2) 

(3) 

(4) 

T h e h y p e r g e o m e t r i c series p + i F p c a n b e o b t a i n e d f rom p + i $ p b y t a k i n g t h e l imi t 

g -» 1 wi th a = qa, (a; q)i/(q; q)i ->• (a)i. (5) 
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1.2. Known Identities 

A hypergeometric series is summable if the series can be written in terms of ratios 
of products of Gamma functions, while for the summable basic series it is written 
in terms of the g-products defined in (4). The most well-known summation formula 
is due to Gauss 

2F1 
a,b 

c 
r(c)r(c-o-b) 
r ( c - a)T(c - b)' W 

which is a summation formula for 2F1 of unit argument. The other is Saalschutz's 
theorem 

3^2 
a, 6, —n 

c, d 
(c-a)n(c-b)n \ ' , for c + d = a + b-n + l, (7) 
(c - a - b)n{c)n 

for a terminating Saalschiitzian 3F2 of unit argument. In general, a series is called 
Saalschutzian if it satisfies the Saalschiitz condition 

1 + a\ H h ap+i = b\ -\ \-bp. (8) 

Most of the summation formulae for the usual p + i F p hypergeometric series have 
basic series analogues.1'2 The summability condition on the argument of z — 1 for 
the hypergeometric series must be replaced by z = q for the basic series, while the 
Saalschiitz condition is seen from (5) to become 

qa1---ap+1= Pi---/3p, (9) 

as a and b are the exponents of a and /3. As an example, Dougall's theorem summing 
a terminating 7F6 of unit argument generalizes to Jackson's theorem for terminating 
8$7 of argument z = q. 

We shall now show that the basic hypergeometric series at root of unity are 
intimately related to the integrable chiral Potts model. Indeed, many of the results 
presented here are implicit in the earlier works.3-13 Since the notations used in 
several of these works6-11 are unconventional, making the connections obscure, we 
present here the results in more standard notation. 

2. The Cyclic Basic Hypergeometric Series 

2.1 . Definitions 

Since most of the summation formulae are valid only for terminating series, it is 
straightforward to analytically continue q to a root of unity without any convergence 
problems. For q —> u> = e

2m/N, we find 

(X;LJ)I+N = (l-xN)(x;w)i, (u; u)i+N = 0, (10) 

(x;u,U=UW+V/[(-x)l(vx-1;u;)l], (11) 

(x; Lj)i+k = (x; ui)k {ukx; u)i. (12) 

2 
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Prom (10), we see immediately that the basic series is ill-defined for q = ui unless 
a p +i = OJ~J for some J < N. We shall here restrict ourselves to the case with 
ap+i = CJ~N+1 = w, so that there are N terms in the series. 

Definition: A cyclic basic hypergeometric series is a terminating series of N terms 

(ai;uj)r--(ap;uj)i l 
P+I^=P $ , 

1=0 
(/3i;w)/---(/3P;w)/ 

(13) 

whose summand is periodic in N. 

Using (10), we find that the requirement for periodic summand is satisfied if 

~N - • ' '~J (14) : FT L A -
1 Jr I-a 
J = I 

AT 
J 

Unlike the ordinary basic hypergeometric series in (3), where the dependences on 
the parameters ai and Pi are elementary, the periodicity requirement makes the 
dependences on these parameters very complicated, with an extremely complex 
iV-sheeted Riemann sheet structure. 

Because of this periodicity, we may change the indices of the summation I -» —I 
in (13) and then let I —> I + k while using (11), to find 

P + I ^ P $ , 
uj,a±,-

Pi,---,PP ' 

— p+i ^*p 

P + I ^ P $ « 
u>,cjf31

1,---,ui(3p
1 fc-'-Pp 

z a i •••ap ua l i > l 

w, w a i , • • •, wfcap 
;z 

( a i ; K j ) f - ( a P ; ^ ) t k 

wk/3i,---,ujk(3p ' J (ft ;w)fc---(/3p; «;)*,' 

Since ap+i = w, the series in (13) is called a Saalschutzian if 

w2a>ia2---ap = ft/32 •••&,, z = w. 

(15) 

(16) 

(17) 

Clearly, if the left-hand side of (15) is a Saalschutzian, so is the right-hand side, 
and vice versa. 

2.2. Cyclic basic series 2*1 

It has been found3'15 that the Boltzmann weights of the integrable chiral Potts 
model can be written in product form, i.e. 

W{n) = 7 r (a;oj)n = (JLYn (v/fc^-n 
w 7" = ^ C (18) (f3;uj)n \jaJ (w/a;w)-n " v " " ' 1 - a 

The Boltzmann weight of an edge connecting spin a and spin b is chiral, namely, 
W(a — b) 7̂  W(b — a), and arrows are introduced to indicate the direction from 
spin a to b, as shown in Fig. 1. Here we have introduced W*(a — b) = W(b — a) to 
indicate the operation of arrow-reversing. 

3 
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Wm(a-b) Wm(a-b) 

Fig. 1. Boltzmaim Weights 

Since the weights are periodic with period N, their Fourier transforms may be 
written as 

J V - l 

W{f\k) = ^ unk W(n) = 2 $ i 
n = 0 

ui, a k 

0 
(19) 

2.2.1. Recursion Formula 

It has been found originally in Canberra3 that 

w(/>(0): 2 $ i 0 !7W 2 $ i 
w.a 
P 57 

- l (o;//3)fe(7;u;)fe C9/7a;w)-* 

(uja-f/P;ui)k ak{u)/r,u))-k 

.(20) 

The proof of this recursion relation has been given in our Taniguchi lectures.4 This 
was later extended to a more general case by Kashaev et al.7 

{u/(3)k (P;uj)n(i;Lj)k(uJa/P;uj)m-n 
2 $ i 

ujn(i 
;7W" i $ i 

u>,a 
0 ;7 (jojkjn (a;uj)rn(uja'y/l3;uj)m-n+k 

L - ( 2 1 ) 

2.2.2. Baxter Formula 

Consider the determinant whose elements are the weights in (18), i.e. 

D= det W(l-k), 
l<l,k<N 

Baxter gave the following formula5 without proof: 

N-l 
[a — u> - 1 - 3 /3) 

(l-w-i-j/3)(l-u}3a)_ 

where 

$ Q ^ eMr(N-l)(JV-2)/12JV_ 

4 

(22) 

(23) 

(24) 
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A detailed proof was subsequently given by us in Ref. 14. Since this is a cyclic 
determinant, we find 

N-l N-l 

j = 0 j=l 

W(f)(j) 

W(/)(0) 
(25) 

Baxter's formula (23) and the recursion formula (20) may now be used to prove the 
following theorem. 

Theorem 1: Every cyclic basic hypergeometric series 2$i is summable, and is 
given by 

i(iV-l) 

2 $ 1 ;T = u)tN*$0( -
U! p(u>a//3)p(i) 

(26) 
p(a)p{<jjI(3)p{wa~f /(1)' 

where t takes N different integer values for the N different Riemann sheets, and 

N-l 

p(a)= l[{l-uja)^N. (27) 

Here summable mean that the series is expressible as products. It is worthwhile to 
emphasize that the basic hypergeometric function 2 $ i is an TV-valued function of 
a and /3 with a complicated Riemann surface. The function p(a) has N — 1 branch 
points at a = w-7 for j = 1, • • •, N — 1. Due to the appearance of the composite 
functions—particularly, ^(7) with 7 found from (18) to be an TV-valued function 
of a and /3—we can see that it is non-trivial to describe the Riemann surface. It 
is rather amazing even to us that Baxter and others (see Refs. 17,18 and citations 
quoted there) have somehow found a way out without the detailed knowledge of 
the Riemann surfaces. 

2.3. Transformation formula for 3 * 2 

We shall now derive a transformation formula for the cyclic basic series 3^2- Using 
the convolution theorem, we may write 

where 

$ 2 3 ^ 2 
u!,ai,a2 ;7 

N-l 

(=0 

= i V " 1 ^ 2 $ i 

(ft;?)i . i;q)i^J 

N-l 

£: 
fc=0 

' ;OJ ku 
pi 

2 $ 1 
U),Ol2 W ~ 7 

0i ' ~ 

.N 1-/3// 

1 v J V ' ,N 

N l - / 3 f 

Now we can use the recursion formula (20) to obtain 

(28) 

(29) 

5 
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^ 2 
w , a i , Q 2 

ft,& ' \z N~ i $ i :u J $ I 
w , a 2 £ 

w, z / u , fo/otiu oJQ-x 
(30) 

u)/u,u>a2z/(3iu' Pi 

Clearly, we may change /32 to Pi with u —> 71, and obta in a different transformation 

formula. If we let z = w in (30), t hen it is easily seen tha t the 3 $2 on the right-

hand side of the equation becomes a 2 $ i . As the three 2 $ i are summable , the cyclic 

hypergeometric series 3 $2 is also summable for argument z = u>. We conclude: 

T h e o r e m 2: Every cyclic basic hypergeometr ic series 3<I>2 has a transformation 

formula given by (30), and is summable for z — u>. 

2 .4 . The Saalschiitzian 4 * 3 and the Star-Triangle Relation 

2.4.1. Summation Formula 

Consider a Saalschiitzian 4^3 for a rgument z = w, and use the convolution theorem 

to express it as 

, $ c 
U), W OJi, W 0 2 , u r c * 3 

U}aP!,UJbp2,UcP3 
N-l 

N-1 £ 3 $ 
fc=0 

:ui 

UJaP1,U»P2 ',UJ 7 2 ^ 1 
oj,oj'-a3 CJ \-k 

ucp3 7 J ' 

where 

7 
N_{l-o$) _ (i-/ff)(l-/ff) 

(1-^) (1-ofXl-/^) TW-

(31) 

(32) 

The first part of this equation and the Saalschutz condition oj2a\a2a3 = Pip203, 

may be used to solve 03 and also P3. This gives 

a " = 
1 T 

JV 

/33 = 
CiT 0:10:20:3 

l - ( a i Q 2 7 / / 3 i / 3 2 ) J V ' " ° frft 

Now we use the transformation formula (30) for 3<&2 thrice, i.e. 

u>,ujkj/u,ujb~apyu w a i 

(33) 

1$2 
w0/?i,w6/32

 i 7 W i 3 ^ 2 

A B 3 $ 2 

A B C 3 ^ 2 

u, 7J , wfc72 a;6 /32 ' 

w / 7 i , a ; f e + 1 / 7 | ' w a a i 

where the first line is identical to (30) in which 

Oi = W02//?3 , J o 2 = W O i / / 3 3 , J 03 = LJ/P3 — Wai/P2, 

Pi = P2 / « 3 , /32 = Pi/a3, P3 = u/al = Pi/a2, 

(34) 

(35) 
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with superscript * denoting the arrow-reversing operation described in (18), and 

A = N~1
 23>i 

If we denote 

if- 1-af' 7? 

2 ^ 1 

{Ti*i)N 

Lj,(Jj
ba2 w f c7 

1-af' 

(36) 

(37) 

(38) 

(39) 

then by using (35) and (33), it is easy to verify that 

7 i=7 2 / 73> 7 2 = 7 i / 7 3 , 

which in turn can be used to show 

7i72 = 7/7373 = 7 / V w a 3 leading to 73 = UJ/J = T ^ . 

Using (29) in which z = 7, it is easy to verify that 

1-{&V1/U)N _C12\N _ N 1-{1/U)N
 =(%Ul\N

 = ( . . A T 

\-{Pi/ur WJ 7l' i - (7 /^ \irfx> l7lj ' 
FVom (18) and (35), it follows that 7171 = wa i / f t . As a consequence, we may use 
the transformation formula (30) again to obtain the second equality in (34) with 

LJ,U)b-aP%/u 

(40) 

LJ,UJ 7/u 

(Jj/U 
B = N~1

 23>! 

Furthermore, from (37), we find that 

7i 
w 

1 - mN 

2 ^ 1 

1 - (1/7*) 

,k+b-a^* 

W 

0^7/u 

/ - * \ J V 

;7 i (41) 

(42) 
l - ( 7 i ) ' 

while from (35) and (18) we obtain QJIQ^ = Pijotx. Using the transformation formula 
(30) for the third time, we arrive at (34) with 

C^N-1
 2 $ j 

w/7: 
; « i 2 $ 1 fc+l/-*ia; Q 2 

Denoting 

i(ji) = 7t 7^ N~' Wi(n) = Wi (-n) = ^JW 

(43) 

(44) 

and using recursion formula (20) for 2^1 in these constants A, B and C, we find 

<$ 2 
cj,cjaa1,u)°a2 k W3(b-a)W*2(b-a) 

w-kbDa^\rMk^^ 
(7A/w«3;w)fc 

Wi(a)W2(6) 
, , , .b—ax,* p:,* , ,1 — k 

^-a/3*, /3* ' 7 
(45) 

where D = [ABC}0 with a = 6 = c = fc = 0 i n (36), (41) and (43). Next, the 
recursion formula (20) is used to write 

2 $ i 
oj,u) as w 

wc/33 

i-fe 
= Rwck(-y/33/uja3;uj)k R = Q 

DWz(c)a3
k{T,u)k" D 2 ' 

uj,a3 

. ft'' 
u> 

7" 
(46) 
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Substituting these two equations into the convolution formula (31) and using 

W{n + a) n(uJaa;uj)n 

W(a) = 7 (w«ft;w)„' 
(47) 

we find 

UaP1,UJbp2,0JCp3 ' ' 
N-1N-1 

:u}\ = Wi{a)W2{b)Wi{c)i$3 

i 

N-lRWz(a ~b)^2J2 ojk{c-b'l)W2(a - b - l)Wi{-l), (48) 
fc=0 1=0 

where the summation over k can be carried out resulting in the delta function 
N6i,c-b- This then proves the following theorem: 

Theorem 3: Every cyclic Saalschiitzian basic hypergeometric series 4 $3 is summable 
for z = w. 

2.4.2. Star-Triangle Relation 

Furthermore, (48) is also the star-triangle equation 

Y, Wx{a - d)W2(b - d)W3{c - d) = R W3(a - b)W2(a - c)Wi(b - c), (49) 
d=0 

shown in Fig. 2. The weights W and W are defined in (44), in which the parameters 
cti, fa and on, fa are related by (35), while 7; and 7; are related by (38) and (39). 
These relations are very symmetric. 

C 

Fig. 2. Star-Triangle Relation, with 71 = 7273, 72 = 717 | a n d 73 = 7 * 7 2 -

2.4.3. The Constant R 

The constant R was originally given in Ref. 3. A proof was published in Ref. 16 
and their proof can also be used here. By defining the matrices 

G 4 0 M = w^h ~ dl G4»)cd = W3(c - d), (Al)dtd. = Sd,d.W!(a - d), 
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(A)b,c = W!(b - c), G42)c,c, = 5c,c,W2(a - c), {Al)b,v = SbMW2{a - b), (50) 

the star-triangle equation (49) may be expressed as 

(A2AtAl)b,c = R{A%AiJ%)b,c or A2A\A\ = RA%MA%. (51) 

The determinants are also equal, i.e. 

WX{1) d e t ^ 2 d e t ^ 3 
J V - 1 

^=n t0 W2(l)W3(l) detAi 
(52) 

This gives the constant R in terms of determinants of matrices A defined in (50), 
which can be evaluated by Baxter's formula (23). Alternatively, R is seen from 
(46) to be a product of seven 2$i- It can also be evaluated using (26), which is 
much more tedious, and after many cancellations, this yields the same result. We 
have thus avoided the complexity in the Riemann surface by relegating it to the 
multiplicative constant R in the star-triangle equation. 

2.4.4. Rapidity Lines 

To form commuting transfer matrices, it is necessary to assign rapidity lines to the 
weights. There are two possible weights shown in Fig. 1. There are two essentially 
different choices for the directions of the arrows. 

Original Choice 

By assigning the rapidity lines as we originally did in Ref. 3, also shown in Fig. 3, 

then it is easily seen from Figs. 1 and 3 t ha t 

r •« 

Fig. 3. Original choice of the rapidities. 

\W1(n) = W1 

pr v v 5 

pr\P')-) 

W2(n) = Wqr(n), 
W2(n) = Wqr(n), 

(W3(n) = W*pq(n), 
\ W3(n) = Wpq{n). 

(53) 

9 
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This means 

« 1 = Ctpr, f a2 = aqr, ( OJ3 = u/J3pq, 

Pi = Ppr, } fa - 0qr, < 03 = u/apg, 

71 = 7pr, [ 72 = %r, [ 73 = 7pg, 
« i = apr, /• a 2 = ag r , ( «3 = apq , 

A = /3pr, •) #2 = Pqr, \ fa = Ppq, (54) 
71 = Ipr, \12 = 7«r> I, 73 = 7pg-

Consequently, we find from (35) 

OLpr — aqraPq, ( aqr = aprapq, ( apq = wctpr/ (3qT, 
Ppr = PqrPpq/u), \ (3qr = (3pr(3pq/w, \ /? p g = (3pr/aqr. 

(55) 

From the relations for we see that we would like to have the products 
(Xqr&pq and (3qrfipq independent of q. For this to happen, we must have aqr and apq 

containing the same g-dependent factor, say xq, one in the denominator, the other 
in the numerator, such that the dependence on q cancels out upon multiplication. 
A similar reasoning holds for (3pq. In fact, we find the only choices are 

apq = Xq/xp, $~Pq - u>yp/yq. (56) 

Using this in the second and third brackets of (55), we find 

apq = uxp/yq, (3pq = vxq/yp. (57) 

It is easily verified that these choices satisfy the Saalschiitz condition in (17). The 
periodicity requirement on the argument at z — w 

u = 717273 = J ! K1 - $JA1 - af)] ^ (58) 
3=1 

can be satisfied, if 

x?+V? = k(l + x?v?), s=p,q,r. (59) 

Solving this equation for xs and substituting the solution into (37), we find 

Ipq = P-pVql^qVp Ipq = ^^p^pfJ-q/Vq, /is = (1 ~ fcxf )/&'. (60) 

This reproduces exactly the integrable solution found earlier.3 

Other Distinct Choice 

Only by flipping the directions of the middle rapidity line q, do we find a distinct 
arrangement of weights. This results in the equation 

w- i 
J ^ Wpr(a - d)Wrq(b - d)Wqp{c - d) = R Wqp{a - b)Wrq(c - a)Wpr{b - c). (61) 
d=0 

Flipping other lines merely gives permutations of these rapidity lines in the two 
star-triangle equations, as can be seen from Fig. 1 and Fig. 4. To have the relation 

10 
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r-« 

q P 
\ c 4 

r -* 

Fig. 4. Flipping the arrow of q. 

(35) to hold, we must have 

Oipr = UCtrq/ fjqp, Ppr == PrqlQqpi \P") 

for which to be satisfied, we must choose 

apr = PJp9ri Ppr = 9pjr- \P") 

The Saalschiitz condition in (17) yields ui2p3 = 1. It is then easy to verify that it is 
not possible to find p, fs and gs satisfying condition (58). Since the relation (61) is 
more symmetric than (49) when comparing Fig. 3 with Fig. 4, the extra symmetry 
requirement on the weights makes a solution impossible in the present case. 

3. The N -> oo Limits 

3.1. Star-Triangle Equation as a Double-Sided Hypergeometric 
Identity 

In the limit N —> oo, with a* = wai and /% = ubi, and allowing the spin n in (44) 
and thus the summation index d in (49) to run through all integers, we find12,13 

that if the Saalschiitzian condition 

ffli + 0-2 + a3 + 2 = b\ + b2 + b3. 

and condition resulting from (58) 

sin7rai sin7ro2 sin7ra3 = sin7r&i sin7r&2 sin7r&3, 

are satisfied, the star-triangle equation (49) becomes 

( a l ) n n + n ( a 2)m 2 +n Mms+n D ( 5 l ) m i - m 2 (°-?)m2-m3 i^r, £ (h)mi+n (h)m2+n (b3)m3+n 
R0 

n=—oc \ i-'mi+n v-"/r 

f ai = 1 + a2 

\bi = b2-a3 

(h (62 (bs) m.i—m.3 

( a2 = 1 + a\ - 63, f a3 = 1 +! 
\ b2 - h - as, \ 63 = bi -

= 1 + ai - 62, 
o2. 

(64) 

(65) 

L, (66) 

(67) 

11 
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3.1.1. Double-Sided Hypergeometric Identity 

The equation (66) may be rewritten as the double-sided summation identity13 

V* TT r ( a » + n) _ g ( a i> a 2,as \b \ ,b2 ,h) . , 

where 

G(ai,a2 ,a3 |6i ,62,63) = — 
TT5 

sin7ra2 sin7ra3 r i i=i sin7r(6i —ai) 
3 3 

= J J T{aj)Y{l - aj) Y[T{bi - ai)r(l - h + 01), (69) 
j=i i=\ 

provided the two conditions (64) and (65) are satisfied. If we let aj —> a% + m and 
bj —> aj + m, then these two conditions are still satisfied. This shows that the 
above two-sided identity holds for infinitely many different values of a, and bj and 
is rather unusual. 

3.2. Its Dual (Fourier Transform) 

If, instead of demanding that the spin values n in (44) and d in (49) remain integers, 
we let d,n,N-^ 00, while keeping the ratios y = 2im/N and x = 2ird/N finite, we 
find that the summation over N values in (49) becomes an integral over the interval 
[0,27r]. More specifically, we find the weight (18) to become13 

TI// u i / s i n 7 r 6 \ ( ^ ~ L^J) I . ! ,a-b ,_„> 
W(a,b,x) = [- s i n i x . (70) \sm7ra/ 1 ^ 1 

in this limit. For a* and 6j satisfying the two conditions (64) and (65), we let 

Wi(x) = W(ai, bi, x), Wi(x) = W(ai, bu x), (71) 

and the star-triangle relation (49) becomes13 

1 /"27r 

—- / dw Wi(x — w) W?{y — w) W^{z — w) 
27T J0 

= R00W3{x-y)W1{y-z)W2{x-z). (72) 

Since the weights are chiral, namely, W(—x) ^ W(x), it is not possible to have 
both the weights and their Fourier transforms real. Thus the Fourier transform of 
(72) is an identity similar to (66), but not identical, and vice versa. 

3.3. Open Problems 

Finally, the weights in Sections 3.1 and 3.2 define integrable models, which are 
limiting cases of the original chiral Potts model, and are chiral extensions of the 
models in the works of Fateev and Zamolodchikov.19'20 Since there are sets of 
N functional relations for the chiral Potts models, we expect there may then be 
infinitely many such functional relations for these models, and perhaps some more 
physical quantities in these oo-state models can be evaluated. 

12 
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We find raising and lowering operators distinguishing the degenerate states for the 
Hamiltonian H = x(K + \)SZ + K • S at x = ± 1 for spin 1 that was given by Happer 
et a l . 1 ' 2 to interpret the curious degeneracies of the Zeeman effect for condensed vapor 
of 8 7 R b . The operators obey Yangian commutation relations. We show that the curious 
degeneracies seem to verify the Yangian algebraic structure for quantum tensor space 
and are consistent with the representation theory of Y(sl(2)). 

1. Indecomposible Quantum Tensor Space 

In Quantum Mechanics, a state is described in terms of wave function, i.e. \ip > is 
a vector in Hilbert space. If two particles described by \tp12 > are entangled, there 
should be "overlapping effect" between V\ and V2, i.e., besides V\ and V2 we should 
deal with V\ <g> V2, the quantum tensor space. The simplest example is Breit-Rabi's 
Hamiltonian: 

HBR = K-s +xks3, (1.1) 

where s and K stand for the spins of electron and atomic nucleus, respectively. 
K 2 = K(K + 1). On account of the conservation of K2 and m = K% + S3 two 
independent states are introduced: 

a1>=\K,m-->\-,->, a2>=\K,m+->\-,-->. (1.2) 

15 
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For a fixed m with the basis 3> = I ), we have 

# B R =~\ + \l(xk + m V 3 + x / ^ - m V i ] , (1.3) 

where u\ = I I and 03 = I J are Pauli matrices. Eq. (1.3) can be 

diagonalized through a rotation:1 

Ui^H^U^r1 = fl&W). &m\<pm) = t%m)*(m), (1-4) 

where 

^ m j _ V ( s i n ^ ) | a i > + ( c o s ^ ) | a 2 > j ' {1*> 

and 

E=---uma3, (1.6) 

cos<^m = ^ ^ , w^ = (1 + x2)k2 + 2xmk. (1.7) 

Noting that the rotation angle ipm is m-dependent and m here cannot be replaced 
by the operator Kz + S3. This is because of the nonlinearity in m, i.e., the rota­
tion should depend on the history. Observing Eq. (1.6) and Eq. (1.7) there is not 
degeneracy for the energy E, because the vanishing wm means a complex magnetic 
field. 

However, there appears degeneracies for spin-1 in the experiment.2 Why the 
Zeeman effect vanishes at the particular value of applied field? This is the main 
subject concerned in this paper. 

2. Introduction of the Curious Degeneracies 

The curious degeneracies observed in the experiment for condensed vapor of 87Rb 
and 85Rbx at 220° under pressure and applied magnetic field B ~ 1500 Gauss 
are converted into "anti-level-crossing" for the triplet {S = l ) . 1 , 2 To describe the 
Hamiltonian of a triplet dimer neglecting the quadrapole interaction, Happer et al. 
introduced1'2 

H = K-S + x(K + ±)Sz, (2.1) 

and pointed out that when x = 1 there appear the curious degeneracies for S = 1, 
where K and S are angular momentum and spin, respectively, K 2 = K(K +1) and 
S2 = S(S + 1) with 5 = 1. In Ref. 1, the eigenvectors corresponding to E = — | 
had been given and an elegant discussion was made. However, there remain the 
following essential questions: 

• Why the curious degeneracies occur only for S = 1? 
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• How to distinguish the degenerate states? 
We would like to present the answer in this paper. 

For x = ± 1 , the eigenequation 

HVm = EmVm (2.2) 

has three types of solutions whose eigenstates are denoted by ax, OLD and OLB with 
the corresponding energies ET > ED > EB, respectively. For the .D-set, Ha Dm = 
— \&Dm, there appear the curious degeneracies called Happer degeneracies that has 
been supported by the experiment.2 The results of Happer can be summarized in 
the Table 1 (G = K + S, G3 = m). 

D-set T - set B - set 
G= G= G = 

K+l K K-l 
K+l -> <XT,m=K+l 

K -> <*D,m=K °<T,m=K 

K - 1 -> O D , r a = K - l O T , m = K - l <*B,m=K-\ 

m - > ftDm OiTm OLBm 

-K + l - > • Q-D,m=-K+\ <*T,m=-K+l « f l , m = - J f + l 
~K -¥ CtT,m=-K <*B,m=-K 

- K - l ->• <XD,m=-K-\ 

Table 1 

We emphasize that the states with m = K + 1 and m — -K for x = 1 (m = 
—K—l and m = K for x = — 1) in the D-set are excluded. For simplicity we discuss 
the case for x = 1 henceforth. The eigenstates of H are linear combinations of the 
states of G = K + 1, K and K — l. Since the shortage of states with m = K + 1 
and m = —K it is not surprise to appear the unusual thing to distinguish the 
m-dependent states, for example in Eq. (1.6). 

3. Yangian as the Raising and Lowering Operator for the 
Degenerate States 

Let us first recall how to establish the Lie algebraic structure in Quantum Mechan­
ics. For the given (2K +1) states denoted by \K, K3 = K >, \K, K3 = K - 1 >,• • •, 
and \K,K3 = — K > , the raising (or lowering) operator K+ (or K_) can be intro­
duced such that for any m = K3, 

K±\K,m>~\K,m±l>, (3.1) 

and K ± \K, +K > = 0. Through checking the commutation relations for K± and 
K3, we say that the Lie algebraic structure is found if the commutation relations are 
closed. It is emphasized that there is not m-dependence in the operators K± in Eq. 
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(3.1), because the eigenvalues of K3 are uniform. However, suppose the eigenvalues 
are not uniform, the raising and lowering operators should depend on m, i.e., it 
should indicate on which state the operators act. Actually, such "starting state" 
dependence occurs more often in nonlinear models.3 

After calculations, we have found the raising operator for the D-set in the table 
1 (at x = ±1): 

J+ = (m + K + l)G++j+(a,b), (3.2) 

where 

j+(a, b) = aS+ + bK+ + i (5 3 X+ - S+K3), (3.3) 

and 

a = -j,b-a=±(K + l),G+=K+ + S+. (3.4) 

Noting that (b — a) is independent of m. Whereas 

J-=-(m + K)G- + L (c, d), (3.5) 

where 

j'_(c,d) = cS- + dK^ - i (5 3 l f - - S-K3), (3.6) 

and 

c=j + ±,d-c=-j,G.=K-+S-. (3.7) 

It can be checked that for x = 1, J+\aD,m=K > = 0 and J+\aD,m=-K-i > = 0. 
Obviously the J± shown in Eq. (3.2) and Eq. (3.5) are special form of the 

Yangian operator: 

J-AG+j, (3.8) 

where 

j = /iK + 7 S - ^ S x K , (3.9) 

and A,/i, 7 are arbitrary constants. A set formed by both J and j satisfy Y(sl(2)) 
defined by Drinfeld,4 and is related to the Yang-Baxter equations.5,6 

4. Yangian Algebra 

The commutation relations for J and the total angular momentum I = G = S + K 
form the so-called Yangian algebra associated with s/(2). The parameters /i and 7 
play the important role in the representation theory of Yangian given by Chari and 
Pressley.7 Many chain models possess the Yangian symmetry, for example, for 1-d 
Hubbard model and Haldane-Shastry model.8 The set {I, J} = Y(s/(2)) obeys the 
commutation relations of Y(sl(2)) (A± = A\ ± 1/^X^2): 

[h, I±] = ± /± , [/+, / - ] = 2/3, («l(2)); (4.1) 
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[h, J±] = [J3, /±] = ±J±, [/+, J-} = [J+, I-] = 2J3, (4.2) 

(i.e. [Ii, Jj] = -\/—Teijfe Jfc) and nonlinear relation 

[J3, [J+, J-}] = \h(I+J- - J+I-) (4.3) 

that forms an infinitely dimensional algebra. All the other relations given in Ref. 4 
can be obtained from Eq. (4.1)-Eq. (4.3) together with the Jacobian identities.9 '10 

The essential difference between the representations of Yangian algebras and 
those of Lie algebras is the appearance of the free parameters fj, and 7 whose origi­
nally physical meaning is one-dimensional momentum. Their special choice specifies 
a particular model. Applying the Yangian representation theory to Hydrogen atom, 
it yields the correct spectrum (~ n~2) that is the simplest example of the appli­
cation of Yangian in Quantum Mechanics.10 Now the Happer's degeneracies can 
be viewed as another example. Furthermore, we would like to make the following 
remarks: 

(a) The elements of J+ given by Eq. (3.2) 

< aDm'\J+\o.Dm > ~ < aDm>\K+\aDm > ^ 0, 

because < aDm'\S\aDm >=< (*Dm'\S x K.\aum > = 0, as pointed out in Ref. 1 (see 
Eq. (2.23) in Ref. 1). This indicates that the role played by J+ in the ".D-direction" 
is like that played by K+. Why do we need a Yangian? The terms of 5+ and (K x S ) + 

should be added to guarantee < oiTm'\J+\<XDm >=< aBm'\J+\aDm >= 0, namely, 
if only acting K+ on a n m it yields non-vanishing transitions to arm' and a.Bm' 
that no longer preserves the D-set. The part other than K+ in the Yangian J + 

given by Eq. (3.2) exactly cancel the nonvanishing contribution received from "T-" 
and "B-direction". 

(b) Observing the process determining parameters a and b in Eq. (3.3), the 
reason for the existence of solution of a and b is clear. For 5 = 1, the eigenvector 
of H is formed by three base. Apart of an over-all normalization factor there are 
two independent coefficients. In requiring J+a.r>m ~ a c r a + i , we have to compare 
the coefficients of the independent base in J+ar>m and aom+i to determine the 
unknown parameters a and b. For spin 5 = 1 , there are just two equations for a 
and b. However, for spin 5 > 1, in general, one is unable to find solution for a 
and b to fit more than two equations. Therefore, the Yangian description of the 
curious degeneracies admits only 5 = 1 for arbitrary K. This is consistent with 
experiment.1'2 

(c) In fact, the parameters appearing in J+ and J_ exactly coincide with the 
conditions of the existence of the subrepresentations of the Yangian.7 Following 
the theorem in Ref. 7, for a — b = — ̂  — 5 the subspace spanned by vectors with 
G = K + 1 is the unique irreducible subrepresentation of Y(sl(2)), that is, the 
states with G = K + 1 are stable under the action of J . Note that the existence 
and uniqueness of subrepresentation is only related to the difference of a and b. 
Moreover, for the given a and b in Eq. (3.4), the action of J+ on the states with 
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G = K + 1 is given by J+aa=K+i,m = (m + K + l)G+aG=K+i,m and at the same 
time, J+ will make the states with G — K and G = K - 1 transit to G = K + 1, 
but not vice versa, called "directional transition",9 i.e. the transition given rise 
by Yangian goes in one way. Thus, for the given a and b in Eq. (3.4), the set of 
states with G = K + 1 and D-set are stable under the action of J+ simultaneously. 
For c — d = ^, G = K — 1 is the unique irreducible subrepresentation and for 
c and d given by Eq. (3.7), acting J_ on the states with G = K — 1, we have 
J-CtG=K-\,m = —(m + K)G~aG=K-i,m- Therefore the representation theory of 
Y(sl(2)) tells that the relationship between a — b and c - d given by Eq. (3.4) and 
Eq. (3.7), respectively, should be held to preserve the states with G = K + 1 (or 
G = K — 1) that possesses Lie algebraic behavior. 

(d) We have seen that the J_ is not the conjugate of J+. Such a phenomenon 
is reasonable because ar>m is neither the Lie-algebraic state nor symmetry of H. 
In fact, if a is not an eigenstate of I2 (I belongs to a Lie algebra) and I+a ~ a i , 
we cannot have i _ a i ~ a. Now there is the similarity for Yangian. Moreover, the 
-D-set is not a subrepresentation of Y(sl(2)), i.e., D-set cannot be stable under all 
the actions of J , but stable under J+ and J_ with the different parameters which 
just satisfy the condition for subrepresentation of Yangian. 

(e) The third component of J takes the form J3 = aSz + bKz + S+K- — S-K+. 
For any parameters, the action of J3 will not keep the D-set. But, with the suitable 
a — b = 1, the operator J 3 + 2(2K + 1)S% will keep the .D-set. 

(f) We emphasized that the m appearing in Eq. (3.2) and Eq. (3.5) cannot be re­
placed by the operator G3. It appears as a parameter in Yangian. The m-dependents 
only indicates that the raising or lowering operation depends on "history" in dif­
ference from the Lie algebraic structure. 

In conclusion we have read of a new type of algebra structure (Yangian) from 
the Happer's degeneracies and such an algebra had been ready by Drinfeld.4 All 
the analysis coincides with the representation theory of Y(sl(2))7 for the special 
choice of o, b in J+ and c, d in J_. It also leads to the fact that only S = 1 is allowed 
to yield the curious degeneracies. If the Zeeman effect tells Lie algebra, then the 
curious degeneracies possibly tell the existence of Yangian. 
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Here we review a method for constructing exact eigenvalues and eigenfunctions of a 
many-particle quantum system, which is obtained by adding some nonhermitian but PT 
invariant (i.e., combined parity and time reversal invariant) interaction to the Calogero 
model. It is shown that such extended Calogero model leads to a real spectrum obeying 
generalised exclusion statistics. It is also found that the corresponding exchange statis­
tics parameter differs from the exclusion statistics parameter and exhibits a 'reflection 
symmetry ' provided the strength of the PT invariant interaction exceeds a critical value. 

1. Introduction 

It is well known that integrable dynamical models and spin chains with long range 
interactions exhibit fractional statistics or generalised exclusion statistics (GES),1 

which is believed to play an important role in many strongly correlated systems of 
condensed matter physics. The A^v-i Calogero model (related to A^-i Lie algebra) 
is the simplest example of such dynamical model, containing N particles on a line 
and with Hamiltonian given by Refs. 2,3 

1 v ^ ° w v ^ 2 9 v^ 1 

tf = - 2 E ^ + TE*KE(^r (1) 

where g is the coupling constant associated with long-range interaction. One can 
exactly solve this Calogero model and find out the complete set of energy eigenvalues 
as 

N N 

Enun2,-,nN = -—[l + (N-l)v]+u^2nj. (2) 
j = l 

Here rijS are non-negative integer valued quantum numbers with rij < nj+i and v 
is a real positive parameter which is related to g as 

,2 9 = v*-v. (3) 
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It may be noted that, apart from a constant shift for all energy levels, the spectrum 
(2) coincides with that of N number of free bosonic oscillators. Furthermore, one can 
easily remove the above mentioned constant shift for all energy levels and express 
(2) exactly in the form of energy eigenvalues for free oscillators: Eni<n2,...,nN = 
4 p +UJ 5Zj=i ™j> where fij = rij + v(j — 1) are quasi-excitation numbers. However it 
is evident that these fijS are no longer integers and they satisfy a modified selection 
rule given by fij+i — fij > v, which restricts the difference between the quasi-
excitation numbers to be at least v apart. As a consequence, the Calogero model 
(1) provides a microscopic realisation for fractional statistics with v representing 
the corresponding GES parameter.4 '7 

Recently, theoretical investigations on different nonhermitian Hamiltonians have 
received a major boost because many such systems, whenever they are invariant 
under combined parity and time reversal (PT) symmetry, lead to real energy eigen­
values.8-11 This seems to suggest that the condition of hermiticity on a Hamil­
tonian can be replaced by the weaker condition of PT symmetry to ensure that 
the corresponding eigenvalues would be real ones. However, till now this is merely 
a conjecture supported by several examples. Moreover, in almost all of these ex­
amples, the Hamiltonians of only one particle in one space dimension have been 
considered. Therefore, it should be interesting to test this conjecture for the cases 
of nonhermitian iV-particle Hamiltonians in one dimension which remain invariant 
under the PT transformation:12 

i —• —i, Xj —• —Xj, Pj - 4 pj , (4) 

where j £ [1,2, • • •, N], and Xj (pj = —igfr) denotes the coordinate (momentum) 
operator of the j-th particle. In particular, one may construct an extension of 
Calogero model by adding to it some nonhermitian but PT invariant interaction, 
and enquire whether such extended model would lead to real spectrum. 

The purpose of the present article is to review the progress7 '12 on the above 
mentioned problem for some special cases, where the PT invariant extension of 
Calogero model can be solved exactly. In Sec.2 of this article we consider such a PT 
invariant extension of AN-I Calogero model and show that, within a certain range 
of the related parameters, this extended Calogero model yields real eigenvalues. 
Next, in Sec.3, we explore the connection of these real eigenvalues with fractional 
statistics. Section 4 is the concluding section. 

2. Exact solution of an extended Calogero model 

Let us consider a Hamiltonian of the form7 

U = H + SY——A (5) 
&k 

Xj Xk dXj 

where H is given by eqn.(l) and 5 is a real parameter. It may be observed that 
though the Hamiltonian (5) violates hermiticity property due to the presence of 
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momentum dependent term like S £V; ,fe x \ x -^-, it remains invariant under the 
combined PT transformation (4). Next we recall that, .AJV-I and B^ Calogero mod­
els as well as their distinguishable variants have been solved recently by mapping 
them to a system of free oscillators.13"16 With the aim of solving the PT invariant 
extension (5) of A/v_i Calogero model through a similar produce, we assume that 
(justification for this assumption will be given later) the ground state wave function 
for this extended model is given by 

j<k 

where v is a real positive number which is related to the coupling constants g and 
6 as 

g = v2-v(l + 26). (7) 

Now if we use the expression (6) for a similarity transformation to the Hamiltonian 
(5), it reduces to an 'effective Hamiltonian' of the form 

W = ^-Hi)gr = S-+ujS3 + Egr, (8) 

where the Lassalle operator (S~) and Euler operator (S3) are given by 

J = l J Jjik J J 3 = 1 J 

and 

Egr = ^ \ \ + {N-l){v-6)]. (10) 

It is easy to see that the Lassalle operator and Euler operator, as defined in eqn.(9), 
satisfy the simple commutation relation: [S3, S~] = —2S~. Using therefore the well 
known Baker-Hausdorff transformation we can remove the S~ part of the effective 
Hamiltonian H' and through some additional similarity transformations reduce it 
finally to the free oscillator model7 

j = l j j = l 

8* 
dx'i 

where 5 = e^s e^e*£"=i ^ and V2 = Y%=i 

Due to similarity transformations in (8) and (11), one may naively think that the 
eigenfunctions of the extended Calogero model (5) can be obtained from those of free 
oscillators as: ,0ni!„2i...)„Af = ipgrS < Ylj=i e~^XjHnj{xj) >, where rijS are arbitrary 
non-negative integers and Hnj(xj) denotes the Hermite polynomial of order rtj. 
However it is easy to check that, similar to the case of A^-i Calogero model,13 the 
action of «S on free oscillator eigenfunctions leads to a singularity unless they are 
symmetrised with respect to all coordinates. Therefore, nonsingular eigenfunctions 
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of the extended Calogero model (5) can be obtained from the eigenfunctions of free 
oscillators as 

V'm.ns.-.nAT = i>gr SA+ I J \ ^~^Hnj(Xj) > , (12) 

where A + completely symmetrises all coordinates and thus projects the distin­
guishable many-particle wave functions to the bosonic part of the Hilbert space. 
Evidently, the eigenfunctions (12) will be mutually independent if the excitation 
numbers TijS obey the bosonic selection rule: rij+i > rij. Thus, in spite of the fact 
that the interacting Hamiltonian (5) is convertible to the free oscillator model, the 
need for symmetrization shows that the many-particle correlation is in fact inherent 
in this model. The eigenvalues of the Hamiltonian (5) corresponding to the states 
(12) will naturally be given by Ref. 7 

N N N 

Enun2,-,nN =Egr+UjJ2nJ = ^fl1 + (N- l)(v-5)}+LjJ2nJ- (13) 
j = l j = l 

Since d and v are real parameters, the energy eigenvalues (13) are also real ones. 
Thus we interesting find that the nonhermitian PT invariant Hamiltonian (5) 
yields a real spectrum. Furthermore, it is evident that for all rij = 0, the en­
ergy Eni,n2,—,nN attains its minimum value Egr. At the same time, as can be easily 
worked out from eqn.(12), the corresponding eigenfunction reduces to if)gr (6). This 
proves that ^)gr is indeed the ground state wave function for Hamiltonian (5) with 
eigenvalue Egr. 

It may be observed that the eigenfunctions (12) pick up a phase factor (—1)" un­
der the exchange of any two particles. Therefore, v represents the exchange statistics 
parameter for the extended Calogero model (5). By solving the quadratic eqn.(7), 
one can explicitly write down v as a function of g and 6 as 

v = {5+
l-)±yjg + {8+\f (14) 

For the purpose of obtaining real eigenvalues (13) as well as nonsingular eigenfunc­
tions (12) at the limit Xi —• Xj, we have assumed at the beginning of this section 
that v is a real positive parameter. This assumption leads to a restriction on the 
allowed values of the coupling constants g and 6 in the following way. First of all, 
for the case g < — (6 + \)2, eqn.(14) yields two imaginary solutions. Secondly, for 
the case 6 < - \ , 0 > g > -(5 + \)2 eqn.(14) yields two real but negative solu­
tions. Inequalities corresponding to these two cases represent two forbidden regions 
of ((5, g) plane which are excluded from our analysis. 

For the case g > 0 with arbitrary value of S, one gets a real positive and a 
real negative solution from eqn.(14). The real positive solution evidently leads to 
physically acceptable set of eigenfunctions and corresponding eigenvalues within 
this allowed region of (8, g) plane. Finally we consider the parameter range 6 > 
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— \, 0 > g > — (6 + \)2, for which eqn.(14) yields two real positive solutions. 
It is easy to see that these two real positive solutions are related to each other 
through a 'reflection symmetry' given by v —> 1 + 26 - v. Consequently, for each 
point on the (S,g) plane within this allowed parameter range, one obtains two 
different values of the exchange statistics parameter leading to two distinct sets of 
physically acceptable eigenfunctions and eigenvalues. Thus we curiously find that 
a kind of 'phase transition' occurs at the line 6 = — | on the (S,g) plane. For the 
case 6 > — | , exchange statistics parameter shows the reflection symmetry when g 
is chosen within an interval —(| + 6)2 < g < 0. On the other hand for the case 
6 < — ̂ , such reflection symmetry is lost for any possible value of g. 

We have seen in this section that, similar to the case of Aw-i Calogero model, 
the extended model (5) can also be solved by mapping it to a system of free harmonic 
oscillators. So it is natural to enquire whether this extended model is directly related 
to the AM-i Calogero model through some similarity transformation. Investigating 
along this line,12 we find that 

r - ^ ^ ' ^ ^ + ^ E ^ + s ' E ^ j i . (is) 

where T = Y\j<k(xj — xk)
s, and H' denotes the Hamiltonian of A^-i Calogero 

model with 'renormalised' coupling constant given by g' = g + 6(1 + 6). Due to the 
existence of such similarity transformation, one may expect that the Hamiltonians 
% and H' always lead to exactly same eigenvalues. However it should be noted that, 
within a parameter range given by 6 > 0, g > —6(1 + 6), there exists a positive 
solution of eqn.(7) satisfying the condition v — 6 < 0. Therefore, we can not get any 
lower bound for the corresponding energy eigenvalues (13) at N -> oo limit. On 
the other hand, the energy eigenvalues (2) of >1AT-I Calogero model are certainly 
bounded from below for all possible choice of N and g. So there exists a parameter 
range within which the spectrum of extended Calogero model differs qualitatively 
from the spectrum of the original Calogero model. To explain this rather unex­
pected result, we first observe that the renormalised coupling constant g' would 
be a positive quantity within the above mentioned parameter range. Consequently, 
the corresponding exclusion statistics parameter v', which is obtained by solving 
eqn.(3), has one positive and one negative solution. One usually throws away this 
negative solution of v'', since the corresponding eigenfunctions become singular at 
the limit Xj —> Xk- However, by using the relation (15), such singular eigenfunctions 
(denoted by ip'(x\,X2, • • • ,£JV)) may now be used to construct the eigenfunctions 
of extended Calogero model (denoted by i[}(xi,X2, • • • XN)) as 

ip(x1,x2,---,xN) = J\(XJ -xk)
Sip'(x1,x2,---,xN). (16) 

3<k 

It can be easily checked that, due to the existence of the factor Ylj<k(xj —Xk)s, the 
r.h.s. of the above equation becomes nonsingular at the limit Xj —> xk • Thus we cu­
riously find that singular eigenfunctions of H' can be used to generate nonsingular 
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eigenfunctions of H through the relation (16). This shows that the similarity trans­
formation (15) is a subtle one and, within a certain parameter range, eigenvalues of 
extended Calogero model will match with those of Calogero model (having renor-
malised coupling constant) only if the corresponding unphysical eigenfunctions are 
taken into account. 

3. Connection with fractional statistics 

We have mentioned in Seel that GES can be realised microscopically in AN-I 
Calogero model with hermitian Hamiltonian. The GES parameter for this Calogero 
model is a measure of 'level repulsion' of the quantum numbers generalising the 
Pauli exclusion principle. Now for exploring GES in the case of PT invariant model 
(5), we observe that eqn.(13) can be rewritten7 exactly in the form of energy spec­
trum for N free oscillators as 

iv N 

Eni,n3-nN = - 5 - - t -W^fl j- , (17) 

where 

ni=ni + (v-8)(j-l) (18) 

are quasi-excitation numbers. However, from eqn.(18) it is evident that such quasi-
excitation numbers are no longer integers and satisfy a modified selection rule: 
fij+i — fij > v — 5. Since the minimum difference between two consecutive fijS is 
given by 

v = u-S, (19) 

the spectrum of extended A^-i Calogero model (5) satisfies GES with parameter 
v.7 Several comments about this GES parameter are in order. It may be to noted 
that for 6 ̂  0, the GES parameter v is different from the power index v, which is 
responsible for the symmetry of the wave function. Therefore we may interestingly 
conclude that unlike Calogero model, the exclusion statistics for model (5) differs 
from its exchange statistics. Furthermore it is already noticed that, on a region of 
(6,g) plane satisfying the inequalities 6 > 0, g > -5(1 + 8), there exists a positive 
solution of eqn.(7) which yields a negative value of v. For this case, however, one 
does not get well defined thermodynamic relations at N —> 00 limit and, therefore, 
can not interpret v as the GES parameter. 

By using eqn.(7) and (19), we find the relation 

i>2-v = g + 8(8 + l), (20) 

which clearly describes a parabolic curve in the coupling constant plane (6, g) for any 
fixed value of v. As a consequence of this, the competing effect of the independent 
coupling constants g and 5 can make the GES feature of (5) much richer in compar­
ison with the Calogero model. For example, while bosonic (fermionic) excitations in 
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the Calogero model occur only in the absence of long-range interaction, the quasi-
excitations in (5) can behave as pure bosons (fermions) even in the presence of both 
the long-range interactions satisfying the constraint v(5,g) = 0 (u(5,g) = 1). Both 
of these constraints lead to the same parabolic curve g = —6(1 + 5). A family of 
such parabolas with shifted apex points are generated for other values of v and the 
lowest apex point is attained at v = i , where the quasi-excitations would behave 
as semions. 

4. Conclusion 

Here we construct a many-particle quantum system (5) by adding some nonhermi-
tian but combined parity and time reversal (PT) invariant interaction to the A^-i 
Calogero model. By using appropriate similarity transformations, we are able to 
map this extended Calogero model to a set of free harmonic oscillators and solve 
this model exactly. It turns out that this many-particle system with nonhermitian 
Hamiltonian yields a real spectrum. This fact supports the conjecture that the con­
dition of hermiticity on a Hamiltonian can be replaced by the weaker condition of 
PT symmetry to ensure that the corresponding eigenvalues would be real ones. It 
is also found that the spectrum of extended Calogero model obeys a selection rule 
which leads to generalised exclusion statistics (GES). 

However, this extended Calogero model exhibits some remarkable properties 
which are absent in the case of usual Calogero model. For example, we curiously 
find that the GES parameter for this extended Calogero model differs from the cor­
responding exchange statistics parameter. Moreover a 'reflection symmetry' of the 
exchange statistics parameter, which is known to exist for A^-i Calogero model, 
can be found in the case of extended model only if the strength of PT invariant 
interaction exceeds a critical value. 

Finally we note that, it is possible to obtain another exactly solvable many-
particle quantum system by adding some nonhermitian but PT invariant interac­
tions to the BN Calogero model (associated with BN Lie algebra).12 Such a PT 
invariant model also leads to real spectrum with properties quite similar to the case 
of extended A^-i Calogero model. 
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We examine the groundstate wavefunction of the rotor model for different boundary 
conditions. Three conjectures are made on the appearance of numbers enumerating 
alternating sign matrices. In addition to those occurring in the 0 ( n = 1) model we 
find the number Av(2m + 1;3), which 3-enumerates vertically symmetric alternating 
sign matrices. 

1. Introduction 

The XXZ Heisenberg spin chain and the related six-vertex model stand as central 
pillars in the study of exactly solved models in statistical mechanics.1'2 It has been 
known for many years that, with appropriate boundary conditions, their ground-
state energy is trivial at the particular anisotropy value A = —1/2. Only recently 
has it been realised that the corresponding groundstate wavefunction possesses some 
rather remarkable properties.3-5 These observations extend to the related O(n) loop 
model6-7 at n = l.4'8"10 

Consider first the periodic antiferromagnetic XXZ chain 

H = -\ £ (°M+ i + * K + i + A O K H ) , (1) 

defined on an odd number N of sites. Here (<rj, crV, CT|) are the Pauli spin matrices 
acting at site j . Normalize the smallest component of the groundstate wavefunction 
to be unity. Then at A = —1/2 the largest component is conjectured to be given 
by 3 

1=0 x Jl 
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for size N = 2m +1. The remarkable point being that A(m) is the number o f m x m 
alternating sign matrices.11 The resulting sequence A(m) = 1,2,7,42,429,7436... 
is also known to count other combinatorial objects.12 '13 Moreover, these numbers 
appear in the sum of all the groundstate wavefunction components. These observa­
tions remain to be proved. 

An even number of sites and other boundary conditions have also been consid­
ered, both for the XXZ chain (twisted and closed8, quantum symmetric bc's) and 
the 0(n = 1) loop model (periodic and closed bc's). These see the appearance of 
other well known numbers counting alternating sign matrices and related objects 
in different symmetry classes. For example, with the smallest component of the 
groundstate wavefunction again unity, the 0 ( n = 1) loop model with closed bound­
ary conditions has largest component given by Ay (2m — 1) for N = 2m — 1 and 
7V8 (2m) for N = 2m. Here 

is the number of (2m +1) x (2m + 1 ) vertically symmetric alternating sign matrices 
and 

is the number of cyclically symmetric transpose complement plane partitions. The 
number JV8(2m) is conjectured to be AvH(4m+l) /Av(2m + l ) , where Ayn(4m+1) 
is the number of (4m + 1) x (4m + 1) vertically and horizontally symmetric alter­
nating sign matrices.14 '15 Another quantity, which appears for periodic boundary 
conditions, is 

AHT(2m) = A ( m ) 2 n £ r T , <5> 

the number of 2m x 2m half turn symmetric alternating sign matrices. 
Further developments include the combinatorial interpretation of the elements 

of the 0(n = 1) loop model wavefunction in terms of link patterns8 - 1 0 and the 
relation to a one-dimensional stochastic process.10 There has been some progress 
attempting to prove these conjectures using Bethe Ansatz techniques.16'17 

In this paper, we examine the groundstate wavefunction of the rotor model18 

discussed by Martins and Nienhuis. The rotor model is based on a variant of the 
Temperley-Lieb algebra, which underpins the six-vertex model, the O(n) model and 
the critical Q-state Potts model.1 '2 '19 The rotor model is denned in Section 2, with 
our results presented in Section 3. 

aThe standard nomenclature for these bc's is open be, but since these bc's are spin-conserving 
in the XXZ chain or loop reflecting in the 0 (n = 1) model we find the term closed be more 
appropriate, here reserving open be for non-conserving boundary conditions. 
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Here we see the appearance of another number, Ay (2m + 1; 3), which is the 3-
enumeration of (2m +1) x (2m +1) vertically symmetric alternating sign matrices, 
or equivalently, the number of vertically symmetric 6-vertex configurations with 
domain wall boundary conditions and A = - 1 / 2 . It is given by 

A v ( 2 m + 1;3) = 2 m \{ j(2j-1)P = L 5 ' ^ , 16038, • • - (6) 

In general, the ^-enumeration of alternating sign matrices in the terminology of 
Kuperberg ,15 is equivalent to the enumeration of six-vertex configurations with 
domain wall boundaries with A = 1 — x/2 and at the symmetric point with respect 
to the spectral parameter. 

We give some concluding remarks in Section 4. 

2. The rotor model 

We suggest that the remarkable observations of this 0(n = 1) model are related to 
the combination of two key properties, namely solvability and the absence of finite 
size corrections to the groundstate energy. Now the 0(n = 1) model is not unique in 
this combination. Recently Martins and Nienhuis18 introduced a model that shares 
the same two properties. In this so-called rotor model a set of loops covers all the 
edges of the square lattice precisely twice. At the vertices all the loops make a turn 
of 7r/2 which permits four types of vertices as displayed in Figure 1. 

+ JL J _ _JL 
R L A D 

Fig. 1. Vertices of the rotor model. 

A natural interpretation is that the loops are trajectories of particles, and that 
the two loop segments visiting the same edge are traversed in opposite directions. 
Thus the four kinds of vertices shown in Figure 1 behave as scatterers: right (R) 
and left (L) rotors, at which the particles always turn right and left respectively, 
and ascending (A) and descending (D) diagonal mirrors at which the particles get 
reflected. To clearly display the scatterers we propose that the particles always 
follow the left hand side of the road, as is customary in Australia where this paper 
was conceived. 

In a different interpretation the two loop segments at the same edge are the 
trajectories of different kinds of particles, traversed in either direction. Then the 
scatterers can all be interpreted as double mirrors on each site, each reflecting one 
kind of particle and transmitting the other. At the R and L sites these mirrors 
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are placed crosswise, AD and DA respectively, while at the original ascending and 
descending mirrors, the double mirrors are placed parallel, AA and DD respectively. 
This alternate interpretation will not affect the distributions of trajectories in an 
infinite system, but it will result in changes on some finite systems. 

Martins and Nienhuis solved this model by means of the Yang-Baxter equation 
when these scatterers occur with the respective weights 

WR = WL = sin u cos(27r/3 — u), 
UA = sin(7r/3 — u) cos(27r/3 — u), (7) 
WD = — sinucos(7r/3 — u). 

independently at each vertex. In this paper we consider this model with periodic 
boundary conditions (pbc) and with closed boundaries at which the trajectories are 
reflected. We will be interested in the structure of the groundstate eigenvector. Since 
the transfer matrix as a function of u forms a commuting family, the groundstate 
is independent of u. Then it is convenient to consider the Hamiltonian, found (up 
to a constant) as the logarithmic derivative of the transfer matrix with respect to 
u at u = 0: 

H = Y,3-Ri-Li~Ei- (8) 
i 

For system size N the operators R, L and E are shown in terms of the loops in 
Figure 2. 

H IX 
R L E 

Fig. 2. Generators. 

Martins and Nienhuis showed that the operators L^i and i?2i-i generate a 
Temperley-Lieb (TL) algebra, and so do the operators -£21-1 and R^i- In peri­
odic systems of even size, and in bounded systems these two TL algebras commute 
with each other. What changes the physics is the presence in the Hamiltonian of 
the term Ei — RiLi. Also the E% by themselves generate a TL algebra. In odd, 
periodic systems the odd and even sites cannot be distinguished. In this case the L 
and the R together form a TL algebra of 27V sites. 

When the system is odd and periodic, the interpretation of the R and L vertices 
as rotors or alternatively as crossing mirrors, will naturally result in different pbc. 
The rotor interpretation permits closed trajectories that wind the cylinder twice. In 
the alternative interpretation no closed winding trajectories are possible, and the 
odd system must have two unmatched terminals. In this paper we follow the latter 
interpretation. 
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The states of the model are the pairings of those terminals that are connected by 
a trajectory in the 'past' half of the strip or cylinder. When the system is periodic, 
one may distinguish the side of the cylinder along which the trajectory runs: a 
connection between site 1 and site N may pass all sites 2,...N—1, or it may 
simply connect site N to site N + 1 which is identified to 1. These two states can 
be distinguished, in which case we speak of pbc per se, or they may be identified, 
for which we reserve the phrase pbc with identified connectivities. 

3. Results for the groundstate wavefunction 

The groundstate wavefunction of the Hamiltonian (8) satisfies the eigenvalue equa­
tion Hipo = 0. In this section we formulate three conjectures regarding V'o for the 
different types of boundary conditions discussed in Section 2. 

Conjecture 1: For closed boundary conditions, if the smallest element of the rotor 
model groundstate wavefunction for N — 1m — 1 is normalized to Ay (2m — 1;3), 
then all of its elements are integers and the sum of its elements is given by 
S(2m~l) = 3(m _ 1) JV8(2m). For N = 2m, normalize the groundstate wavefunction 
to the smallest integer such that all elements are integers, the sum of the elements 
is given by S(2m) = 32e™Aw(2m + l), where6m = 0 , 1 , 3 , 6 , 9 = [ ( m - l ) ( m + 2)/3J 
for m = 1 , . . . , 5 . 

This conjecture is based on the results presented in Table 1 and was checked up 
to N = 10. 

Conjecture 2: For periodic boundary conditions, normalize the smallest element 
of the rotor model groundstate wavefunction to the smallest integer such that all 
elements are integer. The sum of its elements is then given by S(2m — 1) = 
33rMv(2ra + 1;3)2 for odd system sizes and by S(2m) = 3m2i4HT(2m) for even 
system sizes. 

This conjecture is based on the results presented in Table 2 and was checked up 
to N = 9. 

Conjecture 3: For periodic boundary conditions and identified connectivities, nor­
malize the smallest element of the rotor model groundstate wavefunction to the 
smallest integer such that all elements are integer. The sum of its elements is then 
given by S{2m) = 2e™A(m), where 6m = 0,1,3, 6,9,13 = [(m - l)(m + 2)/3j for 
TO = 1 , . . . ,6 . 

This conjecture is based on the results presented in Table 3 and was checked up 
to N = 12. 

4. Discussion 

In this paper we have examined the groundstate wavefunction of the rotor model for 
three different boundary conditions. As for the 0 ( n = 1) model, numbers known to 
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Table 1. Groundstate wavefunctions of the rotor model with closed boundaries. Note that by 
V>o = (2,1) with multiplicity (2, 2) we mean Vo = (2, 2 ,1 ,1) . 

N m ipo multiplicity Sj^ 

1 
2 
3 
4 
5 
6 

1 
1 
2 
2 
3 
3 

(1) 
(1) 
(2,1) 
(14,5,4) 
(113, 111, 55, 31, 25, 21, 19, 11, 5) 
(4760, 1440, 1192, 1028, 601, 565, 326, 
310, 126, 121, 86) 

(1) 
(1) 
(2,2) 
(1,1,2) 
(2, 1, 4, 2, 4, 2, 4, 4, 2) 
(1, 2, 4, 1, 4, 2, 2, 2, 1, 
2,4) 

1 
1 
6 
27 
891 
18954 

Table 2. Groundstate wavefunctions of the rotor model with periodic boundaries. 

N m T/JQ multiplicity SN' 

1 
2 
3 
4 
5 

1 
1 
2 
2 
3 

(1) 
(2,1) 
(5,2) 
(118, 35, 25, 22, 20, 5, 4) 
(1036, 463, 208, 143, 127, 122, 65, 22, 
10) 

(1) 
(2,2) 
(3,6) 
(2, 2, 8, 4, 8, 8, 4) 
(5, 10, 10, 20, 5, 10, 20, 
10, 10) 

1 
6 
27 
810 
18225 

Table 3. Groundstate wavefunctions of the rotor model with periodic boundaries and identified 
connectivities. 

N m ipo multiplicity S^N' 
2 
4 
6 
8 

1 
2 
3 
4 

(1) 
(2,1) 
(26, 9, 7, 2) 
(1798, 486, 410, 267, 234, 232, 165, 106, 
90, 81, 76, 70, 56, 45, 20, 9, 4) 

(1) 
(2,2) 
(2, 3, 14, 6) 
(2, 8, 16, 2, 16, 16, 8, 
16, 4, 16, 8, 8, 16, 32, 
16, 8, 4) 

1 
6 
189 
30618 

enumerate equally weighted alternating sign matrices appear in the normalization 
of the wavefunction. For the rotor model we also see the number Ay (2m + 1; 3), 
enumerating alternating sign matrices in which the minus signs have weight 3.1 5 

We find it quite surprising that the conjectures in Section 3 can be formulated 
at all. They are a result of the normalizations factoring into relatively small primes 
and thus enabling their recognition. This property appears to be absent for other 
boundary conditions, for example, pbc in the rotor interpretation for odd system 
sizes. It is even more remarkable that these numbers have a well known combina­
torial meaning. 
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We use Monte Carlo, transfer-matrix and finite-size scaling methods to investigate two-
dimensional O(n) models with n > 2, in particular the case n = 3 which includes 
the classical Heisenberg model. Depending on the type of interaction and the lattice 
structure, two different types of phase transitions are present. One type resembles the 
hard-hexagon transition and occurs in the loop representation of the honeycomb O(n) 
model. The other type is a first-order transition which occurs for spin-spin interactions 
that are strongly nonlinear in the neighbor-spin products . When the nonlinearity is 
decreased, the first-order line ends in a critical point. The existence of the first-order 
line is in agreement with mean-field theory as well as with high- and low-temperature 
approximations. 

1. In t roduc t ion 

The 0(n) spin model represents a system of interacting n-dimensional vectors s = 
) on a lattice. The O(n) symmetry implies that the Hamiltonian is 

invariant under rotations in the space of the spin vectors. We consider the case of 
0(n) symmetric pair interactions 

H/kBT = -J2 h(si-Sj) (1) 

where the sum is on all pairs of nearest neighbors, and h is an arbitrary function 
with implicit temperature dependence. The 'linear' case, i.e. h(x) = Kx where K 
is the coupling constant, includes the classical XY model (n = 2) and the classical 
Heisenberg model (n = 3). For reasonable choices of the function h, in particular 
monotonically increasing functions, it is plausible that the model belongs to the 
same universality class as the linear model. 
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The question whether or not two-dimensional O(n) models with n > 2, and in 
particular with n = 3, undergo a phase transition at a sufficiently low temperature 
has received considerable attention;1"6 see also references therein. These papers 
contain conflicting answers. However, according to the prevailing interpretation, 
ordering transitions are absent in the O(n) model with n > 2. The main argument 
relies on the spin-wave result1 '3 by Bloch that a spontaneously magnetized state 
cannot exist at a nonzero temperature. This does not qualify as a proof for the 
absence of a transition: the spin-wave argument applies as well to the XY (n = 2) 
model where a phase transition7 is known to occur (but not to a spontaneously 
magnetized state). The latter transition is however linked to topological excitations 
(vortices) which lack relevance for n — 3. This, together with an exact result of 
Kunz and Wu4 which excludes phase transitions in a part of the n > 2 parameter 
space, forms the basis of the above-mentioned prevailing interpretation. 

However, here we describe two sorts of transition for n > 2. The first type, which 
occurs in the O(n) loop model on the honeycomb lattice, is described in section 2. 
It is unphysical in the spin representation, because negative Boltzmann weights 
occur. It is thus consistent with the hypothesis that phase transitions are absent 
in two-dimensional spin models with n > 2. However, in section 3 we describe a 
phase transition in a genuine Heisenberg-type 0(3) model. The phase transition 
does not lead to a long-range ordered state (in the sense of a nonzero spontaneous 
magnetization) and is therefore consistent with the spin-wave theory. 

2. Phase Transition in the Loop Model 

The 'loop' version of the 0(n) model is defined by the choice h(x) = log(l + ax), 
where the parameter a is an inverse-temperature-like parameter, and the normal­
ization Si.Si = n. The model on the honeycomb lattice can be mapped5 onto a 
gas of nonintersecting loops running over the edges of the honeycomb lattice. Each 
edge covered by a loop carries a Boltzmann weight a, and each loop a weight n. The 
loop representation has enabled exact solutions along special lines in the n, a plane 
for n < 2 8_11 and for n > 2.12 From these solutions we know that for n < 2 an 
ordering transition occurs at finite values of x, and that for n > 2 the loop model 
is in a long-range ordered state for x = oo. This state is not of the 'ferromagnetic' 
type, but chooses between 3 sublattices, and reminds of the hard-hexagon model. 

In the absence of exact solutions in most of the n, x plane, we have applied Monte 
Carlo and transfer-matrix techniques.13 Surprisingly, a transition to the long-range 
ordered state was found at finite values x < oo. The hard-hexagon-like critical 
line spans the range 2 < n < oo. The resulting phase diagram is shown in fig. 1. 
Also shown are the boundary of the 'physical region' of the spin model, where the 
energy h(si.Sj) is real for all Si.Sj (curved line in the middle), and a region where a 
transition is rigorously excluded (above the curved line on the far right). The latter 
line is based on the work by Kunz and Wu;4 see also an erratum.13 

We observe that the newly found critical line indeed avoids the excluded region. 
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Fig. 1. Phase diagram of the 0(n) model on the honeycomb lattice in the n-a plane. The hor­
izontal scale is chosen as 1 — 8/(n -f 10) in order to show the whole range up to n = oo. The 
vertical scale displays W(n) = l/[(n + 10)l/6a]. The data points show our results for the newly 
found phase transition. The curve in the range — 2 < n < 2 shows an exact solution. The region 
on the right hand side of curve ending at n = W = 0 is unphysical in the spin representation. 
Rigorous arguments exclude phase transitions in the region indicated at the upper right. 

It is completely embedded in the unphysical region of the spin model, but it is 
physical in the language of the O(n) loop model. 

3. The Strongly Nonlinear 0 (3 ) Model 

We use Eq. (1) for the Heisenberg case n = 3 with a spin-spin interaction 

h{si • S^ = 2K[{1 + ^ • Sj)/2}p (2) 

with spins normalized to length 1. The parameter p determines the degree of non-
linearity of the energy function h. This form is chosen as to avoid powers of negative 
numbers, and to limit the energy range to 2K, as in the linear case. 

3 .1 . Mean-field theory 

Consider a spin si, interacting with z neighbors. Denote the average magnetization 
of the spin system as m, say along the x-axis. The local energy is 

Eioc = -2zK[(l + ^ • m) /2 f = -2zK[(l + xm)/2}p (3) 

and the thermal average of the x-component of s~l satisfies 

(x) = / xe~Bl°"dx/ J e~E^dx (4) 

For large enough K, the self-consistency equation (a;) = m has solutions at nonzero 
m. While m is a decreasing function of K, this function depends qualitatively on 
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p. For small enough values of p, m decreases continuously to 0 at the critical point 
K = Kc. We thus find Kc by solving d{x)/dm = 1 which leads to 

Kc = 2P-33/p (5) 

For larger values p, (x) increases faster than linear with m for small m, but 
still levels off at large m. The nozero solutions of (x) = m thus become duplicate, 
i.e., the transition turns first order for large p. These two distinct ranges of p are 
separated by the tricritical point, which can be determined by solving for K and p 
in d(x)/dm = 1 and d3(x)/dm? = 0 at m = 0. The second equation expresses the 
absence of the lowest order of nonlinearity of (a;) as a function of m. The tricritical 
coordinates are ptli = (—1 + >/33)/2 and KtT1 = 2Pt r i~33/p t r i . 

For p > ptri, the first-order transition point follows by equating the areas en­
closed by the (x) vs. m curve and the (x) = m line. Thus we have determined the 
first order line numerically; the resulting phase diagram is shown in fig. 2. 

3 

2.5 

2 

1.5 

1 

0.5 

0 
0 1 2 3 4 5 6 7 8 

P 

Fig. 2. Mean-field phase diagram of the nonlinear 0(3) model on the square lattice, in the K 
versus p plane. The line of phase transitions consists of two parts: a continuous transition at small 
p, and a first-order part. The two parts are separated by a tricritical point (asterisk). 

3.2. High' and low-temperature approximations 

Estimates of the location of a first-order transition(if any) can also be obtained 
from intersections of high- and low-temperature approximations of the free energy. 
Neglecting loop diagrams in the high-temperature expansion the lattice effectively 
reduces to the Bethe lattice, for which we obtain the free energy via a transfer-
matrix-like approach. The partition function Z\, 'per bond' between spins s and t 
equals 

Zh= I dsexp{2£T[(l + s i ) /2 ] p } (6) 

J I I I 1 I L 
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which is independent of t. Expansion of the exponential function yields 
oo 

where the prefactor accounts for the spin degrees of freedom and the sum for the 
spin-spin interaction. The partition function of a Bethe lattice with N spins, each 
interacting with z neighbors, and zN/2 bonds follows as 

For z = A, the high-temperature approximation of the free energy is thus 

II--'^Ht<ra) (9) 

We use a low temperature approximation for spins almost aligned along the z axis: 

Si = I sf,s%, -i/l — sf2 — S? ) where the x and y components are small. Small 

deviations between neighbors i and j increase the energy per bond 

Ev/kT + 2K= ±PK[(s* - s*f + (a? - sf)2] (10) 

i.e. the Gaussian model applies to this quadratic form. After a Fourier transforma­
tion it is straightforward to obtain the partition function; the free energy follows 
as 

NkT N 

-4K - log(47r) + log(8PK) + 1 Y, loS[(sin \**)2 + (sin \kyf) (11) 
k 

For large N the sum satisfies ^ Y.k l o g[( s i n \k^)2 + ( s i n \ky)2\ - -0.2200507 • • •. 
The low- and high-temperature approximations of the free energy are found 

to intersect, and thus predict the approximate location of a possible first-order 
transition line. These intersections were found numerically, and shown in fig. 3. 

3.3. Monte-Carlo results 

The model defined by Eqs. (1) and (2) was investigated by a conventional Monte 
Carlo algorithm with local spin updates. Randomly chosen orientations for the spin 
vectors were accepted or rejected with Metropolis-type probabilities. The autocor­
relation times are found to increase considerably at low temperatures, especially 
for system sizes L exceeding about 100. The efficiency of the algorithm decreases 
even further at high values of p where the acceptance ratio becomes small. 

Nevertheless we could resolve the phase diagram. No signs of a phase transition 
were found for p = 1, i.e. the linear Heisenberg model. But for larger p, pronounced 
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Fig. 3. Monte Carlo results for the phase diagram of the two-dimensional 0 ( n ) spin model on the 
square lattice, in the K versus p plane. Results from the intersections of low- and high-temperature 
approximations of the free energy are included as well (full curve). 

maxima in the heat capacity appear, and for p > 16, we find numerical evidence for 
a divergence of the heat capacity. For p > 18, the simulations reveal a jump in the 
energy as a function of K, and a clear hysteresis effect. The first-order character 
becomes even stronger at larger p. The transition for p > 20 was found by Monte 
Carlo runs starting from a spin configuration of which one half was fully aligned, 
and the other half filled with randomly chosen spins. For p < 20 we determined the 
location Kmax(p, L) of the heat capacity maximum cmax(p, L) as a function of K 
for system sizes up to L = 48, and extrapolated to L = oo. The heat capacity does 
not seem to diverge for p < 16. For p = 16 we observe a divergence approximately 
as L7/4, which indicates the presence of an Isinglike critical point. For p > 16 the 
divergence agrees with first-order behavior cmax(p, L) oc L2. The Monte Carlo data 
are included in fig. 3. 

4. Discussion 

We have provided evidence for two types of phase transitions in O(n) models with 
n > 2. The first type is unphysical in the spin language, and depends essentially 
on the underlying lattice structure. The second type is, however, found in a pure 
spin system, in a conspicuous disagreement with expectations formulated in the 
literature. We review the evidence presented above. 

In low-dimensional models, mean-field theory tends to predict continuous phase 
transitions where they do not exist. The example found in section 3.1 should thus 
not be taken too seriously. The predicted first-order transition is more credible, 
because the strength of the predicted discontinuity increases at large p, and the 
role of fluctuations may thus be reduced. Another defect of mean-field theory is 
that it is based on an order parameter m that is actually zero.1 '3 However, the 

0 20 30 40 50 60 
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long-wavelength spin waves, which are responsible for the suppression of m, hardly 

affect correlations at distances of a few lattice units. The mean-field result can thus 

still be regarded as suggestive of a first-order transit ion at large p. 

Likewise, t h e result of the high- and low-temperature approximations is less 

t han compelling. Nevertheless, here also the predicted energy jump increases with 

p: the two free-energy branches are pushed far away, mimicking high- and low-

tempera ture configurations with only limited fluctuations. This lends some support 

to our approximation. The resulting first-order line is in a reasonable qualitative 

agreement wi th Monte Carlo results (fig. 3). It tends to become better at large p. 

The Monte Car lo runs provided a clear first-order picture; the numerical errors are 

very small in comparision to the differences with the two analytic approximations 

for the first-order line. The Monte Carlo results are clearly superior. Finally we 

mention t h a t similar transitions may occur for larger values of n , and that Monte 

Carlo results of Domany et al .1 4 for the analogous strongly nonlinear 0 (2) model 

showed tha t t h e Kosterlitz-Thouless transition is preempted by a first order one. 
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We review an algebraic method for constructing degenerate eigenvectors of the transfer 
matrix of the eight-vertex Cyclic Solid-on-Solid lattice model (8V CSOS model), where 
the degeneracy increases exponentially with respect to the system size. We consider the 
elliptic quantum group ET,ri(sl2) at the discrete coupling constants: 2Nr) = mi -\-imir, 
where N, mi and m^ are integers. Then we show that degenerate eigenvectors of the 
transfer matrix of the six-vertex model at roots of unity in the sector Sz = 0 (mod iV) 
are derived from those of the 8V CSOS model, through the trigonometric limit. They 
are associated with the complete N strings. Prom the result we see that the dimension 
of a given degenerate eigenspace in the sector Sz = 0 (mod N) of the six-vertex model 
at iVth roots of unity is given by 2 2 Sn>^/ J V , where S^ax is the maximal value of the 
total spin operator Sz in the degenerate eigenspace. 

1. In t roduct ion 

Recently, it has been explicitly discussed that the transfer matrix of the six-vertex 
model at roots of unity has the symmetry of the sh loop algebra.1^5 Let us consider 
the XXZ spin chain under the periodic boundary conditions 

L 

HXxz = ~ J E ipf CTf+i + aJaJ+i + A(Tf a!+i) • (^ 

Here the parameter A is related to the q variable of the quantum group Uq(sl2) as 

A = i (? + g-1). (2) 

When q2N = 1, it was shown1 that the XXZ Hamiltonian commutes with the gener­
ators of the sl2 loop algebra, which is an infinite dimensional algebra. Furthermore, 
it was shown1 by the Jordan-Wigner method for N = 2 and numerically for general 
N that the dimensions of the degenerate eigenvectors are given by some powers of 
2, which increase exponentially with respect to the system size L. 

* deguchi@phys.ocha.ac.jp 
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The exponential degeneracy of the sl2 loop algebra should be important for the 
problem of the "completeness of the Bethe ansatz eigenvectors". In fact, the si2 
loop algebra symmetry has not been considered in the standard arguments of the 
string hypothesis.6'7 Thus, it seems that it is still open whether we can construct 2L 

linearly independent eigenvectors of the XXZ spin chain at roots of unity for general 
L. The question should be related to so called singular Bethe ansatz solutions.8 In 
fact, it is numerically confirmed that the standard solutions of the Bethe ansatz 
equations determine only eigenvectors which have the highest weights of the sl2 

loop algebra.2 Furthermore, some important properties of complete N strings have 
been discussed in association with the sl2 loop algebra.2"4 

Interestingly, it was numerically suggested that the transfer matrix of the eight-
vertex model at the discrete coupling parameters should have the degenerate eigen­
vectors corresponding to the degeneracy of the sl2 loop algebra.1 Furthermore, it 
has been recently shown that some degenerate eigenspace of the eight-vertex model 
has dimension of N2LIN if L/N is an even integer.5 Let us consider the XYZ 
Hamiltonian under the periodic boundary conditions9'10 

L 

HXYZ — - 2 J {Jxvfaf+i + JYOJ(JJ+1 + Jzafaf+1) , (3) 

where the coupling constants Jx, Jy a n d Jz are given by 

Jx = J(l + ksn2(2ri)), JY = J ( l - ksn2(2ri)), Jz = Jcn(2j])dn(2r)). (4) 

Here sn(z), cn(z) and dn(z) denote the Jacobian elliptic functions with elliptic 
modulus A;. We have called 2r) the coupling parameter of the model. The number N 
has been related to 2r] by 2Nr) = 2m\K + im2K'. The symbols K and K' denote 
the complete elliptic integrals of the first and second kinds, respectively. 

In this paper, we discuss an algebraic construction of degenerate eigenvectors 
of the eight-vertex cyclic Solid-on-Solid model11"13 (8V CSOS model), which is a 
variant of the eight-vertex Restricted Solid-on-Solid model (ABF model) Then, we 
show that through some limit, they give the degenerate eigenvectors of the six-
vertex model in the sector Sz = 0 (mod N) consisting of the complete N strings. 

2. The SI2 loop algebra symmetry of the XXZ spin chain 

Let us consider representations of the generators of Uq{sl2) on the £th tensor prod­
uct of spin 1/2 representations. 

/ = / / 8 ® - ® / / J (5) 

s * = x > f = x y */2 ® • • • <fz/2 ® °t ® i~°z'2 ® • • • ® ^~aZ/2 (6) 
J = I J = I 

Let us introduce some symbols: [n] = (qn — q~n)/(q - q~l) for n > 0 and [0] = 1; 
W! = nL:W-Setting 

5 ± W = l i m ^ ^ 1 ( 5 ± ) i v / [ i V ] ! (7) 
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the operators S^N^ are non-vanishing and we have 

n+f/Vl V ^ H-rrz 2-nz + (M-2) z (N-2) z 
5 2 ^ 9 ®---®q~ ® er* ® 9 ^ ^ ® • • • <g> g ^ ^ 

l < j l < - < J A T < i 
, (JV-4) _Z i N „Z N „Z , . 

®<rf2 ® ?~s - C T (8) • • • ® a * , <g> g ~ 2 CT ® • • • <g> g T ^ . (8) 

The study of the symmetries of the XXZ Hamiltonian under periodic bound­
ary conditions at roots of unity was initiated in Ref.:15 S±(-N^ commute with the 
Hamiltonian (1) when Sz/N is an integer and q2N = 1 holds. However, there exists 
a much larger symmetry algebra than that of S^^.1 We remark that the XXZ 
Hamiltonian is associated with the affine quantum group Uq(sl2)- For instance, we 
may consider the following: 

T± = E r * = E « " z / a ® • • -i'"2'2 ® at ® q"z/2 ® • • • ® q"z/2' (Q) 
J = I J=I 

which is also obtained from 5 ± by the replacement q -» g _ 1 . When g2JV = 1, we 
define T±(^N^ similarly as in eq. (7). 

Let Tev(v) denotes the (inhomogeneous) transfer matrix of the six-vertex model. 
Then we can show the (anti) commutation relations when Sz = 0 (mod N)1 

S^Teviv) = qNT6V(v)S^N\ T ^ T ^ ) = qNT6V(v)T±^ (10) 

and therefore in the sector Sz = 0 (mod N) we have 

[S±w,H] = [T±(N\H]=0. (11) 

Let us discuss the symmetry algebra. With the following identification1 

eo = 5+w, f0 = s-(N\ e i = r - w , 
h=T+W, t0 = -t1 = -(-q)NSz/N, (12) 

we can show that they satisfy the defining relations of the s/2 loop algebra: 

[5+W.T+W] = [ S - W . T - W ] = 0 ) (13) 

[S±(N); SZ] = ±NS±(N); [T±(N) ^ gZ] = ±NT±(N) > ( 1 4 ) 

iSr+(JV)3j-(iV) _ 35+(JV)2T-(iV)5,+(iV) + 3 5+(JV) r - (Ar) 5 +( iV)2 _T-(N)S+(N)3 = Q^ 

5-(JV)3r+(iV) _ 2S-(N)2T+(N)S-(N) + 3S-(N)T+(N)S~(N)2 _ T+(N)S-(N)3 = Q ^ 

T +(N)3 5 - (N) _ 3T+(N)'2S-(N)T+(N) + 3T+(N)g-(N)T+(N)2 _ g-(N)T+(N)3 = Q ^ 

T-(N)3g+(N) _ 3 T - (^)2 5 +(iV) T - (JV) + 3 T-(iV)5 ,+(Ar) r-(JV)2 _ £ + ( ^ - ( ^ 3 = Q ) 

(15) 

and in the sector Sz = 0(mod N) we have 

[ S + W ) 5 - W ] = [ T + W , T " W ] = - ( - g ) " - | s * . (16) 

The loop algebras with higher ranks are also discussed for some vertex models.16 
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3. The algebraic Bethe ansatz of the elliptic quantum group 

The elliptic algebra ETtT](sl2) is an algebra generated by meromorphic functions of 
a variable h and the matrix elements of a matrix L(z, A) with non-commutative 
entries,17 ,18 which satisfy the Yang-Baxter relation with a dynamical shift 

fl(12)(*i2, A - 2Vh^)L^{Zl, \)L<V{z2, A - 2r,/i(1)) 

= L^(z2,X)L^(z1,X-2r1h^)R^\z12,X) . (17) 

Here h is a generator of the Cartan subalgebra h of sl2. Drinfeld's quasi-Hopf 
algebra gives a natural framework for the dynamical Yang-Baxter relation, which 
can be derived from the standard quantum group Uq(sl2) through the twist.19 '20 

The ^-matrix of (17) is essentially that of the ABF model14 (the 8V RSOS 
model). Let V be the two-dimensional complex vector space with the basis e[l] and 
e[— 1]. Here we denote e[—1] also as e[2], and let Eij denote the matrix satisfying 
Eije[k] = 6jke[i}. Then, the .R-matrix R(z, A) G End(V) is given by 

R(z, A; 77, T) = En <g> En + E22 0 E22 + a{z, \)En <g> E22 

+(3(z, X)E12 ® E21 +/3(z, -X)E21 <g> E12 + a(z, -X)E22 ® En , (18) 

where h = En — E22 and a(z, A) and (3(z, A) are defined by 

a(z>x)-e(z-2V)e(x)> ^x)--e(z-2V)9(x)- (19) 

The theta function has been given by 
oo 

6(Z;T) = 2p1/4simrz J J ( 1 -p2n)(l -p2nexp(2mz)){l -p2nexp(-2mz)), (20) 
n = l 

where the nome p is related to the parameter r by p — exp(7rir) with Im r > 0 . 
Let us now review the construction of the eigenvectors of the elliptic algebra 

ETtn(sl2) at the discrete coupling parameter: 2JVT? = mi + m2T , where N, mi 
and 77i2 are any given integers.5 Here we note that 2Nr) = mi + m2T corresponds 
to 27V77 = 277ii.ftT + im2K in (4). Hereafter we assume m2 = 0 for simplicity. Let 
W = V(z\) ® • • • <8> V(ZL) be the Lth tensor product of the evaluation modules 
VA^ZJYS with Aj = 1 for all j . 1 7 ' 1 8 The transfer matrix T{z) of ET>n(sl2) is given 
by the trace of the L-operator acting on the module W 

L 

L(z,X) = R(01\z - ZI, A - 2 T ? ^ h{j)) 

L 

x R^2\z - z2, X - 2r)Y,hU)) • • - i i ( 0 L ) ^ - zL,X) (21) 

Let us consider the mth product of the creation operators b(tj)'s on the vac­
uum.1 8 '2 1 Let us assume the number m satisfies the following condition 

2m = L-rN, for r G Z (22) 
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Hereafter we also assume that rm\ is even. We introduce a function gc(X) by <7C(A) = 
ecX Y[™=1 (&{X — 2rij)/6(2r])). Vector vc is defined by vc = gc(X)v0, where VQ is the 

highest weight vector of W: hvo = Lv$. Then, making use of the fundamental 
commutation relations18 associated with b(zj)'s, we can show that b(ti) • • • b(tm)vc 

is an eigenvector of the transfer matrix T(z) with the eigenvalue CQ(Z) 

r u„\ - P-*vc n e(w ~ *>+27?) + P^c f r e(w - li -27?) rr 9(w -Za^ 0[ j /J e(w-tj)
 +e jl 9(w-tj) }Ae(v,-za-2n)' 

(23) 

if rapidities t±, t2,..., tm satisfy the Bethe ansatz equations 

The vector b(ti) • • • b(tm)vc is explicitly given by the following:18 

(^ire,(J+« s E ft n ){T::B% 
x 11 /POP/, 11 , ( _ 2 } ^ - ^ 1 0 ) (25) 

Here aj denotes the Pauli matrix a~ acting on the j th site, <S the symmetric group, 
|0) the vacuum vector and fjk — 6{tj — ifc — 2rf)/6{tj — i*). 

4. The eigenvectors of the 8V CSOS model 

Let us replace A with A + Ao in the L-operator (21) on W. Here Ao is indepen­
dent of A. Then, the .R-matrix R(z,X + Ao) is related to the Boltzmann weights 
w(a, b, c, d; z, A0) of the 8V CSOS model through the following relation 

R(z, —2r)d + Ao)e[c - d] <S> e[b - c] = ^ w(a, b, c, d; z, Xo)e[b — a]<8>e[a-d] (26) 
a 

Here a, b, c, d denote the spin variables of the IRF (the Interaction Round a Face) 
model which take integer values.10 The spin variables have the constraint that the 
difference between the values of two nearest-neighboring spins should be given by 
± 1 . Furthermore, for the 8V CSOS model discussed in Refs.,11-13 the spin variables 
take the restricted values such as 0, 1, . . . , N — 1 where the values 0 and N — 1 can 
be assigned for adjacent spins. 

Through the relation (26), we can show that the transfer matrix T(z) of ETtT){sl2) 
acting on the "path basis" corresponds to that of the 8V CSOS model.10,18 Here we 
note that a "path" is given by a sequence of spin values satisfying the constraints 
on adjacent spins. Explicitly we consider the following18 

\a\, a2, • • • CLL)W = S(X + 27701) e[a\ - a2] <g> e[a2 - a3] <g> • • • <g> e[a,L - ai] (27) 
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Here for the 8V CSOS model, we assume that az, — ai = ±1 (mod N). Expressing 
the eigenvector b(t\) • • • b(tm)vc of T(z) in terms of the path basis, we obtain that 
of the transfer matrix of the 8V CSOS model. 

5. The degenerate eigenvectors of t h e transfer matrix of the 8V 
CSOS model 

Let us now assume that out of m rapidities ti,...,tm, the first R rapidities tj for 
j = 1,...,R are of standard ones satisfying the Bethe ansatz equations (24) with 
TO replaced by R, while the remaining NF rapidities are formal solutions given by 

Ha,j)=t{a)+i1(2j-N-l)+eT^), for j = l,...,JV. (28) 

We call the set of N rapidities t(a,i)> • • • > t(a,N)i the complete iV-string with center 
i(Q). Here the index a runs from 1 to F. Furthermore, we assume that the index 
(a, j) corresponds to the number R + N(a — 1) + j for 1 < a < F and 1 < j < N. 
We note that the complete strings were suggested in Ref.10 in another context. 

Using the fundamental commutation relations, we can show when £ ^ 0 

T(z)b(h) • • • b(tR+NF) vc = C0(z)&(ti) • • • b(tR+NF) vc 

( R R+NF\ 

E + E Cjb(t1)---b(tj-1)b(z)b(tj+1)---b(tR+NF)vc. (29) 
j=l j^R+lJ 

We divide eq. (29) by e, and send e to zero. Then, we can show that each of the 
terms of eq. (29) indeed converges, by making use of the following formula 

11 fpaP0- U U x 11 [e(t tk_2f,)) '(30) 

l<a</3<m l<a<0<m l<j<k<m x V •> K " ' 

for P £ Sm. Here H(x) denotes the Heaviside step function: H(x) = 1 for x > 0, 
H(x) = 0 otherwise. The symbol P S Sm denotes an element P of the symmetric 
group of m elements, where j is sent to Pj G {1 ,2 , . . . , TO} for j — 1 , . . . TO. The 
formula (30) has been proven in Ref..22 

Let us consider the following function of variable z5 

r M _ V % - 4 , c a FT £0(z-tk+r,(2j-N+l)) 
{)=h M^'-tu+T&i-N-*)) 

J^e(z~Z0 + n(2j-N-3)) 
Uetz-zp + vW-N-i)) [6i) 

Hereafter we assume exp(ANrjc) = 1. Then, the centers i(a) 's are determined by 

G(z = t{a))=0, for a = l,...,F. (32) 

We can show that the zeros of (32) also form complete iV strings, and also that the 
number of zeros of (32) is given by L — 2R, by using the Bethe ansatz equations 
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(24).5 Thus , the number of independent solutions to (32) is given by (L — 2R)/N, 

which leads to the dimension 2^L~2IV>/N through the binomial expansion. Thus , for 

the transfer ma t r ix of the 8V CSOS model, any standard Bethe ansatz eigenvector 

with R rapidi t ies has the degeneracy of 2^L~2R^N. 

Let us now consider the connection of the CSOS model to the six-vertex model. 

Taking the t r igonometr ic limit: r —> ioo and sending Ao to infinity with some gauge 

transformations, t he L-operator of the 8V CSOS model becomes that of the six-

vertex model. We may assume tha t the trigonometric limits of the R rapidities of 

the Bethe ansa tz equations (24) wi th exp(4?/c) = 1 satisfy the trigonometric Bethe 

ansatz equat ions of the six-vertex model. Then, the degenerate eigenvectors with F 

complete N s t r ings for the 8V CSOS model become those of the six-vertex model 

with F complete N strings. Thus, we have shown that the corresponding degenerate 

eigenspace is spanned by the eigenvectors having complete N strings, and also t ha t 

the dimension is given by 2^L~2IV>/N = 22S™°*/N since the highest weight Smax is 

given by L/2 — R. The result should be consistent with the previous s tudies . 1 - 4 

A c k n o w l e d g e m e n t s 

The au thor would like to thank Prof. Y. Akutsu, Prof. K. Fabricius and Prof. B.M. 

McCoy for helpful discussions and valuable comments. He is thankful to Prof. M.L. 

Ge for his kind invitat ion to the workshop "Nankai Symposium", October 8-11, 

2001, Tianjin, China. This work is part ial ly supported by the Grant-in-Aid for 

Encouragement of Young Scientists (No. 12740231). 

R e f e r e n c e s 

1. T. Deguchi, K. Fabricius and B.M. McCoy, J. Stat. Phys. 102, 701 (2001). 
2. K. Fabricius and B.M. McCoy, J. Stat. Phys. 103, 647 (2001). 
3. K. Fabricius and B.M. McCoy, J. Stat. Phys. 104, 575 (2001). 
4. K. Fabricius and B.M. McCoy, cond-mat/0108057. 
5. T. Deguchi, cond-mat/0109078 (submitted to J. Phys. A). 
6. M. Takahashi and M. Suzuki, Prog, of Theor. Phys. 46, 2187 (1972). 
7. A.N. Kirillov and N.A. Liskova, J. Phys. A 30, 1209 (1997). 
8. J.D. Noh, D.-S. Lee and D. Kim, Physica A 287, 167 (2000). 
9. Baxter, Ann. Phys. 70, 193 (1972). 

10. R. Baxter, Ann. Phys. 76, 1 (1973); 76, 25 (1973); 76, 48 (1973). 
11. P.A. Pearce and K.A. Seaton, Phys. Rev. Lett. 60, 1347 (1988). 
12. A. Kuniba and T. Yajima, J. Stat. Phys. 52, 829 (1987). 
13. Y. Akutsu, T. Deguchi and M. Wadati, J. Phys. Soc. Jpn. 57, 1173 (1988). 
14. G.E. Andrews, R.J. Baxter and P.J. Forrester, J. Stat. Phys. 35, 193 (1984). 
15. V. Pasquier and H. Saleur, Nucl. Phys. B330, 523 (1990). 
16. C. Korff and B.M. McCoy, hep-th/0104120. 
17. G. Felder and A. Varchenko, Commun. Math. Phys. 181(1996) 741 . 
18. G. Felder and A. Varchenko, Nucl. Phys. B 480 (1996) 485. 
19. O. Babelon, D. Bernard, E. Billey, Phys. Lett. B 375, 89 (1996). 
20. M. Jimbo, H. Konno, S. Odake, J. Shiraishi, Transformation Groups 4, 303 (1999). 
21. L. Takhtajan and L. Faddeev, Russ. Math. Survey 34(5), 11 (1979). 
22. T. Deguchi, cond-mat/0107260, to appear in J. Phys. A (2001). 

53 



International Journal of Modern Physics B, Vol. 16, Nos. 14 & 15 (2002) 1907-1914 
© World Scientific Publishing Company 

THE C H E R N - S I M O N S INVARIANT IN THE BERRY PHASE OF A 
TWO B Y TWO HAMILTONIAN 

DUNG-HAI LEE 

Department of Physics, University of California, Berkeley, CA 94720 

Received 26 October 2001 

By varying (x, y, z) within a manifold M, the positive (negative)-energy eigenvectors of 
the 2 x 2 Hamiltonian H = xax +ycy + zoz (where ax,y,z are the Pauli matrices) form 
a U(l) fiber bundle. For certain M the bundle has non-trivial topology. For example 
when M = S2 the associated bundle has non-zero Chern number indicating that it is 
topologically non-trivial at the highest level. In this paper we construct a simple 2 x 2 
Hamiltonian whose eigen-vector bundle exhibits a more subtle topological non-triviality 
when .M is a closed three-manifold. This non-trivial topology is characterized by non­
zero Chern-Simons invariant. 

Twenty years ago I was a graduate student at M.I.T.. Together with many friends 
in the Boston area, I was often invited to Fred's house for Chinese holidays. I 
remember vividly that in one occasion Fred entertained us by balancing a women's 
slipper on his nose. Those parties meant a lot to a young men just arrived in a 
foreign country. 

Academically Fred introduced me to the field of statistical mechanics. At that 
time my thesis work mainly dealt with the electronic structure of semiconductor 
surfaces. To be frank, I was a little bored with that subject. In a lucky incident I 
stumbled upon a problem concerning the magnetic properties of spin 1/2 antifer-
romagnet on a triangular lattice. (Until today this problem is still of considerable 
interest.) I decided to attack the classical version of this problem, and before long 
I further simplified the problem by assuming the spins only have two components. 

It turns out that this problem (classical antiferromagnetic xy model on trian­
gular lattice) is not trivial at all. Fred advised me to do a mean-field calculation 
first. I took the advice and soon discovered the ground state degeneracy is 2 x oo. 
Here oo comes from the global spin rotation symmetry and 2 comes from an in­
teresting chirality ordering in the ground state. Together with Fred (and another 
fellow graduate student and my thesis adviser) we wrote a paper on the mean-field 
phase diagram of this problem. This work initiated a series of further studies of the 
critical behavior when the spins become disordered. 

Recently Fred get interested in the knot theory in statistical mechanics. As to 
myself, I have been working in the field of quantum statistical mechanics of strongly 
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correlated systems. One day, while teaching the Berry phase to my quantum me­
chanics class, I encounter the following question. It is well known that the Berry 
phase of a spin 1/2 in external magnetic field (Eq. (1)) is the integral of the vec­
tor potential due to a magnetic monopole. In mathematical language this vector 
potential is the connection on a non-trivial fiber bundle. The monopole strength is 
the Chern number. I want to know whether we can define a simple 2 x 2 Hamilto­
nian whose Berry connection shows zero Chern number but non-zero Chern-Simons 
invariant. 

Since Fred's Festschrift takes place in the Nankai Institute which was founded 
by professor Chern (to whom I have tremendous admiration) I thought this subject 
is particularly appropriate. 

Since it's discovery in 1984,x the Berry phase has played an important role in 
quantum mechanics. For a simple example of the Berry phase, consider the following 
two by two Hamiltonian 

H(T) - xax + ycry + zaz = r • a, (1) 

where ox,y,z a r e the three components of the Pauli matrices and x, y, z are real 
parameters. For a fixed r = (x, y, z) the Hamiltonian in Eq. (1) has two eigenvalues 
E± = ±y/x2 + y2 + z2 = ±|r | . 

Let us focus on the eigenvector |^( r) > associated with the positive eigenvalue 
for the rest of the paper. The Berry phase induced by an adiabatic evolution of r 
around a closed loop C is given by 

7 = ^ d a ^ 4 ( r ) , (2) 

where 

4 ( r ) = \< ^ ( r ) | a ^ ( r ) > . (3) 

It turns out that the A^ in Eq. (3) has a geometric interpretation as we shall explain 
in the following. 

At a fixed r if one is given a spinor (i.e. a 2-component column vector) satisfying 

ff(r)Mr) > = |r||V(r) > 

< V ( r M r > = l , (4) 

one can generate a continuum of other spinors which satisfy Eq. (4) by the trans­
formation 

h / > ( r ) > ^ e * V ( r ) > . (5) 

This family of \ip{r) > spans an internal space that is invariant under a U(l) group 
of transformations (Eq. (5)). As r varies through a manifold M. (henceforth referred 
as the base space) the internal space sweeps out a geometric object called "fiber 
bundle". Since U(l) leaves the internal space invariant this fiber bundle is a U(l) 
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bundle. In the following we shall refer to such fiber bundle as the eigenbundle of 
Eq. (1). 

It turns out that Eq. (3) is precisely the geometric connection on the eigenbun­
dle.2 The connection A1^ defined above is not unique. Indeed, by performing the 
transformation |^(r) >—» el$^\ip(r) > we induce a "gauge transformation" on A^: 

Al-+A\ + d,>0. (6) 

It is obvious that the Berry phase (Eq. (2)) is gauge invariant. 
Next we shall focus on two-dimensional base spaces M. that are closed surfaces. 

It turns out that if Ai encloses the origin (for example M. — S2 = {r; |r| = 1}), 
it is impossible to choose a gauge in which A1^ is non-singular everywhere. In order 
to obtain locally non-singular A^ it is necessary to divide M. into a number of 
(overlapping) patches so that 1) Ab is non-singular in each patch, and 2) in the region 
where two patches overlap the different A^s differ only by a gauge transformation. 
Historically this problem was encountered by Dirac when he tried to write down 
the vector potential in the neighborhood of a magnetic monopole.3 It turns out that 
under the framework of quantum mechanics, condition 2) requires the strength of 
the monopole to be quantized.3 '4 

In geometry it is known that the non-existence of an everywhere-nonsingular 
connection is the manifestation of non-trivial topology. In his seminal work S.S. 
Chern discovered a set of invariants to characterize such non-triviality.5 For the 
simple case we are considering the invariants reduce to a single number, the Chern 
number: 

e-h\M**r*>" (7) 

Here Fb
v = d^A^ — dvA

b is the curvature associated with A* . For the eigenbundle 
of Eq. (1) it is simple to show that C = 1/2 or 0 depending on whether M encloses 
the origin. If we interpret FM„ as magnetic field, the above result suggests that C is 
the total magnetic flux (through M.) produced by a magnetic monopole located at 
r = 0. In a proof similar but more general than that given in Ref. 3, Chern showed 
that C should be quantized to values n/2 where n — integer.5 

Since C > 1/2 is allowed, it is interesting to ask what kind of Hamiltonian 
will have C = n/2 (n > 1) eigenbundles. One answer is given by the following 
(n + 1) x (n + 1) matrix 

H(T) = T-S, (8) 

where S = (Sx, Sy, Sz) are the matrices representing the three generators of SU(2) 
in the spin S = n /2 representation. For example for n = 2 we have 

/ 0 1 ON / 0 -i 0 \ 
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Sz = 0 0 0 . (9) 

There is another way of modifying Eq. (1) which also leads to C = n /2 eigenbun-
dle. Interestingly this time we do not need to enlarge the dimension of H. Consider 
the following 2 x 2 matrix 

H(r) = /*(r) • a, (10) 

where h(r) is a suitably chosen unit vector field that defines a mapping from M, (a 
closed two-manifold) to S2. It is known that such mappings can be classified into 
homotopy classes each labeled by an integer 

V [ d2xe^J^. (11) 
JM 

Here the Pontryagin form JM„ is given by 

J^ = -rh • (dah x djk). (12) 

We will later show that by choosing a h(r) with V = n the eigenbundle of Eq. (10) 
exhibits C = n/2. 

The Chern number records the highest level of topological non-triviality. When 
the Chern number vanishes the eigenbundle can still be non-trivial at a more sub­
tle level. Let us consider closed three-manifold in which C = 0 for all closed sub 
two-manifolds, which implies the absence of monopole. Without monopole the "flux 
lines" associated with the vector field e,l'/XFu\ form closed loops. Under this con­
dition there is a topological interesting situation in which these flux lines link with 
one another. It is clear that this class of eigenbundles are topologically distinct from 
those without linking flux lines. 

In 1974 Chern and Simons discovered an invariant, the Chern-Simons invariant, 
that quantifies this more subtle level of topological non-triviality.6 For a closed 
three-manifold M. the Chern-Simons invariant is given by 

CS = 1- l fx^J^dvAi. (13) 
4TT JM 

We note that when M is closed CS is gauge invariant. The topological information 
recorded by CS is precisely the linking between the flux lines. The fact that linking is 
only denned in three dimensions explains why the Chern-Simons invariant requires 
three dimensional base space. 

Since there is another level of topological non-triviality, it is natural to ask 
whether one can modify Eq. (1) so that the eigenbundle exhibits such topology. We 
shall prove that the Hamiltonian given by Eq. (10) also works so long as /t(r) is 
chosen appropriately. 

Now let us restrict ourselves to the case where the base space M. is a simply 
connected closed three-manifold and r labels the points in it. In such case h(r) is a 
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mapping from a simply-connected closed three-manifold to S2. The work of Hopf 
shows that such mapping can also be classified into homotopy classes by an integral 
valued Hopf invariant H. A Hopf map is a smooth configuration of h(r). Due to the 
fact that there are only two linearly independent directions for d^h, it follows 

e^% J„A = 0. (14) 

As the result the flow lines associated with ^V^JV\ form closed loops. For a non-
trivial Hopf map any pair of J-loops link with each other. Because of Eq. (14) there 
exists a A^. so that 

• V = -^(0M i4S-0„Aj;) . (15) 

The Hopf invariant is simply the Chern-Simons invariant for A^,7's i.e., 

U = -i- / dzx^vXAhdvA\. (16) 
4?r JM 

In the rest of the paper we prove the following. 

(i) For closed two - manifold M the eigen bundle of 

Eq. (10) has C = n/2 if h(r) has V = n. 

(ii) For closed three — manifold M. the eigen bundle of 

Eq. (10) has CS = n if h(r) has H = n. (17) 

The proof amounts to show the following identity 

F%,=4*JIU,. (18) 

The Berry curvature is given by 

= i [< d^+\dvip+ >-< dvil)+\dpil>+ > ] . (19) 

To compute < dliip+\dI,il)+ > — < d„^+ |c^V+ > w e insert a complete set of states 

i1 = E n = ± IV'n > < V'nl); a n d t n a t g iveS 

< <9MV+I<W+ > - < dvtl)+\dfj,ii+ > 

n=± 

=< dpil>+\il>- >< ip-\dvip+ > -[n <-> v\. (20) 

In reaching the last line we have used the fact that < dlitp+\tp+ > < ^)+\dvij}+ > 
— [/iO v] = 0. 

To compute < ip-\dvip+ > in Eq. (20) we express the eigenvector of H{T') = 
H(r + Sr) = H(r) + Sxxd\H in terms of those of H(r) via first order perturbation 
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theory. Up to the first order in Sx11, we obtain 

|*+ > +<^-lfAW+>,^ > 
Ex. — .EL 

|̂ + > + <^1^M^> |V ,_ > 

(21) 

Eq. (21) implies that 

< il>-\dvil>+> = 
< ip-\dvh • a\il)+ > 

(22) 

As the result we have 

= - [ < tp+ld^h-alip- > < ip-\duh • a\ip+ > - [ / J H I / ] 

= ^abc{d^K){dvhb)[< ip+\ac\tp+ >] 

= ^eabc(d^ha)(duhb)hc = -h • (d^fi x dvh). (23) 

Going from the second to the third line of Eq. (23) we have used the fact that 
< ip+\d,Ji • <r\ip+ >< ip+\d„h • S\ip+ > - [ / / -H- v] = 0. Substituting Eq. (20) and 
Eq. (23) into Eq. (19) we obtain 

Ft, = \h • dji x dji = Air J, liV (24) 

After establishing Eq. (18) it is simple to prove (i) and (ii) of (17). For (i) the 
Chern number is given by 

-hL**<"*>-\L dfx e^J, jlV V/2. (25) 

Thus V = n implies C = n/2 . Now let us prove (ii) of (17). Eq. (15) and Eq. (18) 
imply that 

\IV 
ATTJ, fXV /iW 

Thus A1^ and Ab
h differ at most by a pure gauge 

A^A^ + d^. 
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Since Eq. (13) is gauge invariant when M is a closed manifold we conclude that 

cs = h j d3xelivXAbA = t j 3
 Sx^xKF^ 

= n. (28) 

Thus V. = n implies CS = n. 
In physics one often encounters the Berry phase when a system posses's both 

"fast" and "slow" dynamic degrees of freedom. When the fast degrees of freedom are 
integrated it often produces, as part of the effective action of the slow variables, a 
Berry phase term that is non-zero even when the slow variables change adiabatically 
with time. Such term can fundamentally alter the behavior of the slow variables. 

Here we present an example where the fast degrees of freedom generate an 
effective action represented by the Hopf invariant of the slow variables. The model 
is a field theory in 2+1 space-time dimensions. It consists of two fields: 1) a fermion 
field •0<r(r; *)> a n d 2) an unit vector field h(r, t). The Lagrangian density is given as 

£ = £,/, + £„ - gh • Tpaffapipp 

A/> =$a{dt - t*)lpa - -Z— $a(y ~ iA.ex)2ll>a 

£n =ifi[n] + y|Vn|2. (29) 

In the above m, g, c, /J, are parameters of the model, Aex is the vector potential 
of an external magnetic field B, i.e., dxAy — dyAx = B, and 6il/6h = h x dtfi. 
Physically £,/, describes fermions moving in an external magnetic field, and £ n 

describes the dynamics of magnetic moments in a ferromagnet. The last term in 
the first equation is the Zeeman coupling between the fermions and the magnetic 
moments. By adjusting fi we can tune the density (p) of the fermions so that 

P = *;r> (30) 
00 

where 0o = 27r is the Dirac flux quantum and k is an integer. When Eq. (30) is 
satisfied, the ground state of the fermions is an "integer-quantum Hall liquid" .9 

Let us further assume that g is large so that locally the electron spins align with 
the direction of ft. Under that condition integrating out the fermion field produces 
a term J^ J cPxdte^^A^d^A^, which is proportional to the Hopf invariant of the 
n(r, t). This term has the effect of changing the spins and statistics of solitons (the 
skyrmions) in the h(r, t) field.7 

Acknowledgements: DHL is in debt to Geoffrey Lee for helping him to visualize 
the dual of the Pontryagin form of the non-trivial Hopf map. DHL is supported by 
NSF grant DMR 99-71503. 
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We compare two different methods of computing form factors. One is the well established 
procedure of solving the form factor consistency equations and the other is to represent 
the field content as well as the particle creation operators in terms of fermionic Fock 
operators. We compute the corresponding matrix elements for the complex free fermion 
and the Federbush model. The matrix elements only satisfy the form factor consistency 
equations involving anyonic factors of local commutativity when the corresponding op­
erators are local. We carry out the ultraviolet limit, analyze the momentum space clus­
ter properties and demonstrate how the Federbush model can be obtained from the 
S[/(3)3-homogeneous sine-Gordon model. We propose a new class of Lagrangians which 
constitute a generalization of the Federbush model in a Lie algebraic fashion. For these 
models we evaluate the associated scattering matrices from first principles, which can 
alternatively also be obtained in a certain limit of the homogeneous sine-Gordon models. 

1. Introduction 

One of the most central concepts in relativistic quantum field theory, like Einstein 
causality and Poincare covariance, are captured in local field equations and com­
mutation relations. In fact this principle is widely considered as so pivotal that 
it constitutes the base of a whole subject, i.e. local quantum physics (algebraic 
quantum field theory)2 which takes the collection of all operators localized in a 
particular region generating a von Neumann algebra, as its very starting point. 

On the other hand, in the formulation of a quantum field theory, one may alter­
natively start from a particle picture and investigate the corresponding scattering 
theories. In particular for 1+1 dimensional integrable quantum field theories this 
latter approach has been proved to be impressively successful. As its most pow­
erful tool one exploits here first the bootstrap principle,3-5 which allows to write 
down exact, i.e. non-perturbative, scattering matrices. Ignoring subtleties of non-
asymptotic states, it is essentially possible to obtain the particle picture from the 
field formulation by means of the LSZ-reduction formalism.6 However, the question 

* based on reference 1 
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of how to reconstruct the field content, or at least part of it, from the scattering 
theory is in general still an outstanding issue. 

This talk is also devoted to this question in the sense that we provide explicit 
expressions for operators 0(x) located at x in terms of fermionic Fock fields. Par­
ticular emphasis is put on the question whether these operators are really local in 
the sense that they (anti)-commute for space-like separations with themselves, 

[O(x),O(y)]=0 for (x-y)2<0 (1) 

and how this property is reflected in the form factor consistency equations. It will 
turn out that from possible matrix elements the form factor consistency equations 
select out those which correspond to mutually local operators. We argue that the 
presence of the factor of local commutativity in these equations is absolutely essen­
tial. 

2. Determination of form factors 

Let us assume that there is no backscattering in our model and that we have 
explicitly determined its two-particle scattering matrix, which can be expressed as 
a phase in this case. We further presume that the S-matrix results from braiding 
two particle creation operators ZU6) for stable particles of type fj, with rapidity 9, 
which obey the Faddeev-Zamolodchikov algebra7 

ZJ(9i)z}(9j) = Sij^Z^zUOi) = exp[2niSij(9ij)}Z}(9j)Zl(9i). (2) 

As common we parameterize the two-momentum p by the rapidity variable 8 as 
p = m(cosh9, sinh#) and abbreviate 8^ :— 9i — Oj. In order to pass from scattering 
theory to fields, we want to determine the form factors, i.e. the matrix element of a 
local operator 0(x) located at the origin between a multi-particle in-state and the 
vacuum 

F°^-"^(91,...,0n) = (o(O)Z}li(01),...,Zln(9n))ia. (3) 

We distinguish between the mere matrix element F° and the particular ones which 
also solve the consistency equations in 2.1, in which case we denote them as F®. 

2.1. Form factors from consistency equations 

Various schemes have been suggested to compute the objects in equation (3). One 
of them consists of solving a system of consistency equations which have to hold 
for the n-particle form factors based on some natural physical assumptions, like 
unitarity, crossing and bootstrap fusing properties8"11 

Fn
 X1 (...,9i,6j,...) = Fn

 J " (...,6j,8i,...)SnitJ,.{9ij), (4) 

F^-^(9l + 2m,...,9n)=^iF^-^(92,...,6n,91) , (5) 

F^-^(91 + A,... ,9n + A) = esXF°^-^(9u . . . ,9 n ) , (6) 
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Res F°l¥^~»»(9 + in,90,9v . . » „ ) = * ( l -7? ft W * < « ) ) * f ^" ' '"(f l i- • .0„).(7) 
e-*e° 1=1 

Here s is the Lorentz spin of the operator 0 and A is an arbitrary real number. We 
omitted here the so-called bound state residue equation, which relates an (n + 1)-
to an n-particle form factor, since it will be of no importance to the explicit models 
we consider. We stress the importance of the constant 7^ , the factor of so-called 
local commutativity defined through the equal time exchange relation of the local 
operator 0(x) and the field O^y) associated to particle creation operators Z^ 

Ofi(x)0(y)=^0(y)Ofi(x) for x1 > y1, (8) 

with x^ = (a;0, a;1). This factor carries properties of the operator and not just 
of the Z^'s. An immediate consequence of its presence is that a frequently made 
statement has to be revised, namely, that (4)-(7) constitute operator independent 
equations, which require as the only input the two-particle scattering matrix. Here 
we demonstrate that apart from ± 1 , which already occur in the literature, this factor 
can be a non-trivial phase. Thus the form factor consistency equations contain also 
explicitly non-trivial properties of the operators. To solve these equations at least 
for the lowest n-particle form factors is a fairly well established procedure, but it 
still remains a challenge to find closed analytic solutions for all n-particle form 
factors. 

2.2. Direct computation of matrix elements 

The most direct way to compute the matrix elements in (3) is to find explicit 
representations for the operators Z^O) and 0(x). To represent the former oper­
ator is known in complete generality for theories not involving backscattering. A 
representation for these operators in the bosonic Fock space was first provided in 
Ref. 12 

d0 ,<J iI(0-0')aJ(0 ,)a,(0 /) al(0). (9) 
J 

where the a's satisfy the usual fermionic anti-commutation relations 

{ai(e),aj(e')}=Q and {ai(0),aj(0')} = 2*5^5(0 - 9'). (10) 

Having obtained a fairly simple realization for the Z-operators, we may now seek 
to represent the operator content of the theory in the same Fock space. Hitherto, it 
is not known how to do this in general and we have to resort to a study of explicit 
models at this stage. 

3. Complex free Fermions 

Let us consider N complex (Dirac) free Fermions described as usual by the La-
grangian density 

£FF = E l l ^ ^ " m°W° • (11) 

z\{e) exp 
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We define a prototype auxiliary field 

dOdO' 

+na(6,0' - »7r) ( 4 (0 )a a (0 'K ( p - p , ) - x - O a ^ o t ^ J e - * ^ ) ' * ) ] (12) 

and intend to compute the matrix element of general operators composed out of 
these fields 

0**{x) = :e*-(*>:, Ox«{x) = : f •^(aa{p)e'ip"-x + 4(p)e*--x)e>£<x>:. (13) 
J 2nPa 

Employing Wick's first theorem, we compute1 

F?f]nX&a(0i,...,e2n) = [dei--\d62nflKa(0'2i-MdetV^ , (14) 
J n- i = i 

'(*i, • • • ,<W) = / ^ • "nf
2n+1 n^(^,^+i)detl>2"+1,(15) 2n+l 

where T^ is a rank ^ matrix whose entries are given by 

^ . - c o s 2 [ ( i - i ) 7 r / 2 ] ^ ; - ^ ) , l<i,j<l. (16) 

Note that 0XK (x) and (f)x" (x) are in general non-local operators in the sense of 
(1). At the same time F® is just the matrix element as defined on the r.h.s. of 
(3) and not yet a form factor of a local field, in the sense that it satisfies the 
consistency equations (4)-(7), which imply locality of O. A rigorous proof of this 
latter implication to hold in generality is still an open issue. Let us now specify the 
function K. The free fermionic theory possesses some very distinct fields, namely 
the disorder and order fields 

fia(x) = :eu-W: and aa(x) = $a(x)pa{x)-., a = 1,2, (17) 

respectively. We introduced here the fields 

We compute1 the integrals in (14) and (15) for this case and obtained a closed 
expression for the n-particle form factors of the disorder and order operators 

F2^
nxl\e1,..., e2n) = ( - i )»F£ | n x 2 2 ( -0 i , • • •. -0*0 

* £ | n x I 1 H > i , • • •, -fcn) = (-i)ni^n
s|nx22(fli, • • •, M 

= in2n-1an{x1, x3, • . . , x2n-i)Bn,n, (19) 
p(T i | l (nx l l ) / / , o \ — ( i ' \nP<T2|2(nx22)/ a Q v 

r ,<7i | l (nxl l ) / n n \ _ ( -, \n W72 |2(rax22) , r, „ N 
^ 2 n + l ( - t / l , - - - , - W 2 n + l j - ( - 1 ) -T2n+1 \?l, • • • ,V2n+\) 

= i n 2 n - 1 <r„(x i , . . . , i2n- i )B„ , n + i , (20) 
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with 

l l l < i < j < n ( ^ 2 i - l ~ % ) - l ) l I l< i<j<m( X 2i ~ ^ j ) 

l l l<i<j<n+ro(U* + Uj) 

Associated with the particles and anti-particles we introduced here the quantities 
Xi = exp(#,) and Xi = exp(0j), respectively. The variable Ui can be either of them. 
We also employed the elementary symmetric polynomials ak(x\,..., xn). The re­
maining form factors are zero due to the U(l)-symmetry of the Lagrangian. One 
may easily verify that the expressions (19) and (20) indeed satisfy the consistency 
equations (4)-(7) with */£* = — 1. and j ^ a = 1 for a = 1,2. We also compute1 the 
form factors associated to the trace of the energy-momentum tensor 

f" | a o(M) = *f" |aa(M) = -2*i»a -«»• — 

which plays a distinct role in the ultraviolet limit. 

Fi " ' " P , 0) = F, " ' " > , 9 ) = -2-Kiml sinh ^ , (22) 

4. The Federbush Model 

The Federbush model13 was proposed forty years ago as a prototype for an exactly 
solvable quantum field theory which obeys the Wightman axioms.14 It contains two 
different massive particles Wi and \I>2- A special feature of this model is that the 
related vector currents Jg = ^fa^^^a, a e {1,2}, whose analogues occur squared 
in the massive Thirring model, enter the Lagrangian density of the Federbush model 
in a parity breaking manner 

£ F - J2a=1 2 * « ( * 7 M « M - ™<0*a " 27rAeM„ J{* J J (23) 

due to the presence of the Levi-Civita pseudotensor e. The scattering matrix was 
found to be14-16 

-<FB 

/ 1 1 e - 2 « A e27TiA \ 

1 1 p27T«A _ — 27HA 

e2-7TiA e - 2 T u A j j ' ' ' 

\e~2niX e2niX 1 1 / 

For the rows and columns we adopt here the ordering {1,1,2,2}. In close relation to 
the free fermionic theory one may also introduce the analogue fields to the disorder 
and order fields in the Federbush model 

**(*) = :exp[fi*(x)]: = \ exV{-2^i\</>a(x)}\ (25) 

E"w = : / ^k{aa{p)e~iPa'x + ^(p)^--*) *iw :- (26) 
where the /t-function related to Q is 

MO a<\ - s.2t * nn _ »sin(7rA)e ^B'e^ 
K (0,9)- -n (-6,-9)- 2coshl(e_9f) • (27) 
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The last equality in (25) was found by Lehmann and Stehr,15 who showed the 
remarkable fact that the operator $„(a;) can be viewed in two equivalent ways. On 
one hand it can be denned through triple ordered free Bosons <j>a{x), defined as 

•eK0- _ e«0J ^eK0^ for K Deing some constant, and on the other hand by means of a 
conventional fermionic Wick ordered expression. We compute1 the following equal 
time exchange relations for a, ft = 1,2 

1>a(x)H(v) = *p(v)4>a(x) e^-VM-W1-*1), (28) 

-rl>a(x)Z%{y) = Vx
p(y)fl>a(x) e*"H-i)>xs.,e&-S); ( 2 9 ) 

**(x)ty(y) = *fo)**(x) (30) 
E*(x)E^(y) = S^(y)E*(x) e

2 ^ ~ ^ ^ . (31) 

where @(x) is the Heaviside step function. With the relevant exchange relations at 
our disposal, we can, according to (8), read off the factors of local commutativity 
for the operators under consideration 

J} = - 7 ? = e**iW*5<"> and 7 * ' = - 7 ? = e-
2*iWM'"> . (32) 

Proceeding again in the same way as in the previous section, we obtain as closed 
expressions for the n-particle form factors 

F2n \,Xi,X2...X2n-l,X2n) = {-l)F27? (Xt, X2 . . . X2n-1, X2n) = 

r , * f A | n x l l ,_ _ . , .„ _*A |nx22/_ _ ,. 
F2^ (xi,x2...x2n-1,x2n) = (-1) F2n

2 {xi,x2...x2n-i,x2n) = 
i n 2 n " 1 8inB(7rA)(Tn(«i . . .X2n-l)A+*<7„(*2 • • • X2n)>~XBn,n, (33) 

pV$\l(nxll)m „ , _ , ^„pS- A | 2 (nx22) , f l ft ,_ 

£2^*11(71x11)^ a ,__^ ^n £ ,sJ |2(nx32)^ , sin"(7rA) 
2 

^ E j A | l ( n x l l ) , f l . _ , ,„73SA |2(nx22),, „ 
*2n+l l C / l ) - - -^2n+l j - l - l j -f*2n+l (01,---,P2 

i *fc+1 I I {Xj-Xl) 
(2i)nan(x2...x2n)

x+2 T-T , ^ y ^ j<i;j,Vk , . 
<7n(a;i. . .x2„+i)A 2 " V ^ ) 2 I T I l w + s i ) 

We may now convince ourselves, that the expressions for i^n "" indeed satisfy 

the consistency equations (4)-(7). However, the expressions of i^n+i * o m y s a t " 
isfy the consistency equations (4)-(7) for A = 1/2. This reflects the very important 
fact that E^(cc) is only a mutually local operator for this value of A, see equation 
(31), unlike $a(x) which is mutually local for all value of A. Thus, the equations 
(4)-(7) select out solutions corresponding to operators which are mutually local. 

The form factors related to the trace of the energy-momentum tensor turn out 
to be the same as the ones for the complex free Fermion. 
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5. Momentum space cluster properties 

An interesting operator related property which the form factors satisfy is the mo­
mentum space cluster decomposition 

lim i f + ( ( 0 i . . . 6k, dk+1 + A . . . 6k+l + A) = Fffa ... 6k)F?"(0k+1... 6k+l) ,(35) 
A—>oo 

Writing instead of the matrix elements only the operators, we obtained1 formally 
the following decomposition 

<6A > s>* x *a aa > < M a > S (36) 

together with the equations for a ^ a. This means the stated operator content 
closes consistently under the action of the cluster decomposition operators. We 
also observe that non-selfclustering, i.e. O ^ O' ^ O", is possible. Unlike the 
self-clustering, which can be explained for the bosonic case with the help of Wein­
berg's power counting argument, this property is not yet understood from general 
principles. 

6. Lie algebraically coupled Federbush models 

The Federbush model as investigated in the previous section only contains two types 
of particles. In this section we propose a new Lagrangian, which admits a much 
larger particle content. The theories are not yet as complex as the homogeneous 
sine-Gordon (HSG) models, but they can also be obtained from them in a certain 
limit such that they will always constitute a benchmark for these class of theories. 

Let us consider I x £-real (Majorana) free Fermions ipa^{x), now labeled by two 
quantum numbers 1 < a < £, 1 < j < I and described by the Dirac Lagrangian 
density £FF- We perturb this system with a bilinear term in the vector currents 

£ I £ £ 

£CF = E E *«,i(HM3M " ™aj)**J - ^ E E <jJ^K$ > (37) 
a=l j=l a,b=lj,k=l 

and denote the new fields in £ C F by ^a,j- Furthermore, we introduced £2 x t2 

dimensional coupling constant dependent matrix h?ab, whose further properties we 
leave unspecified at this stage. We computed1 the related S-matrix to 

S£ = - e * A £ . (38) 

where due to the crossing and unitarity relations we have the constraints 

A £ = -A*j + 2Z and A% = A g + 2Z (39) 

on the constants A. Taking A3
ab = 2Xab£jkIjkK^, with K, I being the Cartan and 

incidence matrix, respectively, provides the limit of the HSG-models. 
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7. The ultraviolet limit 

The ultraviolet Virasoro central charge of the theory itself can be computed from 
the knowledge of the form factors of the trace of the energy-momentum tensor17 

by means of the expansion 

oo oc dOi...dOn rn [Oi,...,On) 
2 

i ^ n W J L J (ELi *»* cosh^^ 
(40) 

In a similar way one may compute the scaling dimension of the operator O from 
the knowledge of its n-particle form factors18 

o o ° ° ° ° 

sp = 1 v~^ v ^ f f d6\...ddn 
uv" 2<°> h.h.L'' L n[^n (SLI™*-sh^)2 

x F r > 1 " " ' i - ( f l i , . . . , « „ ) ( F „ O | M " ( 0 I , . . . A ) ) * . (41) 

In general the expressions (40) and (41) yield the difference between the corre­
sponding infrared and ultraviolet values, but we assumed here already that the 
theory is purely massive such that the infrared contribution vanishes. Evaluating 
these formulae, we obtain 

(42) cuv = 2 and 

for the complex free Fermion and 

cu v — 2 and 

A"« 

A " 

uv 16 

A * " A " 
— A a — 
- Z A U V - 4 . 

(43) 

£ l / 2 £1 /2 

for the Federbush model Note, that AUv = AUv = 1/16, which is the limit to the 
complex free Fermion. Yet more support for the relation between the 5?7(3)3-HSG 
model and the Federbush model comes from the analysis of A = 2/3, for which the 
5C/(3)3-HSG S-matrix is related to the one of the Federbush model. In that case we 

£2 /3 £ 2 / 3 

obtain from (43) the values AUv = AUv = 1/9, which is a conformal dimension 
occurring in the 577(3)3-HSG model. Thus precisely at the value of the coupling 
constant of the Federbush model at which the S'J7(3)3-HSG S-matrix reduces to 
the 5 F B , the operator content of the two models overlaps. 

8. Conclusions 

We summarize our main results: 
We computed explicitly closed formulae for the n-particle form factors of the 

complex free Fermion and the Federbush model related to various operators. 
We carried out this computations in two alternative ways: On the one hand, we 

represent explicitly the field content (12) as well as the particle creation operators 
(9) in terms of fermionic Fock operators (10) and computed thereafter directly the 
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corresponding matr ix elements. On the other hand we verified that these expres­

sions satisfy t h e form factor consistency equations only when the operators under 

consideration are mutually local, i.e. satisfying (1). I t is crucial that the consistency 

equations contain the factor of local commutativity 7 ^ as defined in (8). Our analy­

sis strongly suggest that the form factor consistency equations select out operators, 

which are mutually local in the sense of (1). 

Our solutions turned out to decompose consistently under the momentum space 

cluster property. This computations constitute next t o the ones in Refs. 19,20 the 

first concrete examples of non-selfclustering, i.e. O —> O' x O" in the sense of (36). 

Fur ther suppor t for the identification of the solutions of (4)-(7) with a specific 

operator was given by an analysis of the ultraviolet limit. 

We demons t ra ted how the scattering matrix of the Federbush model can be 

obtained as a limit of the 577(3)3-HSG scattering matr ix . This "correspondence" 

also holds for the central charge, which equals 2 in both cases, and the scaling 

dimension of the disorder operator at a certain value of the coupling constant. 

We proposed a Lie algebraic generalization of the Federbush models, by suggest­

ing a new type of Lagrangian. We evaluate from first principles the related scattering 

matrices, which can also be obtained in a certain limit from the HSG-models. 

We expect tha t the construction of form factors by means of free fermionic Fock 

fields can b e extended to other models by characterizing further the function K. 
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Deformation quantization (of a commutative algebra) is based on the introduction of a 
new associative product, expressed as a formal series, / * g = fg + ^ hnCn(f,g). 
In the case of the algebra of functions on a symplectic space the first term in the 
perturbation is often identified with the antisymmetric Poisson bracket. There is a wide­
spread belief that every associative *-product is equivalent to one for which Gi(f,g) 
is antisymmetric and that , in particular, every abelian deformation is trivial. This 
paper shows that this is far from being the case and illustrates the existence of abelian 
deformations by physical examples. 

1. Introduction 

First, a very brief review of quantization: 

• H. Weyl looked at quantization as a one-to-one correspondence between 
functions on phase space on the one hand, and operators in a Hilbert space 
on the other:1 

function on phasespace = / H* W(f) = operator. (1) 

• Taking over Weyl's correspondence, Moyal2 proposed an autonomous for­
mulation of quantum mechanics, in terms of functions on phase space 
endowed with a new, non-commutative product, called a *-product, namely 

f*g = W-\W{f)W{g)). (2) 

• Moyal's idea was incorporated into the new, deformation theory approach 
to quantization,3 where one studies more general associative *-products 
viewed as formal series in a parameter 

/*<7 = X>nC»(/,ff), C0(f,g) = fg, (3) 
ra=0 

and usually 

Ci(f,g) = \{f,g}. (4) 
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The bracket {,} is the Poisson bracket. Such deformations "in the direction 
of the Poisson bracket" play a basic role in Drinfel'd's approach to quantum 
groups.4 The existence and classification of *-products on an arbitrary sym-
plectic manifold were placed in a nice geometric context by the approach 
of Fedosov;5 see also Ref. 6. 

• Recently, M. Kontsevich has shown7 that *-products exist on arbitrary 
Poisson manifolds. See also Ref. 8. This is a significant achievement that is 
currently exciting much interest among mathematicians. 

This summary suggests that the first order term, Ci(f,g), is always antisym­
metric in its two arguments. But there is a footnote to the story, namely: 

• Geometric, Souriau-Kostant quantization on co-adjoint orbits,9 '10 and the 
generalization of this method within the *-product-deformation approach 
(see for example Ref. 11) is a parallel development. As we shall see, the most 
interesting case, that of quantization on a singular orbit, is characterized 
by a *-product for which C\ (/, g) is not skew. 

We also cite the program of quantization of Nambu mechanics that ran aground 
on the belief that every abelian *-product is trivial.12 This is mistaken, and for 
two independent reasons; first, because it is false on varieties with singularities and 
second, because it holds only to first order in the deformation parameter. 

2. Quantization on algebraic varieties 

On the manifold R, with global coordinates JCI, • • •, xn, consider the algebra 

A=Q[xi,---,xn] (5) 

of polynomials in n variables. On this algebra, consider an associative deformation 
of the ordinary product (the commutative product of functions) in the form 

oo 

/*<7=5>nC„(/,5), C0(f,g)=fg. (6) 
n=0 

Associativity, to first order in h, is the statement that dC\ = 0, where d is the 
Hochschild differential, 

dC(f, g, h) = fC(g, h) - C(fg, h) + C(f, gh) - C(f, g)h. (7) 

Triviality of the *-product (see below) is also expressed in terms of the Hochschild 
differential: The above *-product is trivial to first order if there is a one-cochain E\ 
such that C\ = dE\, where 

dE(f, g) := JE{g) - E(fg) + E(f)g. (8) 

The following theorem tells us that, to first order in h, all abelian *-products on 
IR™, and indeed all abelian *-products on any smooth manifold, are trivial. 
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Theorem: (Hochschild, Kostant, Rosenberg13) If A is the generated algebra of 
functions on a smooth manifold then the space Hn(A) is the space of alternating 
n- forms. 

This implies that, to first order in h, every *-product on a smooth manifold is 
equivalent to one for which C\ is antisymmetric. 

3. Escape route number one 

Let us consider algebraic varieties with singularities, for example the following. 

M = U/(x2-y2), A=(£[x,y]/(x2-y2). (9) 

Expand / G A, f(x,y) = f\(x) + yf2{x) and define a deformed product by the 
formula 

f*g = fg + hf2g2- (10) 

It is associative to all orders, and not trivial. Proof of non-triviality: 

Ah=(E[x,y)/(x2-y2 + fi). (11) 

If h is real and not zero, then this is the coordinate algebra on a smooth manifold, 
clearly not isomorphic to the coordinate algebra of the cone x2 = y2. 

A large class of examples is provided by algebraic varieties, 

M = JRn/R, R = a set of polynomial relations, (12) 

A=(E[xi,---,xn]/R. (13) 

The calculation of cohomology is often fairly simple and rests on the fact that 
the Hochschild cohomology of A is equivalent to its restriction to linear, closed 
chains. (See Ref. 14.) 

In our example, the closed, linear chains are 

x Ay, and x®x — y®y, (14) 

d(x A y) = xy — yx = 0, d(x (g> x — y <8> y) = x2 — y2 = 0. (15) 

The 2-cochain C is closed if it is symmetric and it is exact if C{x ®x — y®y) G A. 
A representative of the unique non-trivial equivalence class of 2-forms is 

C(xAy)=Q, C(x®x-y®y) = kE®- {0}. (16) 

Besides Nambu mechanics, this has applications to the problem of quantization 
on coadjoint orbits. 
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Quantization on coadjoint orbits, an example 

The algebra is the universal enveloping algebra of sl(2,R), basis z ^ a ^ ^ o - The 
unique singular orbit is Q := x\ + x\ — XQ = 0. Invariant quantization is obtained 
via the Weyl-type correspondence: 

X% * Xj Xj * X{ = = iltijfcXk) V ' / 

P*(a)=Pn(a), a= £ a'xi, (18) 
i=l,2,0 

where Pn are Legendre polynomials and P* are the same symmetric ^-polynomials, 
and the assignment of a value to the Casimir operator 

Q* : X\ * X\ + X2 * X2 - XQ * XQ I-> Tll{l + 1). (19) 

For n = 2, on the singular orbit Q = 0, 

-{xi * XJ + i,j) - -SijQ* = XiXj, (20) 

and thus 

Xi * Xj = x^j + h i -ztijkXk + -^Sijl(l + 1) J. (21) 

This makes use of the cohomologically nontrivial symmmetric 2-cochain C?,(xi, Xj] oc 
Sij as well as the more familiar antisymmetric cochain. 

4. Escape route number two 

In the examples given, associativity is satisfied to all orders with Cn = 0 , n > 1. 
Non-triviality is verified to lowest order and of course cannot be changed in higher 
orders. 

In the example that follows we shall again have associativity to all orders, and 
triviality in the lowest order, but this does not imply triviality in higher orders. 

Triviality of a *-product is the statement that there is a map E : A —¥ A, of the 
form 

oo 

E(f) = f + Y,nnEn(f), (22) 
n=l 

such that 

f*g = E-1(E(f)E(g)). (23) 

To first order in Ti this says that 

C1(f,g) = E1(f)g-E1(fg)+fE1(g)=:dE1(f,g). (24) 

Here is an example of an abelian *-product that is trivial to first order but 
nontrivial when taken to all orders. 
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Let M = Minkowsky space, A = (E[xi, • • •, £4]. Decompose / € A into even 

and odd parts.: / = ( / + , / _ ) , and define: 

f*9 = fg- px2f-9- = (f+9+ + f-9-0- ~ Px2), f+9- + / -<?+) (25) 

Now, let M' =3+2-dimensional anti-De Sitter space, more precisely the cone in R 5 : 

M' = H5/(px2+y2-l), (26) 

and 

A' =(E[x1,---,x4,y}e/(px2+y2 -I), (27) 

where [...]e means polynomials of even order. Decompose / e A' as follows, / = 

f+(x)+yf-(x), then 

fg = f+g+ + / _ 5 _ ( 1 - px2) + y(f+g. + /_<?+). (28) 

Therefore, the deformed, ^-product algebra of functions on Minkowski space is 

isomorphic to the ordinary algebra of even functions on AdS. But A and A' are not 

isomorphic and the *-product is therefore not trivial. (For more details see Ref. 14.) 

It seems possible tha t th is provides a new approach to physics in AdS that could 

help to overcome some of t h e problems of interpretat ion. 
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Recent studies of the topological properties of a general class of lattice Dirac operators 
are reported. This is based on a specific algebraic realization of the Ginsparg-Wilson 
relation in the form 75(75.0) + (750)75 = 2a2fc+1(7s.D)2fc+2 where k stands for a non-
negative integer. The choice k = 0 corresponds to the commonly discussed Ginsparg-
Wilson relation and thus to the overlap operator. It is shown tha t local chiral anomaly 
and the instanton-related index of all these operators are identical. The locality of all 
these Dirac operators for vanishing gauge fields is proved on the basis of explicit con­
struction, but the locality with dynamical gauge fields has not been fully established 
yet. 

1. Introduction 

Recent developments in the treatment of fermions in lattice gauge theory are based 
on a hermitian lattice Dirac operator 75.D which satisfies the Ginsparg-Wilson 
relation1 

j5D + D75 = 2aDlhD (1) 

where the lattice spacing a is utilized to make a dimensional consideration transpar­
ent, and 75 is a hermitian chiral Dirac matrix. An explicit example of the operator 
satisfying (1.1) and free of species doubling has been given by Neuberger.2 The 
relation (1.1) led to an interesting analysis of the notion of index in lattice gauge 
theory.3 This index theorem in turn led to a new form of chiral symmetry, and 
the chiral anomaly is obtained as a non-trivial Jacobian factor under this modified 
chiral transformation.4 This chiral Jacobian is regarded as a lattice generalization 
of the continuum path integral.5 The very detailed analyses of the lattice chiral 
Jacobian have been performed.6 It is also possible to formulate the lattice index 
theorem in a manner analogous to the continuum index theorem.7"9 An interesting 
chirality sum rule, which relates the number of zero modes to that of the heaviest 
states, has also been noticed.10 See Refs. 11 for reviews of these developments. 

We have recently discussed the possible generalization of (1.1) and its implica­
tions.12 To be specific, we have discussed a generalization of the algebra (1.1) in 
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the form 

75(75^) + (75^)75 = 2a2fe+1(75L>)2fc+2 (2) 

where k stands for a non-negative integer and k = 0 corresponds to the ordinary 
Ginsparg-Wilson relation. When one defines 

H = 75a£> (3) 

(1.2) is rewritten as 

or equivalently 

where we defined 

75# + # 7 5 = 2# 2 f c + 2 (4) 

T5H + HT5 = 0 (5) 

rs = y6-H
2k+1. (6) 

Note that both of H and Ts are hermitian operators. 
It has been shown that all the good topological properties of the overlap oper­

ator2 is retained in this generalization.12'13 The practical applications of this gen­
eralization are not known at this moment. We however mention the characteristic 
properties of this generalization: The spectrum near the continuum configuration is 
closer to that of continuum theory and the chiral symmetry breaking terms become 
more irrelevant in the continuum limit for k > 1. The operator however spreads 
over more lattice points for large k. 

2. Representation of the general algebra 

We first discuss a general representation of the algebraic relation (1.5). The relation 
(1.5) suggests that if 

Hcj)n = a\n4>n, (</>„,</>„) = 1 (7) 

with a real eigenvalue a\n for the hermitian operator H, then 

H(T5(j)n) = - a A n ( r 5 ^ „ ) . (8) 

Namely, the eigenvalues A„ and — A„ are always paired if A„ ^ 0 and (T$(/>„,, T5(j)n) ^ 
0. We also note the relation, which is derived by sandwiching the relation (1.4) by 

(<£n,750n) = (aAn)2fe+1 for A „ ^ 0 . (9) 

Consequently 

|(aA„)2fe+1 | = | ( ^ , 7 5 ^ ) l < !I<MI|75<M - I- (10) 

Namely, all the possible eigenvalues are bounded by 

|A„I < \- (11) 
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We thus evaluate the norm of Y^<t>n 

(T5<j>n, T5<j>n) = (<t>n, (75 - #2ft+1)(75 - H2k+1)<t>n) 

= (4>n, (1 - ff^+S - 75ff
2fe+1 + H^k+V)4>n) 

= [l-(aA„)2 ( 2 f c + 1 )] 

= [1 - (aA„)2][l + (aAn)2 + ... + (aA„)4fc] (12) 

where we used (2.3). By remembering that all the eigenvalues are real, we find that 
<t>n is a "highest" state 

T50n = 0 (13) 

only if 

[ l - (aA„) 2 ] = ( l - a A „ ) ( l + a A n ) = 0 (14) 

for the Euclidean positive definite inner product ((f>n,4>n) = E i ^ l W ^ W ' 
We thus conclude that the states <j>n with A„ = ± ^ are not paired by the operation 
T^4>n and 

75-D<̂ „ = ±-</>„, 75<£n = ±<j>n (15) 

respectively. These eigenvalues are in fact the maximum or minimum of the possible 
eigenvalues of H/a due to (2.5). 

As for the vanishing eigenvalues H<j>n = 0, we find from (1.4) that #75 0 n = 0, 
namely, H[(l ± 75)/2]</>„ = 0. We can thus choose 

7 5 D^ n = 0, 75</>n = <pn or -y5<f>n = -</>„. (16) 

To summarize the analyses so far, all the normalizable eigenstates 4>n of j5D = 
H/a are categorized into the following 3 classes: 
(i) n± ("zero modes"), 

75-D</>„ = 0, 75̂ >n = ±<f>n, (17) 

(ii) N± ("highest states"), 

75_D</>„ = ±-</>„, 750„ = ±<Pn, respectively, (18) 

(hi)"paired states" with 0 < |An| < 1/a, 

•y5D<t>n = \n(j>n, -y5D{r5(l)n) = -Xn(rb(j)n). (19) 

Note that T5(T5<f>n) a <f>n for 0 < |A„| < 1/a. 
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We thus obtain the index relation3'4 

Trr 5 = 5 Z ( ^ n , r 5 0 n ) 
71 

= ^ (<£n,r5</>n)+ ^2 ( < ^ n , r 5 0 n ) + ^2 ( 0n> r 50n) 
A„=0 0 < | A „ | < l / o | A „ | = l / a 

A„=0 

= £ (0n,(75 - # 2 * + 1 )0n) 
A„=0 

A„=0 

= n+ — n_ = index (20) 

where n± stand for the number of normalizable zero modes with 7s(/>n = ±^>n in 
the classification (i) above. We here used the fact that T$(j)n = 0 for the "highest 
states" and that (j>n and T5<f>n are orthogonal to each other for 0 < |An| < 1/a since 
they have eigenvalues with opposite signatures. 

On the other hand, the relation Tr75 = 0, which is expected to be valid in 
(finite) lattice theory, leads to ( by using (2.3)) 

TT75 = ^(</>n,75<£n) 
n 

= 5 3 (0">750m) + 5 3 (^"'Ts^n) 
A„=0 A „ # 0 

= n+ - n_ + J2 (flAn)2fe+1 = 0. (21) 
A „ # 0 

In the last line of this relation, all the states except for the "highest states" with 
A„ = ± l / o cancel pairwise for An ^ 0. We thus obtain a chirality sum rule10 

n+ + N+ = n_ + N_ (22) 

where N± stand for the number of "highest states" with 75</>n = ±^>n in the classi­
fication (ii) above. These relations show that the chirality asymmetry at vanishing 
eigenvalues is balanced by the chirality asymmetry at the largest eigenvalues with 
I Ara | = 1/a- It was argued in Ref. 4 that N± states are the topological (instanton-
related) excitations of the would-be species doublers. 

We have thus established that the representation of all the algebraic relations 
(1.2) has a similar structure. In the next section, we show that the index n+ — n_ 
is identical to all these algebraic relations if the operator 75D satisfies suitable 
conditions. 
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3. Chiral Jacobian and the index relation 

The Euclidean path integral for a fermion is defined by 

f VxjiViP exp[ J %j>Dil)\ (23) 

where 

$Lhl> = £ $(x)D(x, y)^{y) (24) 
/ • x,y 

and the summation runs over all the points on the lattice. The relation (1.5) is 
re-written as 

75r575£> + DT5 = 0 (25) 

and thus the Euclidean action is invariant under the global "chiral" transformation4 

'tp(x) -^{jj'(x) = •Jpjx) + i y ^ •ip(z)ej5r5(z, x)^5 

Z 

1>(v) ->• tf(y) = V»(v) + * J^ e T 5(w»w)1>W (26) 
w 

with an infinitesimal constant parameter e. Under this transformation, one obtains 
a Jacobian factor 

Vtjj'Vtp' = JV^Vip (27) 

with 

J = exp[-2iTrer5] = exp[-2ie(n+ - ra_)] (28) 

where we used the index relation (2.14). 
We now relate this index appearing in the Jacobian to the Pontryagin index of 

the gauge field in a smooth continuum limit by following the procedure in Ref. 12. 
We start with 

T ^ / C ^ ^ ) } = T r { r 5 / ( ^ ^ ) } = n+ - n_ (29) 

Namely, the index is not modified by any regulator f(x) with /(0) = 1 and f(x) 
rapidly going to zero for x —¥ oo, as can be confirmed by using (2.14). This means 
that you can use any suitable f(x) in the evaluation of the index by taking advantage 
of this property. 

We then consider a local version of the index 

tT{r5f(^^)}(x,X)=tr{(75-H^1)f(^^)}(x,x) (30) 

where trace stands for Dirac and Yang-Mills indices; Tr in (3.7) includes a sum 
over the lattice points x. A local version of the index is not sensitive to the precise 
boundary condition , and one may take an infinite volume limit of the lattice in the 
above expression. 
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We now examine the continuum limit a —> 0 of the above local expression (3.8)a. 
We first observe that the term 

t r { f f 2 f c + i / ( ( 2 ^ ) ! ) } ( 3 1 ) 

goes to zero in this limit. The large eigenvalues of H = a^D are truncated at the 
value ~ aM by the regulator f(x) which rapidly goes to zero for large x. In other 
words, the global index of the operator T*H2k+1f(&jJ°)l) ~ 0(aM)2k+1 -> 0 for 
a ->• 0 with fixed M. 

We thus examine the small a limit of 

t r { 7 5 / ( % ^ ) } - (32) 

The operator appearing in this expression is well regularized by the function f(x), 
and we evaluate the above trace by using the plane wave basis to extract an explicit 
gauge field dependence. We consider a square lattice where the momentum is defined 
in the Brillouin zone 

_ 7T 37T 

2a S *" < Ya 
We assume that the operator D is free of species doubling, which is proved for 
the explicit construction of D; in other words, the operator D blows up rapidly 
(~ i ) for small a in the momentum region corresponding to species doublers. 
The contributions of doublers are eliminated by the regulator f(x) in the above 
expression, since 

W ^ ) } - ^ ) 4 / ^ ) ^ (34) 

for a —> 0 if one chooses f(x) = e~x, for example. 
We thus examine the above trace in the momentum range of the physical species 

"5 s • * •<£• < 3 5 ) 

We obtain the limiting a —> 0 expression 

Akx 

<k„<—. (33) 

Js'/II^™^ 
d4k „ _ * , Al,D)\ 

M 2 /
dk 

,n .Ae~tkx~(5f( 
_L (27r)4 V 

.. + fL dAk _ikx .Ai-ysP)2, ikx 
L—>oo 

7,2 

= t r { 7 5 / ( ^ ) } (36) 

a T h i s continuum limit corresponds to the so-called "naive" continuum limit in the context of 
lattice gauge theory. 
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where we first take the limit a —> 0 with fixed fcM in — L < fcM < L, and then take 
the limit L —> oo. This procedure is justified if the integral is well convergent.12 We 
also assumed that the operator D satisfies the following relation in the limit a —» 0 

Deikxh(x) ->• eikx{- ty+ifi-g4)h(x) 

= i (0 + i 5 4)(eifca;/i(x)) = * ^ ( e ^ a : ) ) (37) 

for any fixed fc^, (—5^ < k^ < 5^), and a sufficiently smooth function h(x). The 
function /i(a;) corresponds to the gauge potential in our case, which in turn means 
that the gauge potential A^x) is assumed to vary very little over the distances of 
the elementary lattice spacing. 

Our final expression (3.14) in the limit M -> 00 reproduces the Pontryagin 
number in the continuum formulation (with e1234 = l ) 5 

J im^ t r 7 5 /GP 2 /M 2 ) = t r y s ^ l i y , l ^ f j ^-J"{-k^) 

= ^ t r e ^ F^Fap. (38) 

When one combines (3.7) and (3.16), one reproduces the Atiyah-Singer index 
theorem (in continuum R4 space).7 '8 We note that a local version of the index 
(anomaly) is valid for Abelian theory also. The global index (3.7) as well as a local 
version of the index (3.8) are both independent of the regulator / (# ) provided5 

/ (0) = 1, / ( o o ) = 0 , f'(x)x\x=0=f'(x)x\x=oo=0. (39) 

We have thus established that the lattice index in (3.7) for any algebraic relation 
in (1.2) is related to the Pontryagin index in a smooth continuum limit as 

n+-n^=J d'x^tve^^F^F^. (40) 

This shows that the instanton-related topological property is identical for all the 
algebraic relations in (1.2), and the Jacobian factor (3.6) in fact contains the correct 
chiral anomaly. (We are implicitly assuming that the index (3.7) does not change 
in the process of taking a continuum limit.) 

A detailed perturbative analysis of chiral anomaly for the general operators 
with k > 0 has been performed, and the above result has been confirmed.12 Also 
a numerical study of the index relation has been performed: The numerical result 
indicates the consistency of our analyses.13 

4. Explicit construction of the lattice Dirac operator for k > 1 

We now comment on an explicit construction of the lattice Dirac operator which 
satisfies the generalized algebraic relation (1.2) with k > 0. We start with the 
conventional Wilson fermion operator Dw defined by 

Dw(x, y) = i-y^C^x, y) + B(x,y) - -m0SXty, 
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C»(x,y) = -z-iSx+favUpiy) - Sx,y+liaUl(x)], 
2a 

B(x, y) = — J2i2S^y ~ sy+Ha,xUl(x) - (5V)X+AaC/M(y)], 

U^y) = exp[iagAp(y)], (41) 

where we added a constant mass term to Dw for later convenience. The parameter 
r stands for the Wilson parameter. Our matrix convention is that 7^ are anti-
hermitian, (7**)* = —7M, and thus (J! = 7MCM(n, m) is hermitian 

<fl =Q. (42) 

The Dirac operator for a general value of k is constructed by rewriting (1.2) as 
a set of relations 

H2k+1
l5 + l5H

2k+1 = 2H2^2k+1\ 

# 2 7s - 75# 2 = 0, (43) 

with H — a^D. The second relation in (4.3) is shown by using the defining rela­
tion (1.4), and the first of these relations (4.3) becomes identical to the ordinary 
Ginsparg-Wilson relation (1.1) if one defines H^k+i) = H2k+1. One can thus con­
struct a solution to (4.3) by following the prescription used by Neuberger2 

H(2k+1) = ll5[l + Dw
k+1)— * 1 (44) 

2 /m (2fc+lU t n (2fc+l) 

where 

y/(Dw
k^)Ww

k 

Dw
k+1) = i((?)2k+1 + B2k+1 - (^°)2*+i (45) 

The operator H itself is then finally defined by (in the representation where H^k+i) 
is diagonal) 

H = {H(2k+1)y'2k+l (46) 

in such a manner that the second relation of (4.3) is satisfied. This condition (4.3) 
is shown to be satisfied in the representation where H^k+i) ls diagonal.12 Also the 
conditions 0 < mo < 2r = 2 and 

2m2fc+1 = 1 (47) 

ensure the absence of species doublers and a proper normalization of the Dirac 
operator H. 

5. Locality proper t ies of general opera tors 

We have explained that the general operators for any finite k give rise to correct 
chiral anomaly and index relations in the (naive) continuum limit. This suggests 
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that those operators are local for sufficiently smooth background gauge field con­
figurations. The locality of the standard overlap operator with k = 0 has been 
established by Hernandez, Jansen and Liischer,15 and by Neuberger.16 

As for the direct proof of locality of the operator D for general k, one can show 
it for the vanishing gauge field by using the explicit solution for the operator H in 
momentum representation12 '13 

H(ap,)=l5(h^(^=)^{(J^ + Mk)^-(JH^-Mk)^r^} 
^ \/H,,, v v a 

where 

(48) 

FW = (s2fk+1 + Ml 

Mfc = E ( l - c M ) ] 2 f c + 1 - m 2 f e + 1 (49) 

and 

s,j, = smapfj, 

Cf,, — cos ap^ 

. / = 7MsinapM. (50) 

For k = 0, this operator is reduced to Neuberger's overlap operator.2 Here the 
inner product is defined to be s2 > 0. This operator is shown to be free of species 
doublers for the parameter mo within the range 0 < mo < 2 when we set r — 1, 
and 2m0 = 1 gives a proper normalization of H, namely, for an infinitesimal pM, 
i.e., for \apfjt] <C 1, 

H ~ -75aP\ l + 0{apf)+lb{lbapfk+2 (51) 

to be consistent with H = 75a!?; the last term in the right-hand side is the leading 
term of chiral symmetry breaking terms. 

The locality of this explicit construction (5.1) is shown by studying the analytic 
properties in the Brillouin zone.12 It is important to recognize that this operator is 
not ultra-local but exponentially local;17 the operator H{x, y) decays exponentially 
for large separation in coordinate representation 

H(x, y) ~ exp[-|a: - y\/(2.5ka)}. (52) 

An explicit analysis of the locality of the operator H(2k+i) (n°t H itself)in 
the presence of gauge field, in particular, the locality domain for the gauge field 
strength | |FM„11 has been performed. The locality domain for | {F^11 becomes smaller 
for larger k, but a definite non-zero domain has been established.12 The remaining 
task is to show the locality domain of \\Fpv\\ for the operator H = (H^k+i))1//'2fc+1). 
Due to the operation of taking the {2k + l ) th root, an explicit analysis has not been 
performed yet, though a supporting argument has been given.12 
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6. Conclusion 

We have reported the recent investigation of topological properties of a general class 
of lattice Dirac operators denned by the algebraic relation (1.2). All these operators 
satisfy the index theorem and thus they are topologically proper. A precise proof 
of the locality of these general Dirac operators with fully dynamical gauge fields 
remains to be formulated. The operators with large k is expected to exhibit infrared 
singularities in perturbative analyses as is suggested by the construction of H^k+i) 
in (4.4), and thus the Wilsonian formulation of effective action, which is supposed 
to be free of infrared singularities, would be essential. 

Although we discussed only 4-dimensional theory, the recent developments in 
the treatment of lattice fermions11 may have some implications on 2-dimensional 
theory also, which is the main subject of this Symposium. In this respect, the fact 
that the lattice Dirac operators are not ultra-local but exponentially local15 may be 
of some interest. See Ref. 18 for a Ginsparg-Wilson construction on a 2-dimensional 
fuzzy sphere. 
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The spectral flows of the hermitian Wilson-Dirac operator for a continuous family of 
abelian gauge fields connecting different topological sectors are shown to have a char­
acteristic s t ructure leading to the lattice index theorem. The index of the overlap Dirac 
operator is shown to coincide with the topological charge for a wide class of gauge field 
configurations. It is also argued that in two dimensions the eigenvalue spectra for some 
special but nontrivial background gauge fields can be described by a set of universal 
polynomials and the index can be found exactly. 

1. Introduction 

For a long time it has been considered that chiral symmetries cannot be imple­
mented on the lattice due to the Nielsen-Ninomiya no-go theorem. The situation, 
however, has completely changed after the discoveries of lattice Dirac operators 
satisfying the Ginsparg-Wilson (GW) relation.1_3a It is now possible to define ex­
act chiral symmetry on the lattice.6 Furthermore, the index theorem on the lattice 
relating the index of the GW Dirac operator to chiral anomaly has been obtained 
by Hasenfratz, Laliena and Niedermayer (HLN).6'7 

In continuum theories the nontrivial topological structure of gauge fields are 
considered to be responsible for nonperturbative phenomena such as the large 77-77' 
mass splitting in QCD and the fermion number violation in the standard model. 
The Atiyah-Singer (AS) index theorem provides a key relation there. 

The HLN index theorem is known to reproduces the AS index theorem in the 
classical continuum limit.8 However, it is not so clear what topological structure of 
the space of lattice gauge fields is related to the index of the GW Dirac operator 
on finite lattices. We expect that an extension of the index theorem relating the 
index directly to the topological invariants of gauge fields can be established also 
on finite lattices. 

aFor reviews, see Niedermeyer4 and Liischer.5 
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In this talk we would like to propose the "index theorem" relating the index 
of the GW Dirac operator directly to topological invariants of the lattice gauge 
fields,9-12 mostly based on our recent results.13 Working with the overlap Dirac 
operator3 for compact U(l) theories on finite periodic lattices in two and four di­
mensions, we investigate the spectrum of the hermitian Wilson-Dirac operators 
numerically for a family of link variables connecting constant magnetic field config­
urations with distinct topological charges. Such an analysis has already been carried 
out by Narayanan and Neuberger14 within the overlap formalism. They found the 
characteristic structure of the spectral flows leading to the index theorem. We will 
extend their analysis to include strong and nonsmooth gauge fields and find that 
the "index theorem" is kept intact for a wider class of gauge fields than those 
expected from the locality bounds.15 '16 The index and the topological charge, how­
ever, behave completely differently for nonsmooth gauge fields and the coincidence 
between the index and the topological charge breaks down. We also argue that the 
characteristic structure of the spectrum of the hermitian Wilson-Dirac operator in 
two dimensions can be understood exactly and the index can be computed for some 
special gauge field configurations. 

2. The index theorem on the lattice 

Let us begin with the definition of the overlap Dirac operator. On a d = 2N 
dimensional euclidean hypercubic regular lattice it is defined by 

^ = 1 + 7 d + 1 7 P ' (1) 

where H is the hermitian Wilson-Dirac operator given by 

H1>{x) = 7 d + i | (d- m)iP(x) - JT (izJitu^xMx + A) 

+ ^ ^ ( * - A M * - £ ) ] } • (2) 
We have chosen the lattice spacing a = 1 and the Wilson parameter r = 1. The link 
variables U^x) and the fermion wave function ip(x) are assumed to be periodic. 
The 7-matrices are taken to be hermitian and 7d+i = (—1)271 •••'yd is employed. 
The m is chosen in the range 0 < m < 2 to avoid species doubling and is taken to 
be m — 1 in our analysis. 

Obviously, D is only well-defined for the gauge field configurations with det H ^ 
0. It may exhibit discontinuities at the link variables for which H has zero-modes. 
This can be seen by noting the relation between the index of D and the spectral 
asymmetry17 of H 

indexD = Tr7 d + 1 ( 1 - \D\ = " ^ T r - ^ L = = -N+~N~ , (3) 
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where N+ (JV_) is the number of positive (negative) eigenvalues of H. Any two 
gauge field configurations with distinct indices cannot be continuously deformed 
into each other without crossing the configurations with detH = 0. By excising 
such singular gauge field configurations the space of the link variables becomes 
disconnected. The HLN index theorem associates indexD to each connected com­
ponent of the space of link variables. 

Another way to give nontrivial topological structure to the space of link variables 
is to impose the conditions9 

s u p | | l - P M I , ( x ) | | < 7 7 , (4) 

where P^ is the standard plaquette variable and r] (< 2) is a positive constant. 
The space of link variables becomes disconnected for sufficiently small 7/ and it is 
possible to assign topological charge to each connected component. 

In abelian theories the explicit forms of the topological charge12'18 is given by 

x • • • x FliNVN (x + /ii + v\ H h /tjv-i + i>N-i) , (5) 

where F^v = —ihiPM„ (FliU(x)\ < TT) is the field strength and eMl...Md is the Levi-
Civita symbol in d = 2N dimensions. The QN is a smooth function of the link 
variables within a connected component and takes an integer value given by10 '12 

where 27rmM^ is the magnetic flux through /xi/-plane. In fact it can be shown that the 
space of link variables of abelian gauge theory is decomposed into a finite number 
of connected components characterized by a set of integers { m p } , and any two 
configurations with the same set of magnetic fluxes can be continuously deformed 
into each other without violating (4). 

In general one can find gauge field configurations that satisfy (4) and det H = 0 
simultaneously. If it happens, the index£) may jump within a connected component 
satisfying (4). However, if we choose n to satisfy 

0 < 7 ? < |z=f ' <7) 

H cannot have zero-modes15,16 and the indexD is a constant in each connected 
components satisfying (4). It is very natural to expect that the index and the 
topological charge coincide with each other. The precise form of the "index theorem" 
for abelian gauge theories can be stated as : 

For the link variables satisfying (4) and (7) the index of D and the topological 
charge QN are related by 

indexD = (-l)NQN . (8) 
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Parameter t 
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Fig. 1. Eigenvalue spectrum of H for L = 6 in two dimensions. 

One way to find indexD is to count the net number of spectral flows of H as 
m varies from 0 to 1 while keeping the link variables. This approach was adopted 
by several authors.14 '19 '20 To see how the index of D behaves as one varies the 
link variables continuously from one connected component to another it is more 
convenient to investigate spectral flows of H for a continuous family of link vari­
ables connecting configurations with constant field strengths Ftiv(x) = 2irmflv/L

2. 
Concretely, we take the one-parameter family of link variables in two dimensions 

U?\x)=exp -lt — X20XuL-l r(0 U2 (x) — exp 
. 2TT 

(0 < zM < L) (9) 

The field strength is a constant for any value of t except for the corner point 
%\ 2 = L — 1. As a function of t, the topological charge Q\ has discontinuities at 

' (2j + l ) i 2 

2(Z,2_i) •j + \(j :0 ,±1,±2,-") . 

3. Numerical results in two and four dimensions 

We have numerically analyzed the eigenvalue spectrum of H over the range —L2/2 < 
t < L2/2 for 2 < L < 15. It is helpful to note the following facts: (1) In two di­
mensions the eigenvalues A of H are bounded by |A| < 3.16 (2) The eigenvalue 
spectrum of H is L2 periodic in t. (3) The eigenvalue spectrum of H is symmetric 
with respect to the point t = 0. Hence indexD is an L2 periodic odd function of t 
and vanishes at t = 0, ± L2/2, where the spectrum is symmetric. 

In Figure 1 the whole spectrum of H is shown for L = 6. It is consistent with the 
result obtained by Narayanan and neuberger.14 The characteristic structure of the 
spectrum is not changed with L. We find that most of the eigenvalues lie within the 
upper and the lower trapezoid regions symmetrically separated by the parallelogram 
region and there are large gaps at integer t. As t increases by unity from an integer, 
an eigenvalue belonging to the lower trapezoid crosses the parallelogram upward 
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Fig. 2. The indexD and - Q i are plotted for 0 < t < L2/2 (L = 5, d = 2). 

and moves to the upper t rapezoid. In particular on the interval of the horizontal 

axis cu t by the parallelogram eigenvalues change the sign for a sequence of the 

values of t, where the index j u m p s by —1. 

T h e indexD and —Qi a re plotted over the region 0 < t < L2/2 for L = 5 in 

Figure 2. The correspondence between the index and the topological charge is very 

excellent for 0 < t < L2/4 except for the points around the discontinuities. This is 

consistent with the numerical results given by Chiu.21 

For t > L? /A the index£) and —Qi behaves completely differently. Such can 

be considered as a kind of latt ice specific phenomena. It is safer to avoid such 

configurations in order to keep proper connection with continuum theories. 

We have also carried out a similar analysis in four dimensions by taking the 

link variables (9) in the presence of a constant magnetic flux through 34-plane. 

T h e characteristic features of the spectral flows observed in two dimensions can be 

seen also in four dimensions. In Figure 3 we indicate the spectrum of i f for L = 4, 

|A| < 1, 77134 = 1 and \t\ < 8. A well-isolated eigenvalue crosses the horizontal axis, 

where index£> increases by one unit. The characteristic feature of the spectrum is 

not changed for 77234 > 1. In general 77234 adjacent eigenvalues flow downward and 

i ndexD increases by 77134 when they cross the i-axis. This is consistent with (6). 

T h o u g h our analysis is restricted to rather small lattice sizes 2 < L < 4, we 

ant ic ipa te tha t the parallelogram region expands rapidly enough as L increase and 

the coincidence between the index and the topological charge occurs for a wide 

class of gauge field configurations. Incidentally, for gauge fields satisfying (4) and 

(7) nonvanishing topological charges can be realized only for L > 9. 

4 . S o m e e x a c t re su l t s i n t w o d i m e n s i o n s 

Coming back to two dimensions, we now show that the characteristic structure of 

the spec t rum of H can be unders tood by noting that the eigenvalue equations for 

cons tan t field s t rength configurations can be converted to equivalent simple one-
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Fig. 3. Eigenvalue spectrum of H for |A| < 1, s = 1 and |t| < 8 (L — 4 and d = 4). 

dimensional systems. Here we will consider the cases of field configurations at t = r 
and t = L2/r = sL, where r and s sue arbitrary positive integers satisfying L = rs. 

At t = sL the H is independent of X2 and r periodic in xi. This implies that 
the system can be converted to a smaller one with degrees of freedom 2r by Fourier 
transformations. It can be shown that the eigenvalues A of H at t — sL satisfy the 
secular equation 

det 
B(p,q)-X C(p,q) 

C(p,q)i -B(p,q)-X 

where p and q are the Fourier momenta 

2irk 2rirl 
— ' q=— ' 

= 0 

P (0 < fc < L , 0 < Z < s) 

(10) 

(11) 

and B(p,q), C(p,q) are r x r matrices defined by 

1 - cos p + 
2-wk 

(B(p,q))kl = --6™+1 + °k,l 9°fc+l,Z ' 

(?) 

fc+l,i 
(0<k,l<r) (12) 

s(«) ; The (5̂ . i is the Kronecker's rJ-symbol for 0 < k, I < r — 1 and satisfies the twisted 

boundary conditions 6^'r = e~ig5k,o and <S^ = etq5o,k-
The secular equation (10) can be rewritten in the following form 

(_l)r-l , , . , . - , . 2rP • 2 Q 
frW= 2r'_4 s i n 2 ^ s m 2 | , (13) 

where / r = A2r + • • • is a polynomial of degree 2r and is independent of p and fj. 
For 1 < r < 4 it is explicitly given by 

A = A 2 - 1 , 
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/ 2 = A4 - 6A2 + 1 , 

/ 3 = A 6 - 9 A 4 + ^ A 2 - 3 V 3 A - i , 

U = A8 - 12A6 + 42A4 - 8A3 - 44A2 + 24A - 3 . (14) 

In particular r = 1 corresponds to the free spectrum since the link variables become 
trivial. The eigenvalues A must satisfy the inequality 

0 < ( - l ) r _ 1 2 r - 4 / r ( A ) < 1 . (15) 

This gives rise to 2r allowed narrow intervals for A. In each interval there appears 
exactly Lxs eigenvalues. As an example, we consider the case that L = 4s and take 
r = 4. For any p, q the eight roots of (13) are separately located in well-separated 
eight narrow intervals. There are three negative eigenvalues and five positive eigen­
values for each p, q. Then the index is then given by— 1 x L x s = —sL. This 
coincides with —Q\. In general fr{\) = 0 has r — 1 negative roots and r +1 positive 
roots for r > 4 and, hence, indexD — —sL — —Q\ at t = sL. On the other hand it 
is vanishing for 1 < r < 3 since the number of positive roots and that of negative 
ones are always equal. 

It is possible to extend the above arguments to integers t = r (< L). In particular 
we arrive at the relation 

det(fl--A)|t= T . = ( / , L (A)) p . (16) 

This gives at t = r the index — r = —Q\ for sL > 4 and 0 for sL < 3. These are 
completely consistent with the numerical results. 

5. Summary 

We have confirmed the equality (8) between the index and the topological charge 
for abelian gauge theories on finite periodic lattices in two and four dimensions. 
It holds true for a wider class of gauge field configurations than those satisfying 
the locality bounds.15 '16 The condition (4) with (7) excludes uniformly the config­
urations for which the discrepancy between the index and the topological charge 
appears, ensuring the index theorem (8). 
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This paper reviews some recent progress on dimer and spanning tree enumerations. We 
use the Kasteleyn formulation to enumerate close-packed dimers on a simple-quartic 
net embedded on non-orientable surfaces, and obtain solutions in the form of double 
products. For spanning trees the enumeration is carried out by evaluating the eigenvalues 
of the Laplacian matrix associated with the lattice, a procedure which holds in any 
spatial dimension. In two dimensions a bijection due to Temperley relates spanning tree 
and dimer configurations on two related lattices. We use this bijection to enumerate 
dimers on a net with a vacancy on the boundary. It is found that the occurrence of a 
vacancy induces a VJV correction to the enumeration, where N is the linear size of the 
lattice, and changes the central charge from c = 1 to —2. 

1. Introduction 

Theoretical studies of the physics of real systems often lead to problems of far-
reaching interests in mathematics, and solutions to the mathematical problems in 
turn yield new insights to the physical problems. One such example is the advent of 
dimer statistics, a subject matter at the forefront of mathematical research, from the 
evaluation of the adsorption entropy of diatomic molecules on a surface.1 Another 
example is the arising of the notion of spanning trees, again a subject matter of 
immense interest in graph theory, from the theory of electric network currents.2 In 
two dimensions these two mathematical problems are further interrelated, a fact 
recognized again through the consideration of the physics of the problems.3 In this 
paper we describe and review some recent progress on dimers and spanning trees 
obtained by the author and co-workers.4-8 

We first define the problems of dimer and spanning tree enumerations. The 
dimer problem is treated in section 2 where the Kasteleyn formulation is outlined 
and used to obtain the dimer generating function for two non-orientable surfaces, 
the Mobius strip and the Klein bottle. In section 3 an established result in graph 
theory is used to enumerate spanning trees. In section 4 we describe a bijection 
due to Temperley3 which relates dimers and spanning trees on two related lattices, 
and use it to establish the independence of the dimer generating function on the 
location of a vacancy on the boundary of a simple-quartic net. The bijection also 
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leads to an explicit evaluation of the dimer generating function for the defect lattice. 
Results of finite-size analyses, which lead to corrections induced by the geometry 
of a boundary vacancy, are presented in section 5. 

2. Definitions 

We shall consider a regular lattice C having a vertex (site) set V and edge set E, 
but much of our results are applicable more generally to C being an arbitrary graph. 
Number the sites from 1 to |V| and associate to the edge ejj connecting vertices i 
and j a weight x^, with x^ = 0 if there is no edge connecting i and j . A dimer 
covering V (for |V| = even) is a pairing of the |V| vertices into |V|/2 pairs. We 
say that the edge eij is covered by a dimer if ejj appears in V. Then, the dimer 
generating function is 

Z(C;{xij}) = J2 I ] *«' (^ 

where the summation is taken over all dimer coverings. The total number of dimer 
coverings is obtained by setting x^ = 1, or 

Ndimer(C) = Z(C; 1). (2) 

Specializing (1) to an M. x M simple-quartic lattice of M. rows and Af columns 
with edge weights Zh and zv respectively in the horizontal and vertical directions, 
the dimer generating function is 

ZM,Mzh,zv) = J24h^v, (3) 
V 

where n^ and nv are, respectively, the numbers of horizontal and vertical dimers in 
V. 

Next we define spanning trees. A subset of edges T C E is a spanning tree if 
it has \V\ — 1 edges with at least one edge incident at each vertex. Thus T has 
no cycles. The enumeration of spanning trees concerns with the evaluation of the 
spanning tree generating function 

T(C;{Xij})=J2 I I x*> (4) 
TCE eijCT 

where the summation is taken over all spanning trees configurations T. Particularly, 
the total number of spanning trees on £ is obtained by setting x^ = 1, or 

JVgPT(£) = T(£; 1). (5) 

Specializing (5) to a simple-quartic net as in the above, the tree generating function 
assumes the form 

rMAK£;*fc,*«) = X > r C > (6) 
T 
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where n/, and nv are, respectively, the numbers of horizontal and vertical edges in 
T. 

The evaluation of (3) for £ with free and toroidal boundary conditions was 
first accomplished by Kasteleyn9 and Temperley and Fisher.10 '11 Here we extend 
the solution to non-orientable surfaces,4'7'12 and to the net £ having a boundary 
vacancy.8 

3. Dimer enumerations 

3.1. Kasteleyn formulation 

It is an elementary fact that the superposition of two dimer configurations decom­
poses a lattice £ into superposition polygons, namely, polygons formed by tracing 
along dimers from vertex to vertex. Orient all edges of £ and define an |V| x \V\ 
antisymmetric matrix A(xij) with elements 

Aij — —Aji = Xij, if the edge ij is directed from i to j . (7) 

Then, Kasteleyn9 has established the remarkable result that 

Z(C;{xij}) = y/\A(xij)\, (8) 

where |A| is the determinant of A, provided that lattice edges are oriented such 
that the product of all edge weights around every possible superposition polygon is 
negative. Namely, 

XijXjk • • • xu < 0 (the Kasteleyn criterion) (9) 

for sites i,j, k, ...,£ around a superposition polygon arranged in the order of, say, a 
clockwise (cw) direction. Henceforth we shall refer to the sign of —XijXjk •••xu as 
the sign of the (superposition) polygon. 

The Kasteleyn criterion (9) is remarkable since it says nothing about the di­
mensionality of the lattice. It is this flexibility which permits its application to 
non-orientable surfaces. However, even if the Kasteleyn criterion is met, it still 
remains to evaluate the determinant |A(xy)| which can be a formidable task in 
some cases. 

3.2. Simple-quartic nets on non-orientable surfaces 

We consider the enumeration of dimers on an M x H simple-quartic net embedded 
on two non-orientable surfaces. The net forms a Mobius strip if there is a twisted 
(Mobius) boundary condition in the horizontal direction as shown in Fig. 1, and 
a Klein bottle if, in addition to the twisted boundary condition, there is also a 
periodic boundary condition in the vertical direction. 

To satisfy the Kasteleyn criterion (9) we make use of a trick due to T. T. Wu13 

of associating a factor i to dimer weights in one spatial direction. For a simple-
quartic net with free boundaries, one associates a factor i to dimer weights in the 
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Fig. 1. An MxM Mobius strip and the associated edge orientations. A, B, C, D, E are repeated 
sites, (a) (M,N) = (5,4). (b) (M,N) = (4,5). 

direction in which the number of lattice sites is odd. For {M,Af} = {even, odd}, 
for example, one replaces ZH by izn- If the number of lattice sites is even in both 
directions, then the factor i can be associated to dimers in either direction. 

Next one orients all parallel lattice edges uniformly in the same direction. To see 
that this orientation satisfies the Kasteleyn criterion for free boundary conditions, 
the case considered by Wu, one superimposes any dimer covering C\ with a standard 
Co in which the lattice is covered only by parallel dimers with real weights. Then, 
each superposition polygon formed by C\ and Co contains an even number of arrows 
pointing in each (cw or ccw) direction as well as a factor i4n+2 = — 1, where n is 
a nonnegative integer. It follows that the criterion (9) holds and the sign of every 
polygon is positive. Note that the construction of Co requires either M. or J\f to be 
even. 

On non-orientable surfaces a superposition polygon can wrap around the lattice 
in the horizontal direction, and this causes problems in realizing the Kasteleyn 
criterion. Particularly, one needs to pay attention to whether M. and M are even or 
odd. Starting from a net with free boundaries, there are M additional horizontal 
"connecting" edges (shown in Fig. 1) and, in the case of the Klein bottle, M 
additional vertical connecting edges (not shown in Fig. 1). These edges need to 
be oriented. It turns out that, except in the case that both M,Af are even,4 it is 
not possible to orient the connecting edges so that the Kasteleyn criterion holds for 
all polygons wrapping around the lattice. However, one can take advantage of the 
regularity of the signs of the polygons to extract the desired solution. 

Let the horizontal connecting edges carry a weight z, and let A(z) denote the 
resulting antisymmetric matrix (7). It is straightforward to show7 that superposi­
tion polygons containing 4n and 4n + 1 connecting z edges in its perimeter, where 
n is an integer, have the same sign and those having An+ 2 and 4n + 3 connecting z 
edges have the opposite sign. It follows that7 the desired dimer generating function 
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on a net (with uniform weights ZH and zv) is given by the linear combination 

(1 - i)y/\A(izh)\ + (1 + i)y/\A(-izh) 

Re (l-i)y/\A(iZH)\ (10) 

where Re denotes the real pa r t . This formula applies to both the Mobius strip and 

the Klein bottle. 

The determinant \A(±izh)\ can be evaluated by computing the eigenvalues of 

the matr ix A(±izh), a n d the algebra is somewhat different for the two lattices 

shown in Fig. 1. We refer t o Ref. 7 for details and give here only the final result, 

r [{M+i)/2\ H ( SA ,\ 

a-o n nh-i)*+m+i
Sin^^+2xm 

MAT/2 D 

z. Re 
m=\ n=l 

(11) 

where [x] is the integral pa r t of x, and 

Xm = — cos • 
Zh^ 

Zh 
sin 

M + l 

(2m - 1)TT 

M 

for the Moebius strip 

for the Klein bottle. (12) 

For N = even, the p roduc t in (11) is real and (11) reduces to a simpler form 

n n h ^ ^ ^ . as) r, i r \ MM/2 
AM,SS{L; Zh, zv) = zh 2N 

m=l n=l 

For the Mobius str ip Tesler1 2 has also obtained t h e solution in terms of generalized 

Fibonacci numbers. It can be shown tha t his solutions are the same as those given 

by (11). 
In all cases, one ob ta ins in the thermodynamic limit the per-site bulk free energy 

1 
Jdimer\Zh, Zv) 

M,AT-+°o MM 
In ZM,u{£; 

1 r^ f^ 
4 z\ sin2 6 + 4 zl sin2 (14) 

This gives the per-site en t ropy of the adsorption of diatomic molecules on a simple-

quartic lattice as 

G 
JdimerV-'-; 1) 

where G is the Ca ta lan constant given by 

G = 1 - 3 - 2 + 5 ~ 2 - 7~2 + • • • = 0.915 965 594. 

(15) 

(16) 
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4. Spanning tree enumerations 

4.1. The Laplacian matrix 

First we recall an established result in graph theory on spanning trees. Consider a 
graph £ with edge weights x^. In analogous to (7) we define a |V| x |V| symmetric 
matrix B with elements 

Bij = Bji = Xij if i and j are adjacent 

= 0 otherwise. (17) 

Thus B is the adjacency matrix of C if x^ = 1. Define further a diagonal matrix 
A with elements 

Au = J2xiJ- (18) 

Then, the matrix 

Q = A - B (19) 

is the Laplacian of the lattice C. The Laplacian matrix has the property that the 
sum of each row or column is zero, so it has a zero eigenvalue. 

Let Ai, A2,..., A|v|-i be the |V| - 1 nonzero eigenvalues of £. Two fundamental 
theorems in graph theory14,15 state that we have 

T(C\ {Xij}) = any cofactor of Q (20) 

1 | v | - i 

A proof of (20) can be found in any book of graph theory (see, e.g., Ref. 14), and 
an elementary proof of the equivalence of (20) and (21) has been given in Ref. 5. 

4.2. Simple-quartic lattice 

We have used the formulation (21) to derive spanning tree generating functions for 
finite hypercubic lattices in d dimensions under various boundary conditions5 as well 
as for regular lattices in two dimensions.6 Here we discuss only the simple-quartic 
lattice with free boundary conditions which is relevant to our ensuing discussions. 

For the simple-quartic lattice with free boundary conditions the Laplacian as­
sumes the form 

Q = 2(zh + zv)IM ®Itf- zhHM ® J/v - zvIM ® HJV (22) 
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where IN is an N x N identity matrix, and HN is the N x N tri-diagonal matrix 

HN = 

/1100 
1010 
0101 

0000 
\0000 

000\ 
000 
000 

101 
011/ 

(23) 

The eigenvalues of HN are5 

mr An = 2 c o s — , n — 0 , 1 , . . . , N — 1. (24) 

Then, by diagonalizing Q in the two subspaces of dimensions M and N separately, 
one obtains the its eigenvalues 

2zh 1 — cos rmr 

~M 
+ 2zv 

rnv 
1 - c o s ^ 

m = 0 , l , . . . , A l - l , n = 0,l,...,N-l 

Using (21), one then obtains 

and the per-site free energy 

fsPT(zh,zv) = lim 

771=0 71=0 

4 „ s i n ^ + 4 , „ s i n ^ 

{m,n)j= (0,0) 

M,M^-oo MAf IXITM,M(£; Zh, zv) 

\ I d9 I d(j)\n 
^ Jo Jo 

4 Zh sin 0 + 4 zv sin2 

This leads to 

(25) 

(26) 

(27) 

/ S P T ( 1 , 1 ) = - G . 
7T 

(28) 

5. Simple-quartic net with a vacancy 

The similarity between (14) and (27) is striking, since it suggests a connection 
between the dimer and spanning tree problems. Indeed, Temperley3 has found a 
bijection between dimer and spanning tree configurations on two related lattices. 
The bijection has recently been extended to general planar graphs with weighted 
and/or oriented edges.16 Here, we describe a version of the bijection relevant to out 
discussions.8 
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5.1. Temperley Injection 

Starting from an M x AT simple-quartic net £ with free boundaries, one constructs 
a dimer lattice CD by i) adding a new site at the midpoint of each edge of £, ii) 
inserting in each internal face of £ a new site connected to the midpoints of the 
4 edges of £ surrounding it, and iii) removing one of the original boundary sites 
of £ together with its edges incident from the neighboring midpoints inserted in 
i). Thus, CD has a total of (2M — 1)(27V — 1) — 1 sites consisting of the original 
MM— 1 sites of £ and the remaining (2M — l){2Af— 1) — MAf new sites. Examples 
of constructing CD for M. = Af = 3 are shown in Fig. 2. Then we have the following 
Temperley bijection as contained in results reported in Ref. 16. 

O O O 

it o o 

n it o 

< > — 1 — • — I O 

It O O 

•—'—ii—'—i 

T—l—°—l—T 

<t it— o 

•—I—•—I—It 

(a) (b) (c) 

Fig. 2. (a) A spanning tree lattice C . (b) A dimer lattice Co constructed from C with one corner 
site removed, (c) A dimer lattice CD constructed from C with one boundary site removed. Open 
circles denote removed sites. 

Temperley bijection: There exists a one-one correspondence between spanning 
tree configurations on C and dimer configurations on CD-

To see that the bijection holds, one observes that to each spanning tree con­
figuration on £, one can construct a unique dimer configuration on CD by first 
laying a dimer along each tree edge, starting from the edge(s) covering the site of 
CD which has (have) been removed, and proceed along the spanning tree edges in 
an obvious fashion. After laying dimers along all tree edges, the remaining sites 
of CD can then be covered by dimers in a unique way.3 Conversely, starting from 
each dimer configuration on CD, one constructs a unique tree configuration on £ 
by drawing bonds (tree edges) along dimers originating from all odd sites. These 
bonds cannot form close circuits, since otherwise they would have enclosed an odd 
number of sites of CD which is not permitted in close-packed dimer configurations. 
This process leads to a unique tree configuration on £. This completes the proof. 

Examples of the Temperley bijection are shown in Fig. 3. 

5.2. Dimer enumeration on CD 

To enumerate dimers on CD which is a simple-quartic lattice with a defect on its 
boundary, one must start from M, Af odd so that the net of (2.A4 — 1)(2A/" — 1) — 1 
sites admits dimer coverings. Let CD and C'D be two dimer lattices derived from 
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l m ^ — O 

J—L^-f]—! = ] 

— - _ 1—Ft-f 

[ = i — f =i—L J—L i 
(a) (b) (c) 

Fig. 3. Bijections between a spanning tree configuration on C shown in (a) and dimer 
configurations on two £rj lattices shown in (b) and (c). 

C as described in the above. Let the dimer and spanning tree edge weights be the 
same z/, and zv. Then, the Temperley bijection implies a one-one correspondence 
between dimer configurations on Co and C'D via the mutual equivalence to spanning 
trees. A moment's reflection now shows that the two dimer configurations also have 
identical weights.7 It follows that we have the identity 

Z(CD; Zh, zv) = Z(C'D; Zh, zv). (29) 

Namely, the dimer generating function is independent of the location of the bound­
ary vacancy. This is a somewhat unexpected result which is difficult to see without 
the use of the Temperley bijection. 

For M.,M odd, the aforementioned scheme of orienting lattice edges for the 
realization of the Kasteleyn criterion no longer holds, since in constructing C\ one 
needs either M. or H be even. However, using the Temperley bijection it can be 
shown8 that the dimer generating function for CD is given by 

Z(CD;zh,zv) = tfW-DtflM-Vj. U « ) . 
V *v Zh) 

Particularly, for z^ = zv = 1, one has 

(30) 

iVdimer(£D) = Z(£D; 1,1) = NSPT(C) 
1 M-lAf-l 

s n n MH 
m=Q n=0 

4 sin'* TT-TT + 4 sin"1 ——, 
2M 27V 

, ( m , n ) ^ (0,0), 

(31) 

where the last line is obtained from (26) with Zh = zv = 1. However, one must note 
that LB is a (2M — 1) x (27V — 1) lattice with a boundary defect. 

6. Finite-size analyses 

Finite-size expansions of physical quantities associated with two-dimensional lattice 
models have been of interest both in physics4 '17 and in mathematics.18 Let ZM N 
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denote the partition function of a lattice model on an M x N lattice. For large 
M, N one has the expansion 

In ZM,N = MNfbulk + JVci + Mc2 + c3 + o(l), (32) 

where /bulk is the bulk free energy as computed in (14) and (27), ci, c2 are constants 
independent of M and N, and C3 is a constant which can depend on M and N. In 
conformal field theory one further computes the limits 

S JSJ. ̂  - *- + 5 + £ + < " - • > • (34> 
using which the central charge c can be computed from the values of Ai and A2. 
These expansions hold for general M and N regardless whether they are even or 
odd. 

We have carried out finite-size analyses of our solutions for dimer4 and spanning 
tree8 solutions. Here we give the results on the number of dimer configurations 
(zh = zv = 1) (see also Refs. 11,19,20 for equivalent results). 

For an M x N dimer lattice with MN = even we use (13) for the number of 
dimer configurations JVdimer = ZM,AT(£; 1, 1) and obtain 

f ~° 
/bulk — — , 7T 

C\ = C 2 - - i l n O L + v/2) 

c3 = ^ + I In 2 - ln(l + y/2) + ^ + £ In ( l + e-(*»-W"j . 

(35) 

Despite its apparent form, the expression of C3 in (35) is actually symmetric in M 
and N. The term TTM/24N in C3 now yields the central charge c = 1 upon taken 
M = N. This agrees with the accepted value for dimer and Ising systems. 

For an M x TV dimer lattice with one vacant boundary site and both M,N = 
odd, we use (31) for iVdimer(£i>) and the conversion of M = 2M — 1,N = 27V - 1 
to get the desired result. After some algebra, one obtains the same /bulk? ci ?̂ 2 &s 
in (35), and a new cs given by 

n = l 

(36) 

The expression of c3, which is again symmetric in A4,N', leads to a new central 
charge c = —2. Furthermore, the term —^\nN in c'3, which is absent in C3, gives 
a V^V correction to the dimer enumeration. A concrete example exhibiting this 
correction has been given in Ref. 8. We remark that Kenyon18 has found the 
correction factor to be N3/4 if the vacancy occurs in the interior of the lattice. 
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We study the geometry of a knot invariant defined in terms of the quantum dilogarithm 
function. We show that a hyperbolic structure naturally arises in the classical limit of 
the invariant; the completeness conditions can also be identified with the saddle point 
equations by studying a (l,l)-tangle. 

1. Introduction 

After the discovery of quantum groups, the interest in quantum invariants has 
been renewed, and we have now infinitely many knot invariants. In contrast to the 
fact that the Alexander invariant was defined from the homology of the universal 
Abelian covering, the geometrical meaning of those quantum invariants remains 
unclear. A key to solving these problems comes from Kashaev's observation1'2 that 
the asymptotic behavior of Kashaev's knot invariant, which was later shown3 to 
coincide with a specific value of the colored Jones polynomial, gives a hyperbolic 
volume of the knot complement, 

\\S3\K\\ = ±- lim ^rlog\JN(K)\, 
V3 N-*<X> iV 

where || • || is the Gromov norm, U3 is the hyperbolic volume of the regular ideal 
tetrahedron, and JN{K) = VN{K;e2m/N) is given in terms of the colored Jones 
polynomial V^(if;f) for the knot K (./V-dimensional representation of s^)-

This paper is a continuation of Ref. 4. Therein we showed that a hyperbolic 
structure naturally arises from a knot invariant, which was defined by use of the 
infinite-dimensional representation of the quantum dilogarithm function. In this 
sense this invariant can be viewed as a non-compact analogue of Kashaev's invari­
ant. We found that the saddle point equations which denote a critical point of 
our invariant, coincide with the hyperbolicity consistency conditions in gluing ideal 
polyhedra. One purpose of this paper is to prove that the completeness condition 
is also given through a classical limit of our knot invariant Ti{K) together with 
a suitable (l,l)-tangle. See Ref. 5 for a geometrical study of Kashaev's original 
invariant. 
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This paper is organized as follows. We briefly review the construction of our knot 
invariant in Sec. 2. The essential tool is the S'-operator which solves the five-term 
relation. In Sec. 3 we give a 3-dimensional picture4 of our invariant by assigning an 
oriented tetrahedron to the 5-operator. In the classical limit the tetrahedron can be 
regarded as an ideal hyperbolic tetrahedron. We clarify how completeness is given 
from our invariant by studying a related (l,l)-tangle. In Sec. 4 we define a quantum 
invariant of 3-manifold M based on the ideal triangulation of M. The last section 
is devoted to concluding remarks. We discuss the relationship between the classical 
limit of the quantum invariant and the hyperbolic volume. Throughout this paper 
we use Euler's dilogarithm Li2(z), Rogers' dilogarithm L{z), and the Bloch-Wigner 
function D(z), which are respectively defined by 

Li2(z) = - f d s l 0 g ( 1 ~ s ) , L{z) = Li2(z) + | log(z) log(l - z), 
Jo s i 

D(z) = ImLi2(2:) + arg(l - z) log \z\. 

2. Knot Invariant 

We introduce the 5-operator, acting on two spaces V ® V, 

5 i , 2 = e * « l f c * 7 ( p i + g 2 - p 2 ) . (1) 

Here we have used the canonical operators, \pj,qk] — —2rySjtk, and 

<S>»=exp(7 . . / T ' , x—), (2) 
\J&+iO 4 sinh(7x) sinh(7ra;) x J 

which can be regarded as a modular double of the (/-exponential function.6 The 
^-operator satisfies the five-term relation,7-9 

S2,3Sl,2 = 5 ' I I 2S'I I352 ,3- (3) 

By recursive use of this five-term relation, we see that the i?-operator 

#12,34 = ( ^ 4 ) - 1 5 1 , 3 ^ 4 ( 5 ^ 3 ) - 1 = Pi,3*2,4/Jl2,34, (4) 

where ta is the transposition on the a-th space and Pa,b is the permutation operator, 
solves the Yang-Baxter equation (braid relation), 

#12,34-R34,56#12,34 = #34,56^12,34-^34,56; ^ ~ ^ - - - ^ ^ - N = r̂ "̂ --̂ ---̂  ^ 

We define a knot invariant from this i?-matrix. For this purpose we give the ma­
trix elements and their classical limit (7 -> 0) in the case of V being the momentum 
space, p\p) = p\p) with p € l ; 

<Pl,P2|Sl,2b'l,P2> = S(jn +P2-P'l)^(p'2-P2 +™ + i 7 ) e 5 M - ^ - ¥ W ^ - P 2 ) ) 

< * ( P i + P 2 - P i ) e x p ( - — V ( p ' 2 - p 2 , p i ) \ , (6) 
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. 2 i , 2 

(PUP2\S^\PIP2) = *(Pi -Pi -P2)^l r~. - e ^ ~ ^ + ? - ^ - ^ 

*7(P2 - P2 - 17r --17) 

~ *(pi - Pi " P2) exp ( 2 T ^ ( P 2 - P^P'I)) • (7) 

Here we have set 7T2 

F(x,2 /) = y - L i 2 ( e a : ) - x 2 / , (8) 

which satisfies 

ImF(x, y) = D(l - ex) + log \ex\ • Im ( ^ ^ ) + log |e»| • Im f ^ , J / ) 

Recalling the fact that the volume of an ideal tetrahedron in 3-dimensional 
hyperbolic space H3 is written in terms of the Bloch-Wigner function,10'11 and 
that the Rogers dilogarithm function is a natural complexification of the hyper­
bolic volume,12'13 we can expect that the S'-operator at the critical point is closely 
connected with an ideal tetrahedron in H3. 

We can define the knot invariant from the enhanced Yang-Baxter operator14 

{R,H,a,p), 

n(L) = a-w^(3-n Tr2 , . . . ,n(bA(0(l ® /x^"" 1 ) ) ) . (10) 

Here £ denotes the braid group representation with n strands of link L, and 6^(£) is 
to substitute the operator R (4) as a braid generator. We have used w(£,) as writhe, 
and 

"- + -> a _2L±J.fit j"2+-T2 _ 7 e I 

^ (1 - e2'T)(l - e2l7r /T) 

Note that -ri(if) is an invariant for (l,l)-tangles, and that we do not take trace 
over the first space. 

3. Hyperbolicity and Completeness 

We have clarified in Ref. 4 how the hyperbolic structure naturally arises from the 
knot invariant T\(K) in the classical limit 7—^0. Therein, motivated by the fact 
that the S'-operator solves the five-term relation (3), the S-operator is identified in 
the classical limit with an ideal tetrahedron in H3 , 

<Pi,P2|5|pi,^> = / M " / r i (Pi .PalS-Vi .Pa) 
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Here momenta pa and p'a are assigned to every face. Both oriented ideal tetrahedra 
have modulus z = ep^~P2, and every dihedral angle is fixed as a function of the 
modulus, z\{z) = z, 22(2) = 1 — z - 1 , a n d zz{z) = (1 — z)_1> opposite edges having 
the same angles. The integral with respect to momentum pa is interpreted as gluing 
two faces having the same momentum to match the orientation of every edge. One 
sees that the five-term relation (3) is simply realized as the 2 •<->• 3 Pachner move. 
Correspondingly, the il-matrix (4) can be depicted as an oriented ideal octahedron, 

<0\Rtf) = (12) 

Here we have pi + p3 = p\ + p2 and p'2 +p'^ = p'3 + p^. The picture on the right 
denotes the projection of the octahedron viewed from the top of the octahedron, and 
a,i is the dihedral angle around a central axis "<g>," ai = z^{ez~Pl), a2 = z2(e

P3~z), 
a>3 = zz{ew~Pi), and 0,4 = z2{eP2~w), satisfying the consistency condition, 

1; e~ = 
I — ePl-p'i+P4-P4 I _ gPl-p'i+P4-P4 

e = -Pi 
(13) 

1 1 ' ' ' , ~ e-P4 — ePl-p'1+Pi-P4-P2 ' ^ e~p'3 _ gPl-Pi+Pi-P't 

Note that we have symmetry of the i?-matrix, and that the inverse braiding gener­
ator R"1 is also given by an oriented ideal octahedron, 

(Pl,P2,P3,P4\R\p'l,P2,P3>P4) = {P4,P3,P2,Pl\R\P4,P3,P2,Pl}, 

{Pl,P2,P3,P4\R~1\p'l,P2,P3,P4) = <P2.^i»Pl.P2|-R|P3»P4>P4,]'3). 

Our main claim in Ref. 4 is that the saddle point conditions which are derived 
from the classical limit of T\{K), exactly coincide with the hyperbolicity consistency 
conditions in gluing ideal tetrahedra. Generally, to endow the hyperbolic structure 
in a 3-manifold M which is constructed by gluing together a finite collection of ideal 
tetrahedra, we should check the completeness condition besides the hyperbolicity 
consistency conditions.10 We shall show that this completeness condition is fulfilled 
by considering the knot invariant as coming from a constituent (l,l)-tangle. 

In computing T\{L) from a (l,l)-tangle, we cut the link L at a point which is 
located on an alternating segment of L (left figure below), 

Pi 

'31s-
\ P3 

P4 

P5„ 
/ 

/ i/ 
/ 

\ 

P2 
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We glue together faces, ps and p 4 , and part of the developing map is written as the 
right figure above (see Ref. 5 for some discussion). The completeness condition can 
be read from this picture as 

T^- = T-~ • (14) 

On the other hand, the contribution from this segment to the invariant is given by 

/ 
dxdu{p3,x\S 1\y,Pi){p5,v\S 1\u,p3) {z,p2\S\p4,x) (u,p4\S\p6,w)\p3=pi=p. 

Here we have assumedp3 = PA = P as we are studying the (l,l)-tangle. Substituting 
Eqs. (6)-(7) as the limit 7 —» 0, we obtain the saddle point condition as 

1 _ Ppi -x 

T ^ ^ = !• (15) 

When we set p3 = p^ = P = ±00, we find that the saddle point equation (15) 
coincides with the completeness condition (14). We can see that other completeness 
conditions can be deduced from Eq. (14) with the help of the hyperbolic consis­
tency conditions (13) in constructing the i?-matrix. As a result, by constructing 
the invariant of link L from a constituent (l,l)-tangle and substituting a specific 
value therein, we can see a correspondence between the completeness conditions and 
saddle point equations. Combining our previous result4 that the hyperbolicity con­
sistency conditions coincide with the saddle point equations, we can conclude that 
the invariant T\{L) with the 3-dimensional picture (11) gives an ideal triangulation 
of the knot complement, and that Eq.(9) will indicate a coincidence between the 
asymptotic value of our invariant at the critical point and the hyperbolic volume 
of the knot complement. 

4. Quantum Invariant of Manifold 

We define a quantum invariant of manifold M in terms of the 5-operator (1). When 
3-manifold M admits a hyperbolic structure of finite volume, the 3-manifold M is 
constructed by gluing a finite collection of oriented ideal tetrahedra. We assign an 
S'-operator to each oriented ideal tetrahedron, and we define the partition function 
of M by15 

Z(M) = jj&p n ^ . P i l ^ l P f c . P i ) . (16) 

Here we need to assume a constraint for p which corresponds to the completeness 
condition of M. As was studied in the previous section for the case of the knot in­
variant Ti(L), the hyperbolicity consistency conditions are given as the saddle point 
equations in the integral over p, while the completeness conditions are controlled 
by considering a (l,l)-tangle of link L. 

It should be noted that the idea of assigning a solution of the five-term relation 
to a tetrahedron,16 '17 where the Regge action is derived from the asymptotic value 
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of the classical 6j-symbol for large j , is well known. We have rather clarified that 
the S-operator (1) denotes a quantization of the hyperbolic ideal tetrahedron. 

4.1. Examples 

We consider knots K = 4i and 52, 

o 
As is well-known, these knots are hyperbolic, and the complements of the knots can 
be constructed by gluing ideal tetrahedra (see, e.g. Refs. 18,19). Indeed the ideal 
triangulation can be done following Ref. 4, and we get the quantum invariant by 
assigning S-operators to each oriented ideal tetrahedron, 

Z ( S 3 \ 4 i ) = /dp5p4_p2=Pl_p3 (J>\,P2\S\PZ,PA) {p4,P3|£'~1|p2,Pi), 

Z(S3\52) = dp6P5-p4=p2-P6 (pi,p5|S'~1|P4,P3) 

X (P2,P4|5'"1|P6,P5) (P3,P6\S~1\pi,P2)-

The constraint 6... represents the completeness condition. In the small-7 limit, these 
integrals respectively reduce to 

Z(S3 \ 40 - / d z e x p - i - (Li2(e-X) - Li2(e*)), 
J 217 

Z(S3 \ 52) ~ JJdxdyexp ^ ( y - Li2(e*-*) - 2 Li2(e-») - y(y - x)). 

After applying the saddle point method whose conditions exactly coincide with the 
hyperbolicity gluing conditions and completeness conditions, we see 

3 ("2.029883212819307, for K = 4X 

7 og { \ ) ~ j 2.828122088330783 + 3.024128376509301 i, for K = 52 

Comparing with a table in Ref. 20 (it is necessary to multiply the Chern-Simons 
terms there by 27r2), this result suggests the "VCS conjecture",3 '5 '15 '21 

2 7 log Z(M) ~ Vol(M) + i CS(M) = VCS(M), (17) 

where Vol and CS respectively denote the hyperbolic volume and the Chern-Simons 
invariant of M. 

5. Concluding Remarks 

We have studied how the knot invariant T\(L) is related with the hyperbolic ge­
ometry H3 in the limit 7—^0. We have shown that not only the hyperbolicity 
consistency conditions but also the completeness conditions can be derived from 
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t he saddle point equations when we consider the invariant of a link L as resulting 

from the invariant of a ( l , l ) - tangle . 

Based on the 5-operator (1), we have defined the par t i t ion function (16) of 

3-manifold M. Once M is t r iangula ted into a finite collection of ideal tetrahedra, 

the volume Vol(M) is given by a summat ion , £ \ D(zi), where modulus Zi satisfies 

a set of hyperbolicity and complete condit ions. Recalling tha t t h e 5-operator and 

its imaginary part respectively reduce to t h e Rogers dilogarithm function L(z) and 

the Bloch-Wigner function D(z) a t t he critical point (9), the conjecture (17) seems 

to be reasonable. However, the Rogers di logari thm function L(z) is a multi-valued 

function of z, with singularities a t 0 and 1, and the value on the universal abelian 

cover of C \ { 0 , 1 } is given with an integer pair ( c i , c 2 ) a s 1 3 L(z) + ^ ( c i log(l — z) + 

C2 log(z)). In computations such as for K = 6 i , we need such te rms to get "correct" 

answers. It remains for future studies t o discover how to specify the branch of L(z) 

in the small-7 limit. 

Prom a physical point of view, t h e hyperbolic geometry or the Euclidean AdS 

receives much attention based on the A d S / C F T correspondence. As it is well known 

tha t the Einstein-Hilbert action can be rewri t ten in terms of the CS act ion, 2 2 ' 2 3 our 

result which relates the part i t ion function Z(M) with H 3 and CS will be promising 

in further studies of quantum gravity. 
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The "Laughlin" picture of the Fractional Quantum Hall effect can be derived using the 
"exotic" model based on the two-fold centrally-extended planar Galilei group. When 
coupled to a planar magnetic field of critical strength determined by the extension 
parameters, the system becomes singular, and "Faddeev-Jackiw" reduction yields the 
"Chern-Simons" mechanics of Dunne, Jackiw, and Trugenberger. The reduced system 
moves according to the Hall law. 

1. Introduction 

In his seminal paper1 Laughlin argued that the Fractional Quantum Hall Effect2 

could be explained as condensation into a collective ground state, represented by 
the lowest-Landau-level wave functions 

/(z)e-W2 /4 , (1) 

where the complex N-vector z denotes the positions of N polarized electrons in the 
plane; f(z) is analytic. The fundamental operators are zf — zf, and zf = 2dzf 
satisfy \z, z\ = 2. The quantum Hamiltonian only involves the potential V(z, z) 
suitably quantized with the choice of an ordering for the non-commuting operators 
z and z. 

Our results3 presented here say that the Laughlin picture can actually be ob­
tained from first principles, namely using the two-fold central extension of the 
planar Galilei group. This latter has been known for some time,4 ,5 but has long 
remained a kind of curiosity, since it had no obvious physical use: for a free parti­
cle of mass m, the extra structure related to the new invariant k leaves the usual 
motions unchanged, and only contributes to the conserved quantities.3 '5 '6 Let us 

*TaIk given by P. A. Horvathy at the Joint APCTP- Nankai Symposium. Tianjin (China), 
Oct.2001 
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mention that our "exotic" theory is in fact equivalent to Quantum Mechanics in 
the non-commutative plane,7 with non-commutative parameter 9 = k/m2. 

Coupling an "exotic" particle to an electromagnetic field, the two extension 
parameters, k and m, combine with the magnetic field, B, into an effective mass, 
m*, given by (4); when this latter vanishes, the consistency of the equations of 
motion requires that the particle obey the Hall law. Interestingly, for m* = 0, 
Hamiltonian reduction8 yields the "Chern-Simons mechanics" considered before by 
Dunne, Jackiw and Trugenberger.9 The reduced theory admits the infinite symme­
try of area-preserving diffeomorphisms, found before for the edge currents of the 
Quantum Hall states.10 

2. Exotic particle in a gauge field 

Let us consider the action 

/ 
(p — A) -dx — hdt + -px dp, (2) 

where (V, A) is an electro-magnetic potential, the Hamiltonian being h = p2/2m + 
V. The term proportional to the non-commutative parameter 9 is actually equivalent 
to the acceleration-dependent Lagrangian of Lukierski et al.6The associated Euler-
Lagrange equations read 

m*Xi = Pi — mOsijEj, 

Pi — *-*% i t5 Sij Xj, 

where we have introduced the effective mass 

m* =m(l-0B). 

(3) 

(4) 

The velocity and momentum are different if 9 ^ 0. The equations of motions (3) 
can also be written as 

W « ( 3 ^ = 
dh 

where Ko) 

/ 0 9 1 0 \ 

-9 0 0 1 

- 1 0 0 5 

0 - 1 - B 0 

(5) 

Note that the electric and magnetic fields are otherwise arbitrary solutions of the 
homogeneous Maxwell equation dtB + SijdiEj = 0, which guarantees that the two-
form u = hu>a/3d^a A d£p is closed, duj = 0. 
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{/,<?} = m 

When m* ^ 0, t he determinant det (wQ/g) = (1 - 6B) = (m*/m) is nonzero 

and the matr ix (uiap) m (5) can be inverted. Then the equations of motion (5) (or 

(3)) take the form £ a = {£Q , h}, with the standard Hamiltonian, but with the new 

Poisson bracket {/, g} = {ui~1)ai3dafdpg which reads, explicitly, 

dx dp Ox dp 

^L_d9__^9__d£ 
Kdx\ dx2 dxi 8x2 

Further insight can be gained when the magnetic field B is a (positive) nonzero 

constant , which turns out the most interesting case, and will be henceforth assumed. 

(The electric field Ei = — diV is still arbitrary). Introducing the new coordinates 

m* 

+ 6 + B 
df_dg_ 

dpi dp2 

dg_df_ 
dpi dp2 

(6) 

^4% — %i \ 
B 

l - W — Eij Pj, 

mr 1 
V% — -^BeijQj, 

(7) 

will allow us to generalize our results in Ref. 3 from a constant to any electric field. 

Firstly, the C a r t a n one-form12 in the action (2) reads simply PidQi — hdt, so 

t h a t the symplectic form on phase space retains the canonical guise, w — dPiAdQi. 

T h e price to pay is t ha t the Hamiltonian becomes rather complicated.3 

The equations of motion (3) are conveniently presented in terms of the new 

variables Q and the old momenta p, as 

l°ci — £ii n T \ 
Ei 

6ij B 

Pi enB- m 
rrr 

El 
m 

£jk 
E± 

B 

(8) 

Note tha t all these expressions diverge when m* tends to zero. 

When the magnetic field takes the particular value 

1 
B = Br = 

d' (9) 

t h e effective mass (4) vanishes, m* = 0, so that det(w a^) = 0, and the system 

becomes singular. Then the t ime derivatives £ a can no longer be expressed from 

t h e variational equations (5), and we have resort to "Faddeev-Jackiw" reduction.8 

In accordance with the Darboux theorem (see, e.g., Ref. 12), the Car tan one-form 

in (2) can be wri t ten, up to an exact term, as 

1 1 
i? — hdt, with •& = (pi — -Bc Eij Xj)dxi + -9eij p%dpj = PidQi, (10) 

where the new coordinates read, consistently with (7), 

1 
Qi Xi 

B, 
• £ijPj, (11) 
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while the Pi = — ̂ BcSijQj are in fact the rotated coordinates Qi. Eliminating 
the original coordinates x and p using (11), we see that the Cartan one-form 
reads PidQi - H(Q,p)dt, where H(Q,p) = p2/(2m) + V(Q,p). As the pi appear 
here with no derivatives, they can be eliminated using their equation of motion 
dH(Q,p)/dp = 0, i. e., the constraint 

Pi Eij-E'j 0. (12) 
m Bc 

A short calculation shows that the reduced Hamiltonian is just the original poten­
tial, viewed as a function of the "twisted" coordinates Q, viz. 

H = V(Q). (13) 

This rule is referred to as the "Peierls substitution".3 '9 Since d2H/dpidpj = 5ij/m 
is already non singular, the reduction stops, and we end up with the reduced La-
grangian 

Lied = ^QxQ~-V(Q), (14) 

supplemented with the Hall constraint (12). The 4-dimensional phase space is hence 
reduced to 2 dimensions, with Q\ and Q2 in (H) as canonical coordinates, and 
reduced symplectic two-form ujred = ^Bc£ijdQi A dQj so that the reduced Poisson 
bracket is 

1 /dF dG dG dF 

Bc\dQx dQ2 ~ dQi dQ2-

The twisted coordinates are therefore again non-commuting, 

{Qi ,Q 2 } r e d = - 0 = - ^ - (16) 

fFC\ = _ J - ( i L i £ _ 0 G flFN 
l^'Wred BAOOA dO.,. 3Qi dQJ' { ' 

I red R 
c 

The equations of motion associated with (14), and also consistent with the Hamilton 
equations Qi = {Qi, H}Ted, are given by 

Qi=eiM, (17) 
Bc 

in accordance with the Hall law (compare (8) with the divergent terms removed). 
Putting Bc — 1/6, the Lagrangian (14) becomes formally identical to the one 

Dunne et al.9 derived letting the real mass go to zero. Note, however, that while Q 
denotes real position in Ref. 9, our Q here is the "twisted" expression (11), with 
the magnetic field frozen at the critical value Bc = 1/0. 

3. Infinite symmetry 

It has been argued11 that the physical process which yields the Fractional Quantum 
Hall Effect actually takes place at the boundary of the droplet of the "Hall" liquid: 
owing to incompressibility, the bulk can not support any density waves, but there 
are chiral currents at the edge. These latter fall into irreducible representations 
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of the infinite dimensional algebra Wi+oo,10 which is the quantum deformation of 
Woo, the algebra of classical observables which generate the group of area-preserving 
diffeomorphisms of the plane. 

Our reduced model is readily seen to admit iUoo> the classical counterpart of 
W\+00, as symmetry. To see this, let us remember that, as argued by Souriau,12 and 
later by Crnkovic and Witten,13 it is convenient to consider the space of solutions of 
the equations of motion (Souriau's "espace des mouvement^ [= space of motions]), 
denoted by M. For a classical mechanical system, this is an abstract substitute for 
the classical phase space, whose points are the motion curves of the system. The 
classical dynamics is encoded into the symplectic form fi of M.. It is then obvious 
that any function /(£) on Ai is a constant of the motion. (When expressed using 
the positions, time, and momenta, such a function can look rather complicated). 
Any such function / (£) generates a Hamiltonian vectorfield Z^ on M through the 
relation 

-dpf = %VZV. (18) 

The vector field Z^ generates, at least locally, a 1-parameter group of diffeo­
morphisms of M.. All diffeomorphisms of Ad which leave the symplectic form ft 
invariant form an infinite dimensional group, namely the group of symplectomor-
phisms of M. Any symplectic transformation is a symmetry of the system : it 
merely permutes the motions curves. 

For the reduced system above, the reduced phase space is two dimensional. The 
space of motions is therefore locally a plane. (Its global structure plainly depends 
on the details of the dynamics). Now, for any orientable two dimensional manifold, 
the symplectic form is the area element; it follows that the reduced system admits 
the group of area-preserving transformations as symmetry. 

4. Quantization 

Let us conclude our general theory by quantizing the coupled system. Again, owing 
to the exotic term, the position representation does not exist. 

Introducing the complex coordinates 

IfB x (19) 

' = ^{Qi -*Qa) + -j={ -iPi - P2) 

the two-form dPiAdQi on 4-dimensional unreduced phase space becomes the canon­
ical Kahler two-form of C 2 , viz OJ = (2i)~1(^dz A dz + dw A dw). choosing the an-
tiholomorphic polarization, the "unreduced" quantum Hilbert space, consisting of 
the "Bargmann-Fock" wave functions 

ip(z, z, w, w) = f(z, w)e-i{z*+w™\ (20) 
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where / is holomorphic in both of its variables. The fundamental quantum opera­
tors, 

zf = zf, Zf = 2dzf, 
(21) 

wf = wf,wf = 2dwf, 

satisfy the commutation relations [z,z\ = [w,w\ = 2, and \z,w\ = [l,w] = 0. 
We recognize here the familiar creation and annihilation operators, namely a*. = z, 
a*„ = w, and az = dz, aw = dw. Using (7), the (complex) momentum p — p\+ip2 
and the kinetic part, ho, of the Hamiltonian become, respectively, 

• rnB _ B 
p=—i\l w and ho = - — w w . (22) 

V m* 2m* 

For TO* 7̂  0 the wave function satisfies the Schrodinger equation idtf = hf, with 
h = ho + V. The quadratic kinetic term here is 

ho = (wul+ww) = -—(ww + l). (23) 
4m*v ' 2m*y ' K ' 

The case when the effective mass tends to zero is conveniently studied in this 
framework. On the one hand, in the limit m* -v 0, one has 

z -> VBQ, W -> 0, (24) 

where Q = Q\ +1Q2, cf. (7); the 4-dimensional phase space reduces to the complex 
plane. On the other hand, from (22) and (21) we deduce that 

777* 
$ = w = 2dw. (25) 

mB 

The limit TO* —> 0 is hence enforced, at the quantum level, by requiring that the 
wave functions be independent of the coordinate w, i.e., 

dwf = 0, (26) 

yielding the reduced wave functions of the form 

*(z,z) = f(z)e-i'*, (27) 

where / is a holomorphic function of the reduced phase space parametrized by z. 
When viewed in the "big" Hilbert space (see (20)), these wave functions belong, by 
(23), to the lowest Landau level.2'3'14 

Using the fundamental operators z a n ? given in (21), we easily see that the 
(complex) "physical" position x = x\ + 1x2 and its quantum counterpart x, namely 

1 / / TO \ ^ 1 / / m „ „ \ .„„, 
x=-=[z+J—w), x=-m=(z+J—2dw), 28 

WBn V V m* I JBa V V m* I 

manifestly diverge when TO* —> 0. Positing from the outset the conditions (26) the 
divergence is suppressed, however, leaving us with the reduced position operators 

xf = Qf = -^=zf, *f=Qf = -?=dzf, (29) 
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whose commuta to r is [Q,Q] = 2/Bc, cf. (16). In conclusion, we recover the "Laugh-

lin" descript ion (1) of the ground states of the FQHE in Ref. 2. Quantization of 

the reduced Hamil tonian (which is, indeed, the potential V(z,z)), can be achieved 

using, for instance, anti-normal order ing. 9 ' 1 4 
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We give a brief summary of our recent works on the three-state chiral clock model. In 
these works, we use improved effective field theories with clusters being strips, infinite in 
the chiral direction and finite in the non-chiral direction. Hence, effective-field transfer 
matrix methods can be employed in these studies. The effective fields are determined 
by the Gibbs-Bogoliubov free energy variational principle, leading to Weiss or Bethe 
approximations in different studies respectively. By systematic improvement of these 
approximations, i.e. widening the strips, these studies point to the conclusion that there 
is no Lifshitz point existing at finite non-zero chirality. 

1. Introduction 

The three-state chiral clock model was introduced independently by Ostlund1 and 
Huse.2 It is the simplest model with only nearest-neighbor interactions which 
exhibits spatially modulated phases. These spatially modulated phases occur 
diversely in physical systems.3 The reduced Hamiltonian for this model on the 
two-dimensional square lattice is 

-/3if({n i , j},A) = ^ 
T^ 2-7T , . T^ 277 . . 

Kn cos — [riij -riij+i+A) + Kt cos — (jiij -ni+ij) 

(1) 

where (3 = 1/kgT. Prom the symmetry within this model, we can restrict ourselves 
to 0 < A < 1/2 without losing generality. Ostlund used free-fermion analysis, 
which is valid for low temperature and A close to 1/2, to show that there are 
incommensurate phases in this model. This fact makes the model interesting for 
the study of commensurate-incommensurate phase transitions and hence it has 
been the focus of considerable theoretical efforts. 

"This work has been supported in part by NSF Grants No. PHY 97-22159, PHY 97-24788 and 
PHY 01-00041. 
t Email address perk@okstate.edu 
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The model (1) has been studied by finite-size scaling methods,4-8 Monte-Carlo 
simulation,9 hierarchical lattice approximation,10 Monte-Carlo renormalization 
group11 and series expansion methods.12"14 Important analytical predictions using 
domain-wall arguments and general topological ideas also have been presented.15-17 

In spite of all these efforts, several features remain controversial, for example, the 
existence of a Lifshitz point at A ^ 0 in the phase diagram of this model. Haldane et 
al.,15 Schulz,16 and Von Gehlen and Rittenberg7 argue against the idea of a Lifshitz 
point at A ^ 0, while Howes,12 Huse and Fisher,17 Selke and Yeomans,9 Duxbury 
et al.,4 and Martins and Tsallis10 are presenting arguments for it. Apart from this 
controversy over a qualitative feature, there are also uncertainties concerning the 
nature of various phase transitions in this model. 

In order to shed more light on these problems, we used improved effective field 
theories with clusters to be taken as strips which are infinite in the chiral direction 
and finite in the non-chiral direction. This treatment is equivalent to separating the 
original two-dimensional square lattice into many identical decoupled strips with 
effective fields on their boundaries and treating interactions within them exactly. 
Effective-field transfer matrix methods18 can be successfully used in such strip-
related calculations. 

Obviously, within an improved effective field theory, we have to pay serious 
attention to 

i) how to put the effective fields on the boundary (so as to partially include the 
effects of the out-of-cluster part of original system) and 

ii) how to relate the typical order parameters of the finite-strip system to ones of 
the original system. 

These two aspects determine whether the approximate critical points obtained will 
be converging to the true ones and how fast the convergence will be. Currently, 
the most-commonly used effective field theories employ the Gibbs-Bogoliubov free 
energy variational principle, resulting in the Weiss and Bethe approximations. It has 
been found that even an infinite chain with effective fields (which are determined 
from free energy considerations) on the boundaries can qualitatively improve the 
simple effective field results.19 

More interestingly, as advocated by Suzuki, it is possible to apply the coherent 
anomaly method (CAM)18 to well-chosen sequences of effective field theories. By 
systematically treating wider and wider strips—i.e. more and more interactions are 
treated exactly—one obtains better and better approximations to the exact phase 
diagram of the original physical system and an excellent extrapolation to the exact 
results can be expected from these successive approximations, if the strips become 
wide enough. 

This paper is organized as follows. In Section 2, we present our analysis of 
effective field theories based on the Gibbs-Bogoliubov free energy variational 
principle.20 In Section 3, we first show how the approximate wavevector-dependent 
susceptibility is obtained in two series of effective field theories with either Weiss or 
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Bethe approximations, resulting in two series of Lifshitz point approximants. Prom 
these a new series is constructed showing that possibly no Lifshitz point exists at 
finite (non-zero) chirality.21 A brief summary is given in Section 4. 

2. Effective Field Theory from Free Energy Considerations 

The approximate free energy FMF is obtained by the use of the Gibbs-Bogoliubov 
inequality 

F < FMF = mm{F0 + (H - H0)), (2) 

where F is the exact free energy of the original system with H being the original 

Hamiltonian. HQ is a trial Hamiltonian and FQ is the exact free energy of t h e system 

defined by Ho. The average (• • •) is carried out in the ensemble defined by Ho and 

this convention will be used throughout this paper. For boundary spins, it is more 

convenient to introduce the vector notat ion 

2TT . 2TT 

—nid, s i n y Si,j = ( cos —riij, sin— nitj ) . (3) 

H is given in Eq. (1) and HQ is denned as follows: 

~3 
-0HQ = ^2 Kn cos — (n; j - mij+1 + A) 

JV,- l (p+l)JV-2 
+ Yl J2 ^2KtcosY(nkj-nk+hj) 

p=0 k=pN j 

N,-l h-\ 

+ 2^i y ' ^tVk " (SpJV-l,p'L+fc + SpN,p'L+k), (4) 
p,p'=0 *:=0 

where 0 < i < NSN — 1, 0 < j < NSL — 1, periodic boundary conditions are 
imposed on both directions, and f3 = l/ksT. The trial Hamiltonian HQ consists of 
Ns independent strips of width N and length NSL with effective boundary fields 
{Vj = (Vji-irlj2)} having period L to replace the exact interactions between strips. 
To find a good approximation for the free energy, we use Eq. (2) to find the minimum 
conditions which {r}j} should satisfy. The necessary minimum conditions can be 
simplified as 

Vj = (so,j) = mj. (5) 

The corresponding approximate free energy per site / M F can be given as 

Kt
 L~1 

fMF = fo + jjj-jJ2(2llj-mi-mJ-nii)> (6) 
P j=0 

where /o is the free energy per site of the system defined by HQ and can be calculated 
by the effective transfer matrix method.18 '20 
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It is easy to see that the effective fields in our trial Hamiltonian are essentially 
the thermal averages of the strip boundary spins whose configuration can be used 
to characterize the related phase. Eqs. (5) can be solved by iteration methods and 
interested readers can consult our full paper20 for technical details. From physical 
considerations, we may expect three types of solutions to Eqs. (5), i.e. 

i) the disordered solution with (77 = 0), 
ii) the ordered solution with (77 ^ 0) which can be obtained by setting L = 1 in 

Eqs. (5), and 
iii) modulated solutions with unequal effective fields, i.e. L > 1. 

The thermodynamically stable phase is the one that gives the absolute minimum 
free energy for all different solutions with all possible L. Hence, for 0 < A < 
1/2, we can expect that the disordered solution gives the lowest approximate free 
energy for the disordered phase and the ordered solution for commensurate phase. 
In the modulated phase, one of the modulated solutions should give the lowest 
approximate free energy and the choice of solution may vary from point to point. 

The numerical results are summarized as follows. We obtain A L ( 1 ) « 0.3143, 
AL(2) w 0.2883, AL(3) ra 0.2770, AL(4) « 0.2709 for Kn = Kt and AL(1) » 
0.2258, AL(2) < 0.2156 for Kn = WKt, where the notation AL(N) is used to 
denote the approximate Lifshitz point from the effective field theory for a strip of 
width N. Hence, we can safely claim that the Lifshitz point Az,(N) located by 
this approximation is systematically decreased when the width N becomes larger. 
The result for different ratios of Kn/Kt also coincides with our intuition that the 
larger Kn/Kt leads to faster convergence. Its possible explanation is discussed in 
our papers 20 and 21. 

As reviewed by Wu,22 simple mean-field theory predicts a first-order phase tran­
sition in the three-state Potts model, which is equivalent to the A = 0 three-state 
chiral clock model. Our effective field theory with finite-width strip also predicts 
a first-order phase transition for 0 < A < | which is characterized by a sudden 
change of spin profiles (described by the thermal average of the central-row spins 
in our effective field theory) due to the discontinuity of the effective fields when the 
system crosses the critical point. However, this artificial feature of the effective field 
theory can be overcome by systematically improving the effective field approxima­
tion.20 When N —>• 00, these effective fields {r)j} (which are non-vanishing but have 
no direct physical meanings in the original problem) should give an innnitesimaUy 
small effect on the spin profiles (which should approach zero) and on the specific 
heat. Hence, the extrapolation of these effective field approximations would be able 
to give the correct nature of the phase transition, i.e. a continuous phase transition. 

3. Effective Field Theory from Susceptibility Considerations 

When the system changes from the disordered phase into the incommensurate phase 
as the temperature is lowered, the peak of the wavevector-dependent susceptibility 
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also changes into a divergence. Hence, we only have to approximate the wavevector-
dependent susceptibility in the disordered phase. We take the trial Hamiltonian of 
one strip in the disordered regime as follows: 

N „ 

-0H' = -0H + Kth Y, Y cos (Z^ij - jq) 
V 3 ni'J 

3 + Ktr]^>2 cos ( Y ^ I J - jq) + cos ( Y^JVJ - jq) (7) 

where H is a restriction of the exact Hamiltonian taking precisely all its terms within 
the strip, and where 77 denotes the amplitude of the modulated effective boundary 
fields, h the amplitude of the auxiliary external bulk fields, and q the wavevector of 
the external field and modulated effective boundary fields along the chiral direction. 
(In the disordered phase and with a weak field condition, we can expect the response 
of the spin average to be characterized by the same wavevector q because of the 
symmetry of H and H'\T)=o,h=o under translation. When we introduce our Weiss and 
Bethe effective-field approximations, the effective fields should be characterized by 
this wavevector q as well.) Meanwhile, because most of the previous understanding 
has come from the study of the Hamiltonian limit, which corresponds to either 
Kn/Kt -» 0 or Kn/Kt -> oo,6"8 '12 '14 it is kind of natural for us to keep Kn/Kt 

general. 
Since in all calculations below we take ensemble averages based on H' and often 

with both 77 and h being zero, we use (• • •) to denote the statistical average with 
ensemble based on H' and (• • -)o to denote 
define quantities Qc and Qo,j as follows: 

\r)=o,h=o- For convenience, we also 

Qc = < 
exp 
1 
2 

.2TT 

Qd,j 

^l-jT«m+l,0j, 

xp f i—n m , 0 J + exp (i—nm+ii0J 

exp (i-|-ni^) + exp 0~JnN'j) 

UN = 2m+l, 

if N = 2m, 
(8) 

(9) 

These quantities have a direct interpretation: Qc is the spin in the middle row of 
the 0-th column, if the number of rows N is odd. If the number of rows N is even, 
we take the average over the two middle rows. Qd,j is the average of the two spins 
in the boundary rows i = 1 and i = N of the j - th column (j = —00, • • •, 00). 

We put the self-consistency conditions 

(Qc) = 77 for Weiss approximation, 

(Qc) = (Qd,o) for Bethe approximation. 

(10) 

(11) 

The wavevector-dependent susceptibility has a peak located at qm which gives 
an approximation to the characteristic wavevector of the corresponding correla­
tion function. By some tedious calculation, the critical point that demarcates the 
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paramagnetic-incommensurate phase transition can be located from 

min (1 - Kc ^2(QcQ*d j)oexp(ijq) I = 0 for Weiss approximation, (12) 

minYl {(Qd,oQd,j)o ~ (QcQ*d,j}o) exp(ijg) = 0 for Bethe approximation, (13) 
3 

where the minimum condition is over all q. The corresponding qm will give an 
approximation to the wavevector qc, characteristic of the correlation function at the 
phase transition point. Here and in the following we write K = Kt and Kc = Ktc, 
its value at the critical point separating the disordered and modulated phases. Kn 

and Kt vary proportionally. 
In both approximations, the susceptibility near Kc (K < Kc) can be presented 

in the form 

X = * / (§ - ! ) • (14) 
where x 1S * n e coherent anomaly coefficient and has been worked out for both 
cases.21 

Prom the above, we can obtain two series of approximations. However, both 
series are short and hence difficult to extrapolate. To circumvent this problem, we 
construct a new extrapolation method as follows. 

If there exist two sequences {a(n)} and {b(n)}, which satisfy 

i) lim 
n-Hx> cb{n) — c, hnin-^oo bin) — c and a(n), b(n) ^ c for any n, 

ii) lim„_>oo (a{n + Sn) — a(n))/(b(n + Sn) — b(n)) exists and is not 1, 

it is possible to construct a third sequence {c(n)} with limn_>oo c(n) = c by 

a(n + Sn)b(n) — a(n)b(n + Sn) 

° W ~ a(n + Sn) - a(n) - b(n + Sn) + b(n)' 
Under certain conditions, we can expect that the sequence {c(n)} will converge 
faster than either {a(n)} or {b(n)}. 

We find that this new construction works very well for the square lattice Ising 
model and Potts cases with various ratios of Kn/Kt.

21 Here we only present the 
Potts model results, i.e. the case with A = 0 and Kn = Kt, in Table 1, where 

N 

Tb 

Tw 

Tn 

Table 1. Table of T b , T w 

3 
1.56208 
1.65702 
1.5010 

4 
1.55004 
1.62624 
1.4992 

5 
1.54073 
1.60251 
1.4974 

and T n . 

6 
1.53471 
1.58794 

7 
1.52965 
1.57563 

critical temperature T\,{N) is obtained by Bethe approximation, TW(7V) by Weiss 
approximation, N being the width of the finite strip, and Tn(N) is obtained by 
Eq. (15) with SN = 2. The exact value for N = oo is T* = 1.4925. We clearly 
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see good convergence of series {Tn(7V)}. We have also used this construction to 
find the range of critical temperatures for A ^ 0.21 More interestingly, we use this 
construction to find the characterizing wavevector along the critical line. 

As is well-known,4 we should be able to get phase transition information through 
the analysis of the wavevector at the phase transition point. If a Lifshitz point Ai, 
exists at finite chirality, the characterizing wavevector along the critical line should 
vanish for A < A/,. Although we are not sure how this Lifshitz point AL will 
depend on Kn/Kt, old works4 '1 1 '1 2 indicate that there is no big dependence of Ax, 
on Kn/Kt. 

Two cases with Kn = lO-fQ and Kn = 100.FCt at A = 0.05 have been studied. 
The results for the two cases are similar, so we only present in Table 2 the results 
for the case with A = 0.05 and Kn = 100Kt, where the reduced critical wavevector 

Table 2. Table of <Jb, <7w and <jn. 
N 
<?w 

<?b 
9n 

3 
0.0463680 
0.0362354 

-0.00038 

4 
0.0402710 

0.0314054 

0.00069 

5 
0.0353594 

0.0276127 
0.00099 

6 
0.0320544 

0.0250293 

7 
0.0291924 

0.0228355 

is defined by q = 3q/(2nA). Here, q\>(N) is obtained by Bethe approximation and 
qv,(N) by Weiss approximation, where N is the width of the finite strip, and qc(N) 
is obtained by Eq. (15) with 6N = 2. These calculations for the wavevector need 
an accuracy of 10~8 for q. Higher accuracy will be needed for smaller A and our 
numerical values would not have been reliable enough then. 

Although we only have three members in this new sequence {qn(N)} and we 
cannot make a very conclusive case, it looks very tempting to say that this sequence 
will converge to the true qc from below. Compared with previous results for A^ to 
be around 0.25 to 0.40,4 '11 '12 we have A t < 0.05. Hence, we may conclude that 
even for a very small A the wavevector at the transition point is non-zero. This 
means that the transition should be from the paramagnetic to the incommensurate 
phase and that possibly no Lifshitz point exists at finite chirality at all. 

4. Summary 

In the above sections, we have used two different methods to approach the problem 
whether a Lifshitz point exists in the two-dimensional classical three-state chiral 
clock model at finite non-zero chirality. The first method gives more information 
about the general phase diagram, whereas the second method seems to more reliably 
determine the boundary of the disordered phase. However, both extrapolations 
together consistently indicate that most likely no Lifshitz point exists in this model 
at finite non-zero chirality. A study of somewhat wider strips on more powerful 
computers may take away all remaining doubt. 
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We show how growth by agglomeration can be described by means of algebraic or differ­
ential equations which determine the evolution of probabilities of various local configu­
rations. The minimal fluctuation condition is used to define vitrification. Our methods 
have been successfully used for the description of glass formation. 

1. Introduction 

In a series of papers published during the past ten years,1^ new models of growth 
by agglomeration of smaller units have been elaborated, and applied to many im­
portant physical systems, such as quasicrystals,5 fullerenes,6'7 and oxide and chalco-
genide glasses.8~n Here we shall present the main ideas on which these models are 
based, and briefly discuss the latest developments. 

In order to make our presentation concise, the example we choose is the sim­
plest covalent network glass known to physicists, the binary chalcogenide glass 
AsxSe(i_x), where x is the concentration of arsenic atoms in the basic glass-former, 
which in this case is pure selenium. The generalization to other covalent networks, 
e.g. GexSe(!_x) , is quite straightforward. These glasses (in the form of thin and 
elastic foils) are used in photocopying devices. 

Whether the formation of a solid network of atoms or molecules occurs in a 
more or less rapidly cooled liquid, or as vapor condensation on a cold support, the 
most important common feature of these processes is progressive agglomeration of 
small and mobile units (which may be just single atoms, or stable molecules, or even 
small clusters already present in the liquid state) into an infinite stable network, 
whose topology can no longer be modified unless the temperature is raised again, 
leading to the inverse (melting or evaporation) process. 

To describe such an agglomeration with all geometrical and physical parameters, 
such as bond angles and lengths, and the corresponding chemical and mechanical 
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energies stored in each newly formed bond, is beyond the possibilities of any rea­
sonable model. This is why stochastic theory is an ideal tool for the description 
of random agglomeration and growth processes. Instead of reconstructing all local 
configurations, it takes into account only the probabilities of them being found in 
the network, and then the probabilities of higher order, corresponding to local cor­
relations. This is achieved by using the stochastic matrix technique. A stochastic 
matrix M represents an operator transforming given finite distribution of proba­
bilities , \pi,P2, —,PN] > into another distribution of probabilities, \pi,p2, ...,pN]. It 
follows immediately that such a matrix must have only real non-negative entries, 
each column summing up to 1. 

The algebraic properties of such matrices are very well known. The main fea­
ture that we shall use here is the fact that any stochastic matrix has at least one 
eigenvalue equal to 1. The remaining eigenvalues have their absolute values always 
less than 1. This means that if we continue to apply a stochastic matrix to any 
initial probability distribution, after some time only the distribition corresponding 
to the unit eigenvalue will remain, all other contributions shrinking exponentially. 
This enables us to find the asymptotic probability distribution. 

In what follows, we identify these probability distributions with stable or meta-
stable states of the system, fixing the statistics of characteristic sites in the network. 
Taking into account Boltzmann factors (with chemical potentials responsible for the 
formation of bonds), we are able to find the glass transition temperature in various 
compounds. In particular, one is able to predict the initial slope of the curve Tg(c), 
i.e. the value of (dTg/dc)c=0.

12'13 

2. Stochastic matrix describing cluster agglomeration 

Consider a binary selenium-arsenic glass, in which selenium is the basis glass former, 
and arsenic is added as modifier (although its concentration can be as high as 
30%). The chemical formula denoting this compound is AscSe^c), where c is the 
As concentration. In a hot liquid, prior to solidification, the basic building blocks 
that agglomerate are just selenium and arsenic atoms, indicated respectively by 
(—o—) and f—• J. When the temperature goes down, clusters of atoms start to 
appear everywhere, growing by agglomeration of new atoms on their rim. Consider 
a growing cluster: one can distinguish three types of situations (we shall call them 
"sites") on the cluster's rim. The concentration of free As atoms in the liquid will 
be called c and that of Se, (1 — c). 

Two choices are possible for constructing the states and transition matrix (see 
Ref. 14). There are three possible kinds of sites: a selenium atom with one unsatu­
rated bond, and an As atom presenting one or two free bonds; these are indicated 
by x = o—, y = * and z = •—. To each site one of the two basic cells can attach 
itself, reproducing one of the initial configurations, in the specific combinations 
shown in the next column of the Figure 1. The attachment of one single basic cell, 
or the saturation of one single bond, is a step in the evolution. In the second choice, 
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each step is obtained by the complete saturation of all the bonds at the rim, so that 
only two types of sites (denoted by x and y) are seen on cluster's rim, assuming 
that the growth is of dendritic type (no small rings present). It can be shown14 that 
the two approaches lead to the same results, which may be considered as a proof 
of the ergodicity of the proposed model. We shall choose the second version of the 
model for the sake of simplicity. In this case, we can take into account only the x 
and y-type sites, because the z-type sites transform after the next agglomeration 
step into an x or y type site. The elementary step in the agglomeration process, 
described by he transition matrix, corresponds now to the complete saturation of 
all the available free bonds on the rim. This is represented in Figure 1 : 

x 2 (1 - c) e~£ 

V Zee'71 

-A 
2x 

y —<<~ x + y 

2y 

4 

12 

( 1 -

c ( l -

9 c2 

c ) 2 e -

- c) e" 

e-2a 

-27} 

-n-

Figure 1: States, steps and un-normalized probability factors . 

Observing that from the site z only the sites of x and y type can be produced, 
we can forget it and consider the dendritic growth with only two types of sites 
appearing all the time. Given an arbitrary initial state {px,Py), the new state results 
from taking into account all possible ways of saturating the bonds of the previous 
state's sites by the available external atoms. The un-normalized probability factors 
are displayed in the Figure. The non-normalized probability factors can be arranged 
in a matrix 

2 ( l - c ) e - £ 4 ( l - c ) 2 e - 2 " 
8(1 - c)2e-2" + 12c(l - c)e'r>-a 12c(l - c ) e - " - a + 18c 2

e - 2 a J ^ 

The normalized transition matrix is written as 

M=(MXX MXy\ = / MXX 1-Myy\ . 
\MyX Myy) \1-MXX Myy ) ^ 

where the entries are obtained by normalizing the columns of the matrix (1). 

2(1 - c)j 3c/x 

2 ( l - c ) £ + 3 c ' w " 2 ( l - c ) + 3cM 

where we have introduced the abbreviated notation £ = ev~e and \i = ev~a. 
The eigenvalues of this matrix are 1 and Mxx — Myy = Mxy — Myx. and the 

stationary eigenvector is 

Mxx = „ , _ , / , * _ , and Myy = „,,, 7 , o_ (3) 

p?\_ 1 (Mxy 

P^ J Mxy + Myx VM, 
(4) 
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It can be seen from Figure 1 that on the surface of an average cluster, px is the Se 
concentration and py is the As concentration. Now, the high homogeneity exhibited 
by known glass structures suggests that even in relatively small clusters, deviations 
from the average modifier concentration c must be negligible. Thus, in the bulk, 
the As concentration should be equal to c. Therefore, the condition of minimal 
fluctuations in the bulk concentration can be interpreted as the glass transition 
condition. This means that the asymptotic state is fixed by the external concen­
tration, therefore the above eigenvector must be equal to the average distribution 
vector (1 — c, c). The solutions are c = 0, c = 1 and the nontrivial one 

Myx 6 - 4£ 

Mxy + Myx 12 - 4£ - 9/J, 
(5) 

This equation can be checked against experiment. For example, we can evaluate 
the derivative ^ = (^f) for a given value of c. In particular, as c —> 0, we can 
neglect the As-As bond creation (equivalent to putting /i = 0 in (5)), to get 

dT 

dc c=0 ln(3/2) ' 

(where Tgo is the glass transition temperature of pure Se). This is the present-case 
expression of the general formula given by the stochastic approach, the fraction 
(3/2) being replaced by (m'/m), where m and m' are the valences of the basic glass 
former and of the modifier), remaining in very good agreement with the experimen­
tal data (see Refs. 15-17). 

3. Low concentration limit. 

The above scheme can be easily generalized to the case of arbitrary valence, say 
rriA and TUB- In that case, the stochastic 2 x 2 matrix has the same form as (2), 
but with the entries given by 

Mxx = l-Myx = I ? A ( 1 " C ) * , Mxy = l-Myy= " A ( 1 " C ) » vx m , i ( l - c ) £ + m B c ' xy vy mA(l - c) +mBcn 

The asymptotic probability has the same form as before, as well as the zero fluctu­
ation condition relating c with T (interpreted as the glass transition temperature). 
The derivative of c with respect to the temperature T gives the "magic formula" 

dc 1 ( % £ - p K K - ( % f - 0 ^ 
dT T [ ( 1 - H ^ ) + ( 1 - ^ ) ] 2 

(6) 

where we used the fact that j | ; = — ̂ (,ln£, , and -^ = — ̂  /j,lnfi. This defines 
the slope of the function Tg(c), which is an important measurable quantity : 
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dTg 

dc 

The initial slope, at c = 0, is of particular interest. Its expression is very simple, 
taking into account that when c = 0, we have also £ — ^ - , which leads to 

Its value has been checked against the experiment very successfully, in more than 30 
different compounds. In some cases the formula does not seem to work well; usually 
it comes from the change of valence of certain atoms provoked by the influence of 
the surrounding substrate. 

One could be worried about the apparent singularity in this formula when TUA = 
TUB, i.e. when one deals with a mixture of two different glass formers with the same 
coordination number. It is not difficult to show that also in such a case a reasonable 
limit can be defined, as has been recently suggested by M. Micoulaut.19 As a matter 
of fact, suppose that the glass transition temperature of the pure glass-former A 
is Tgo, and that of the pure glass-former B is Tg\. We can re-write our minimal 
fluctuation condition in a very symmetric manner, invariant with respect to the 
simultaneous substitution JUA *-> m s , c «-» (1 — c) and £ «-> /x : 

C ( l - c ) [ ( l - c ) ( l - ^ O - c ( l - ^ M ) ] = 0 (9) 
TUB TTIA 

Obviously, the "pure states" c = 0 or c = 1 represent stationary solutions of (9) 
and can be factorized out. The non-trivial condition for the glass forming is thus 

( l - C ) [ l - 2 ± 0 - c [ l - 3 £ M ] = O (10) 
TUB THA 

Now, using the limit conditions at c -¥ 0, Tg = Tg0 and c -> 1, Tg = Tgi, 
and introducing the generalized Boltzmann factors with the energy barriers for 
corresponding bond creations as EAA, EAB and EBB, we can write 

EAB-EAA = kTgQln{—), EAB - EBB = kTglln^), (11) 
m,A TUB 

so that the expressions £ and fi at the arbitrary temperature T can be written as 
EAR~EAA TgO 771 R Tg0

 BAB~EBB Zsl 171, A T s l 
£ ( T ) = e T*° T = p £ ) + ; n{T) = e T» ^ = (l2±)+. (12) 

TTlA TUB 

Substituting these expressions into (7) and taking the limit c ->• 0, we get 

dTqi Tg0[l-(^Y 

dc >"-" ln(**) 
(13) 

TTIA ' 

It is easy to see now that even when TUA = TUB, this formula has a well defined 
limit. Indeed, if we first set ^ = 1 + e, and then develop the numerator and the 
denominator of the above equation in powers of e, then in the limit when £ - > 0 w e 
arrive at a simple linear dependence which is in agreement with common sense and 
with experiment as well, namely 

f | c=o=T 9 i - r f l „ (14) 
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This formula is also confirmed by many experiments, e.g. performed on selenium-
sulfur mixtures (where VHA = TUB = 2). The deviations from the linear law (14) 
observed in the Se — Te binary glass are explained by the fact of the chemical 
properties of tellurium, which changes its valence from 2 to 3 in presence of selenium. 

4. The effect of rapid cooling 

An interesting extension of this model is obtained when we take into account the 
effects of rapid cooling, i.e. when the time derivative of the temperature can no 
longer be neglected. The treatment of this problem was suggested in Ref. 20, and 
has been solved quite recently.21 

Consider the agglomeration process defined by the above stochastic matrix, 
p' = Mp, with p representing a normalized column (a "vector") with two entries, 
px and py = 1 — px- After one agglomeration step, representing on the average one 
new layer formed on the rim of a cluster, we can write 

Ap = p ' - p = ( M - l ) p (15) 

Let us introduce a symbolic variable s defining the progress of the agglomeration 
process; obviously, s(t) should be a monotonically increasing function during the 
glass transition. If the temperature variation is so slow that the derivative dT/dt = 
(dT/ds)(ds/dt) can be neglected (which is often called the annealing of glass), the 
master equation of our model can be written as 

Ap = ~ As = (M - l)pAs 
OS 

where the variation As represents one complete agglomeration step. If we want to 
use real time t as an independent parameter, we should write 

^ = A p d f = r _ 1 A p = l 
dt Asdt As ry Jy y ' 

We have introduced here the new entity r = (ds/dt)~x which can be interpreted as 
the average time needed to complete a new layer in any cluster, or alternatively, the 
time needed for an average bond creation. Now, if the temperature varies rapidly 
enough, the matrix M can no longer be considered as constant. The equation (16) 
must be modified according to the well known "moving target" principle. That is, 
the total derivative of p with respect to t should read: 

dp ,,r ^,ds _ dM dT _ dp 
- = (M-l)-p+ — - P = - -{M-l)+q — P (17) 

where we supposed linear dependence of the temperature on time, so that the 
derivative dT/dt can be denoted by constant cooling rate q. In the two-dimensional 
case only one component of pis independent, because px +py = 1. Let us choose py 

(whose asymptotic value should be equal to c) as independent variable. Then (17) 
will reduce to the single equation : 

dpy _ 1 
dt 

(Myy-l)py+Myx(l-Py) + q dT Py+ dT u Py) (18) 
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where we have used the fact that px = 1 — py , Mxx = 1 - Myx and Myy = 1 — Mxy . 
What remains is just simple algebra. After a few operations we find the asymp­

totic value of py, denoted p^, obtained when we set dpy/dt = 0 : 

p0O = Myx+rq(
9-^) 

Py (Mxy + Myx)+rq(
d^^M^) ^ 

As in the former case, we define the glass transition temperature by solving the zero-
fluctuation condition p^ = c. The quasi-equilibrium condition thus obtained can 
be written in a form displaying an apparent symmetry between the two ingredients 
("A" and "B") of binary glass. As in the previous case (when q = 0), the limit 
values c = 0 and c = 1 represent stationary solutions, which is obvious (no local 
fluctuations of concentration c are possible when there is no ingredient other than 
AOT B atoms alone). After factorizing out c(l — c), we get 

mB mA 

rq 
— mAmB 

mA(l — c)£ + THBC mA(l - C) + TTIBCH 

c^iln/j, (l — c)£ln£ 

[mA(l - c) + mBcfi}2 [mA(l - c) f + mBc]2 (20) 

where we have used the fact that ^ " 4 * = - ^ , ^ ^ = - ^ . The 
above formula seems quite cumbersome, but it become much simpler in the low 
concentration limit, c —> 0 Close to c — 0 we get 

^-S+^lnt = 0 (21) 
mA T mA 

(quite obviously, in the limit c —> 1 one gets the same formula switching mA with 
TUB and replacing £ by /z). Replacing £ by the expression (12), we arrive at : 

fmB\' 
\mAJ 

+<¥>^"0=°- <22> 
It is easy to see that independently of the ratio TUB/'mA, for temperatures T above 
Tgo we must have q < 0, and vice-versa, during rapid cooling the glass transition 
occurs at the temperature T > Tgo-

The dimensionless combination (rq)/T defines the quenching rate as the prod­
uct of (l/T)(dT/dt) = d{lnT)/dt by the time constant r, characterizing the kinetics 
of the agglomeration process, i.e. the average time it takes to create a new bond. It 
may depend weakly on the temperature, but for the sake of simplicity suppose it 
is constant. It can be determined by comparing formula (22) with the experimen­
tal data. To take an example, let us again consider the selenium-arsenic glass at 
c —> 0 (almost pure selenium with a small addition of As). We know that in this 
case Tg —> Tgo = 318°K. The formula (22) then gives the quasi-linear dependence 
of AT = T - Tg0 on the quenching rate q: for Tg = 328°^ (i.e. AT = 1Q°K) we 
get rq = -10.38; for Tg = 338°i<: (i.e. AT = 20°if) we get rq = -21.51; for 
Tg = 348°ii: (i.e. AT = 30°^) we get rq = -32.26, and so forth. 
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Finally, if we want to establish the formula for a pure glass-former, without any 

modifier, we should take the limit (ruA/ms) -> 1 and fi -4 £; we then get 

^ ^ + ( ^ ) ^ = 0 or T-T0 = ATg = -(rq)^f. (23) 

Eventually, the deviations from this simple dependence may indicate tha t the char­

acteristic time r depends on T. This can shed more light on the agglomeration 

kinetics in various glass-forming liquids. More details can be found in Refs. 18,21. 
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After a short summary on the elliptic quantum group Bq:\(sl2 ) and the elliptic algebra 

UqlP(5l2), we present a free field representation of the Drinfeld currents and the vertex 
operators (VO's) in the level k. We especially demonstrate a construction of the higher 
spin type I VO's by fusing the spin 1/2 type I VO's and fix a rule of attaching the 
screening current S{z) associated with the g-deformed Z^-parafermion theory. As a result 
we get a free field representation of the higher spin type I VO's which commutation 
relation by the fused Boltzmann weight coefficients is manifest. 

1. Elliptic Quantum Group and Elliptic Algebra 

1.1. Elliptic Quantum Group Bq<\(sl2) [2] 

The face type elliptic quantum group Bq:\(sl2) is a quasi-Hopf algebra (Bq,\(sl2), 
A\, e, S, 3>(A), a, /3, 7£(A)) obtained as a deformation of the Hopf algebra 
(Uq(sl2), A, e, S, 11) by the face type twistor F(X) (A G F)) satisfying the shifted 
cocycle conditiona 

F(12)(A)(A ® id)F(A) = F<23>(A + h ^ ) ( i d ® A)F(A). (1.1) 

The "deformation" means that Bq,\(sl2) = Uq(sl2) as an associative algebra, but 
the coalgebra structure is deformed in the sense A A ( ^ ) = F(X)A(x)F~1(X) Vx e 
Uq(sl2), K(\) = F(21)(A)'RF(12)-1(A),etc. The universal R matrix 1l(X) satisfies 
the dynamical Yang-Baxter equation. 

^(12) (A + h&)U^ (A)7^23> (A + h™) = 11^ (X)Tl^ (A + h^)K,W (A). (1.2) 

^From this, we obtain the dynamical RLL relation which characterizes Bqt\(sl2) 

R^w(z1/z2, X + h)L+(zuX)L+r(z2, X + h^) 

= L+,(z2, X)L+(zi,X + hW)R+w(Zl/z2, A). (1.3) 

*A short report on a part of the work done with Robert Weston. 
aWe follow the notation in Ref. 2. 
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Here L$(z,\) = (irv,z ® id) 11+(\), R^w(z1/z2,X) = {-KV,ZI ® nw,Z2)K
+{\), 

K+{\) = qc®d+d®c1l(\) in the evaluation representation {TVV,Z,VZ). 

Hereafter we use the parameterization A = (r — c + 2)d + (P + 1)5/11 and A + 
/i = (r + 2)d + (P + /ii + l ) | / t i (fti G fj). Then the two dimensional representation 
{^v^.zi ® 7rv<1),z2) ° ^ t n e -^ matrix, up to gauge transformation, is given by 

R+{z, P+hi)= i # ( 1 ) v ( 1 ) (z, A + h) = p+(«) 

P*+(2:, P ) = P+ ( 1 ) v ( 1 ) (z, A) = R+(z,P)\r 

6(u,P + /ii) c(u,P + fti) 
c (u ,P + /ii) 6(u,P + /ii) 

V 1/ 

Here z = q2u, p = q2r, r*=r-c,p* = q2r* and p+(u) = ^ { ^ f f z } < ' g f f p , 

{z} = {z;P^U and 6(«,5) = ^ } ^ \ c(u,s) = { f g | , c(u,s) = fag§, 

b(u, s) = J " L . The symbol [u] denotes the Jacobi theta function [u] — q^ " /^.5a , 

©P(Z) = tap)oo(p/*;p)oo(p;p)oo, (*;PI, •••,?*)«> = rin1,...,n»>o(1-;!!Pi1"'Pfc£3-
We also use [u]* = [u] |r->.r«. These R matrices are nothing but the Boltzmann weight 
of the Andrews-Baxter-Forrester (ABF) model. Hence one can regard Bqi\{s\2) as 
a central extension of Felder's elliptic quantum group EV!7,(s[2). 

1.2. The elliptic algebra L/q)P(sl2) 

The algebra Uq>p(sl2) is an elliptic analogue of the algebra Uq(sl2) in the formula­
tion via the Drinfeld currents. Our currents E(u), F(u), K(u) satisfy the following 
relations.3 

K(u)K(v) = p(u - v)K(v)K(u), 
1—r* 1* 

\U — V 
"(«W») = [,,,,,_ iyj,E(»)g(»). 

[u-v- l]*E(u)E(v) = [u-v + l}*E(v)E(u), 

[u-v + l]F(u)F(v) = [u-v- l]F(v)F(u), 

Here p(u) = p+*(u)/p+(u), p+*(u) = p+(u)\r^rr* and 

w i t V l K _ liT_ ^ ( Z ' P* '9 ) ^ r . _ nx _ (92z;p,g
4)oc(pg2^;p,g4)oo witn/t — 11m — r , ?(,2,p,q — aiz.„ai\—u,-nai\—• 
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Let us introduce the half currents K+(u), E+(u) and F+(u) by 

K+(u):=K(u+^), (1.4) 

F+(u):=a<b F ( u ' - -)-, f- ^ (1.6) 
v ; Jc 2mz> y 2>[u-u' + \][P + h1-l]

 y ' 

Here C* : \p*q~lz\ < \z'\ < |g-1;z|, C : \pqz\ < \z'\ < \qz\. a and a* are the 
normalization constants satisfying °_JJi = 1-

Theorem 1.1: Define the L-operator L+(z) € End Vz
(1) ® Uq<p(sl2) by 

?+(zV_(lF+^)\(K+{u-l) 0 \( 1 0 
{)-~\o i JV o jr+(u)-vl,£+(u)i 

Then we have the following i?L-L-relation. 

R+ (zx/za, P + fci) £+ (z i )L+(z 2 ) = L + ( z 2 )£ + ( z i ) iT + (zj/za, P). (1.7) 

^Prom this, one can recover the dynamical RLL relation (1.3) in V = W = V^ by 
/ e - Q o \ 

introducing the new -L-operator L+(z,P) := L+(z) I Q I . In fact, t/g,p(sl2) 

can be regarded as an extension of the algebra Bqt\(s\2) by an extra element e® and 
imposing the commutation relation [P, e®] = —eQ.4 The elliptic algebra £/qiP(sl2) 
hence provides an alternative formulation of Bqt\(sh) via the Drinfeld currents. 

1.3. The vertex operators of UqiP(sl2) 

^,From the spin 1/2 type I and II intertwining operators $yff(z), $*y{%'(z) of 

Uq(sl2), we define the Bq^siz) intertwiners ^ ^ y (z, A) and **^(',y(z, A) of spin 
1/2 as follows. 

^ ( z , A) := (id ® 7r„<„,jF(A) o ^ ( z ) : ̂ ) - > V{v) ® y<'\ 

* * ^ ( z , A) := tt* J#>(z) o (7rv(0iZ 0 id)F(A)"1 : V® ® F(/,) - » • * » . 

Here V(//) is the level k highest weight t/g(s[2) module with the highest weight \x and 
Vz is the I + 1 dimensional evaluation representation. Furthermore, we can extend 
them to the spin 1/2 VO's acting on the Uq>p(sl2) modules V(/x) := ® n g Z F(/i)(g>enQ 

as follows. 

*W»<»)(z) := ^ ( z , A) : t?(/x) - • V > ) ® V<'\ (1.8) 

**(*)(",/*)(s) : = * ^ ( z > A)ehl®° : V ^ ® f (p) ->• ?(i/). (1.9) 
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Then from the intertwining relations of $y$(z, A) and ^y^\ (z, A), we can derive 

their analogue for the VO's of Uq^sh) as follows. 

$( ' ) ( - .M)( U , )L+( Z ) = i 2+ ( 1 ) v ( i ) (^ / U ; ) P + / l l )L+( z )$W(^)( w ) ) ( i . io) 

£ + ( z ) r ( m ^ ) ( w ) = ^ K m ^ ) W £ + w ^ + ) ^ ) ( z M p _ ^ ( i ) _ ^ ) ) ( L 1 1 ) 

It is also possible to derive the commutation relations of the VO's. Especially, the 
spin 1/2 type I VO's satisfy 

R{z,P + hl)^
v^\zl)^

K\z2) = ^2^v^(z2)^
,i''K\z1)W' , K / i 

zi/z2 

(1.12) 

where R(z,s) — PR(z,s), R(z,s) = R+(z,s)p(u)/p+(u), Pa®b = 6 ® a and 
W" = W\r^k+2. 

2. Free Field Representation 

The CFT limit of the ABF model and its fusion models are described by the coset 
{sh)k ® (sh)r-k-2/{sh)T-2 Virasoro minimal model, which is known to be equiv­
alent to the tensor product of the Z^-parafermion theory and one boson theory 
with a certain background charge. Corresponding to this fact, the elliptic algebra 
^q,p(sb) can be realized by using the (/-deformed Z^-parafermion theory and one 
(/-boson theory. 

2 .1 . Drinfeld currents [3J 

We use three kinds of bosons satisfying the relations. 

[2n][fen] H 2kr 
n [r*n\ r* 

[2n][(fc + 2)n] 
[ai,n,ai,m\ =0n+m,0 , ["l,Qll —2{k + 2), 

n 
r 1 x [2n][kn] 
[d2,n,a2,m\ = ~ <Wm,0 , 1^2, W2J = —*•&. 

We also set a'0n = t ^ f ao,n- As usual, it is convenient to introduce the correspond­
ing boson fields. 

UM B, C\z; D) = - A ( Q , + P. log.) + £ J ^ m 1 W - m g D | m | > 

<^f)(A;i?|z;C') = § l o g g + ( g - Q - 1 ) ^ | 4 4 ^ ± ™ ^ m 3 C m C? = 0,1,2) 

^ m>0 ^ ^ 

and 0d(^4;B,C|z) = fo{A\B,C\z)\r->r»,a0jn^,ai . We often use the abridgment 
^(C|;?;Z>) = ^(i4;i4,C|z;I>), fa(C\z) = ^(C\z-0) etc. 
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Now let us define the ^-analogue of the Zfc-parafermion fields $(z) and ^ ( z ) 
by $(z) = * _ ( z ) , &(z) = * + ( z ) with 

**<*) = T(q-q-i)
 : exp{±^(c|z; ± | ) } 

x ( e x P { - 4 + ) ( l ; 2 | , ; T ^ ) ± # ) ( l ; 2 | , ; T 0 } 

-e,P[4-\l^T^)T4-\l;2\z^l)}):. 

The Zfc-parafermion theory contains the screening current S(z), which commutes 
with ^±(z) up to the total difference. 

S(z) = — ^ : exp{fc (k + 2\z; - ^ ) } 

x ( e x p { 4 + ) ( l ; 2 | , ; ^ ) + ^ ( l ; 2 | , ^ ) } 

- « x p { - ^ - ) ( l ; 2 | , ; * ± ^ ) - ^ ( l ; 2 | z ^ ) } ) : . 

Then we have, 

Proposition 2.1: The Drinfeld currents ofUqyP(sl2) at c = k are given by 

K(u) = z~*& e-*i(i;2,r*|*)> # ( u ) = ^ ) e-toW*), p(u) = *\z) e ^ ^ . 

We regard these currents as the operators acting on the following Fock spaces. 

M 

TP
3

F
M = C[au,a2J (I G Z<0)] <8> e W Q l ® e&Q\ 

Tt% = C[a0,i (Z G Z<0)] ® e ^ £ Q » - « ° , 

where a a ,m = ^ p a - + ^ a + , {I < a < r — 1, 1 < m < r — A; — 1), a+ = 

V^-) «- = -\/if- I n f a C t ' -B'(Z) : Fa,m;J -> Fa,m-2;J, F(z) : Ta,m.tj -> 

J~a-2,m;Ji »S'(z) : 3~a,m;J ~^ 3~a,m;J-2-

2.2. Tfte type / vertex operators 

2.2.1. 77ie aptn-1/2 W ' s 

Let iij = (k — J)A0 + JAi be the level k sl2 weight. We set J' = J + a (a = ±1) 
and define the components of the spin 1/2 VO as follows. 

$ ( / W ) ( U ) = gW>J)(z) ^ *?(*) ® Ve, (2-13) 
£=±1 

where {ve}e=± is a basis of the two dimensional representation V^. We realize 
$"(z) as an operator *°(z) : ^a,m;J ->• Ta-e 
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In the case a = + , solving the "intertwining relation" (1.10) with / = 1, we 
obtain 5>+(z), after a certain gauge transformation, as follows.4 

$" ( 2 ) = W]MZ) : e"*i(li2,*l*) :> (2-14) 

*J(z) = F+(u)*±(z) = I £- [u-U'+^ + K]F{z')*t{z). (2.15) 
JCpz 2mz' [u-u1 - ±] 

Here we set K = P + h\. </>i,i(z) is the q-analogue of the spin 1/2 parafermion 
primary fields. In general, the sipn 1/2 (I = 0,1,. . . , k) field (pi,i{z) is given by 

4>i,i(z) = -expi -<j>2 M;2,fc z;£) - 0 i (Z;2,fc + 2 ^ H = . (2.16) 

The VO's &£(z) satisfy the following commutation relation. 

With p'(u) = p(u)\r-*k+2-
On the other hand, the VO's $7(z) require an attachment of the Zfc-parafermion 

screening current S(z), because among E(z), F(z), S(z), only S(z) can decrease the 
quantum number J. However since the g-deformed Z^-parafermion theory has no 
coalgebra structure, we have no definite guiding principle to fix the rule of S(z)-
attachment. We do this by hand for the spin 1/2 VO's requiring the commutation 
relation (1-12) and extend it to the higher spin VO's by fusion procedure. We thus 
obtain the following realization of the spin 1/2 VO's. 

dw *+r \ot s\u ~ v ~ \ ~ pi\' 

Here [it]' = [u]\q2r_>.q2(k+2) and the contour Cs,z should be chosen in such a way 
that the poles z' = qk+1

 Zq2(k+2)1 (I = 0,1,2,..) are inside whereas the poles 
Z' = q-h-lzq-2(k+2)l y = 0 > j^ 2 j ) a r e o u t g i d e 

JCs * 2™W \u-V- 5 ' 

2.2.2. Fusion construction of the higher spin VO's 

We next consider the fusion of the I spin 1/2 VO's. For a — Ylj=i aj> w e s e t 

*W°(^'-1)= J2 *?1
1(V('-1))^(^2('-2))-"*?, ,W. (2-18) 

It turns out that the simplest component $_] (z) is expressed by using the spin 1/2 
<7-parafermion primary field <fii,i(z) 

^{zq1-1) = $t(^- 1 ) )$ i (^- 2 ) ) . . .$±(z) 
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with C(z) being a function appearing from the normal ordering. 

Lemma 2.2: In (2.18), let j a (1 < a < m(< I)) be integers satisfying ctja = —, 
and for other j , aj = +. Then in (2.18) one can move all S(z) in <I>~ (z) to the 
right and obtains the expression which has no j a (a = 1, ..,m) dependence at all. 

^K(^l-1))^2(zQ2{l-2))--^tM)(f dmSiw^-^^A . 
*!,..,*, ycs.z lu v 2J / 

This indicates that the VO's 3>£ (z) have no intermediate-weight-path dependence. 
Hence $£ (z) manifestly satisfies the commutation relation for the spin 1/2 VO's. 

J2Rii(zi/z2,K)i^^(z1)^^(z2) 
£ l ,E2 

where II = Pi + 1, Ru and W'u are the I x I fused ABF Boltzmann weights. 
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We compute the survival probability of an initial state, with an energy in a certain win­
dow, by means of random matrix theory. We determine its probability distribution and 
show that is is universal, i.e. characterised only by the symmetry class of the hamiltonian 
and independent of the initial s tate . 

In classical mechanics, temporal chaos is characterised by the extreme sensibility 
of a trajectory to variation of initial conditions. No direct analog of this phenomenon 
has been found in quantum mechanics so far. On the other hand, numerical evidence 
has been accumulated,1 showing that energy levels of a quantum system, whose 
classical counterpart is chaotic, have a statistical behavior described by Wigner's 
random matrix theory (RMT), on the mean level spacing scale. The question we 
want to address is the following: are there specific predictions of RMT for quantum 
dynamics, which would characterise the temporal behavior of " chaotic" quantum 
systems. 
We consider the following situation: The system is prepared in an initial state ip 
at time 0, with an energy in a certain window, centered at e and of width 2sl(e), 
where 1(e) is the mean level spacing, and we want to compute the probability to 
find our system again in the state tp, at a later time t. This quantity that we call 
the survival probability R is given by 

(ylexpifjH P(A)<p) 

iff, P(*)<p) 

H is the hamiltonian of our system and P(A) is the spectral projector on A. 
We have chosen to take an energy in a range of the order of the mean level spacing in 
order to look at properties of the system which are independent of specific details. If 

*hkunz@dpmail.epfl.ch 

(1) 
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(\j, ipj) denote respectively the jfh eigenvalue and eigenvector of the Hamiltonian 
H, then the survival probability can be written as 

R = 
E , = i VjXj^P^irxj 

Z J , = I VjXj 
© E»- i 

where 

Vj = l(v. Vv)l 

and if we define Xj by the relation 

Aj — e + Xjl(e) 

( \ J 1 * X j = X ( - ^ ) ( 2 ; j ) = | 0 ( 

if | a; j | < s 
otherwise 

(2) 

(3) 

(4) 

(5) 

The Heaviside function 0 ensures that there is at least one eigenvalue in A. 
What appears naturally in this expression is the time measured in units of the 
Heisenberg time 

h 
i f f = 

so that 

1(e) 

t 

iff"' 

(6) 

(7) 

If we look at this problem from the point of view of RMT, we will replace the 
Hamiltonian by a large N x N self-adjoint matrix, whose probability distribution 
is basis independent and therefore of the form 

e-w(x^..,xN) dH 

Wigner's gaussian model corresponds to the choice 

N 

2 

(8) 

(9) 

The first conclusion to be drawn is that the survival probability is statistically 
independent of the initial state ip. This follows from the fact that the variables 
{Vj}j=1 have a probability distribution, independent of ip and given by: 

1 I N \ N 

m(y)dy = -g- s \J2 yj -1 n yJ'1 dy 
\ j = l / 3=1 

(10) 

The parameter /3 = 1, 2, 4 characterise the symmetry class of the Hamiltonian, 
respectively orthogonal, unitary and symplectic. Equation (10) follows easily from 
the Haar measure on the corresponding groups. CN is a normalising constant. 
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The variables {XJ}.=1 are statistically independent of the variables {yj} .= 1 and 
have a distribution given by 

•^-exp-W(e + xl(e))A0(x)dx (11) 

where the Van der Monde determinant 

A ( x ) = J ] \xi-Xj\ (12) 
l<i<j<N 

comes from the change of variables Hij —¥ (Xj, "0j)7=1-2 DN is a constant of nor­
malisation. 

We can take l{e) = ]y~ĵ y, where p(e) is the density of states when N = oo. 
The problem that we need to solve now is to find the probability distribution of 
the survival probability p(R)dR in the N = oo limit. We find that R is not self-
averaging i.e. p(R) is not a delta distribution concentrated on the mean value of 
R. On the other hand its probability distribution p(R) is universal, i.e. it depends 
only on the symmetry parameter (5, at least for a large class of W. 
There are two formulas for p(R), one more appropriate to small windows, another 
one to large windows. 
In the first case, we decompose p(R) into 

p(R\r) = J2r^¥pn(R\r) (13) 
7 1 = 1 

where En is the probability to find exactly n eigenvalues in A and pn(R\r) is the 
conditional probability density of R knowing that there are exactly n eigenvalues 
in A. 
It can be expressed as 

2> 

Pn{R\r)= I \\E(xi,...,xn)d
nx fin(zi,... ,z„)dnzS - N Zj exp 2TTITX3 

E, 

y (14) 

E(Xl,...,xn)=
E{xl--'Xn) (15) 

!„= / E(Xl,...,xn)d
nx (16) 

J — 3 

E{x\,...,xn) being the probability density of finding the n eigenvalues in A at 
\X\, . . . , Xn). 

Useful expressions for E (x\,. • •, xn) and En can be found in Refs. 2 and 3. It is 
expressible in terms of a determinant 

E{xi,...,xn) =det Lp(xi\xj) ; (i, j) e ( 1 . . .n) (17) 

where 

L' = ^ k (18) 
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Kp is an operator whose kernel in the simplest case j3 = 2 is given by 

K>wy) = ̂ hf (19) 

defined on L2(—s, s). 
Universality comes from the fact that E(xi,...,x„) is expressible in terms of 

the correlation functions and the latter ones depends only on /3, for a large class of 
W. W modifies only the density of states and therefore the mean level spacing /(e). 
This expression for p (R\r) is mostly useful in the small window limit, because when 
s->0 

En ~ s f «2+"d-§) 

Moreover in this case we have 

lim snE (sxi ,...,sxn)-An TT 
s—>0 - * • - * • 

\<i<j<n 

Jb<i Jj <i 

so that the probability distribution of R shows a scaling behavior 

lim s'13-1 

s - > 0 

i2—»• 1 

pr • 
1-R 

(TTTS) 
2 — 

>X = f gp(\)d\ 
Jx 

(20) 

(21) 

(22) 

the function gp{\) being given by 

5/3 (A) = A0\— ^ V l - A + ^ l n A - l n l + v T ^ A (23) 

On the other hand, one can see from eq (13) and (14) that the probability 
distribution of R is well defined at infinite times. Namely 

(24) pn(R\T)=Pn(R\oo)+Ol-

as can be seen by an integration by parts where 

/

oo /-27T " ^i 

Hn{zi,...,Zn) I Y[ ~^f6 

I 
R-

\ 

n 

£ **»' 
3=1 

(25) 

Using an integral representation for the delta appearing in the definition (10) of 
the jUn, we can reexpress (25) as 

pe+ioo f+oo 

(rz) -3 -1 (26) 
i /•e+joo /-+oo r /.oo 

pn (R\oo) = / dueu j drrJ0 h/Hr) / dze~uzJQ 

e being any positive number, and Jo(x) the Bessel function. This expression can be 
simplified, considerably when (3 = 2, 4. 
In the unitary case (/? = 2) one finds 

n — 1 n-3 
pn(R\oo) = —-{l-R)-*- (27) 
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For a large window of energy, it is more appreciate to find another expression for 
pn (R\T). It is given as some integral over a Fredholm determinant Q. 
Q is a generating function for the variables {yj} and {XJ} appearing in the definition 
of R, eq (2). 

I N \ 
Q (r; ip; z) = lim / exp —iN \] yjXj [r cos (2TTTXJ +<p) + Z}\ (28) 

It can be expressed in terms of the operator Kp appearing in eq (19), when /3 = 1, 2 
as 

9 = E0 det (l + K/sg^ 

with 

Eo = [det (1 - Kp)]* 

and g is the multiplication operator by the function 

2i 
1 + — [z + r COS (27TTX + if)] 

When the window is large (s » 1) we can expand the determinant in powers 
of K/3, the first two terms of this expansion dominating the other ones.4 

One finds that the probability distribution is exponential. 

(29) 

(30) 

(31) 

,. 1 f R 
lim —p 

s—>-oo 5 

1 R 
T | = —T-r exp a{r) a(r) 

In the orthogonal case (/3 = 1), for example 

O-(T) 
4 - 2 | r | + | r | l n l + 2 | r | if |r| < 1 

,2+Mln§£|±i i f | r | > l 

(32) 

(33) 

One can notice the singularity at the Heisenberg time r — 1 and the fact that <r(oo) 
exists. 
However if we smooth out in time R(T), taking for example 

ir (34) 
— 1 fTl 

R = / R{r)di 
n - T0 j T n 

then we get a self-averaging quantity 

with 

lim -p (-) =S(R-a) 

1 fTl 

a = I dTo-(r) 
n - r0 JTa 

(35) 

(36) 

Some numerical work on chaotic billiards,5 in the large window limit, confirm this 
exponential distribution. Integrable billiards show a very different behaviour.5 

155 



2008 H. Kunz 

Finally, we would like to mention the fact that Wigner's energy level statistics 
can be obtained for models, where eigenvalues and eigenvectors are correlated. We 
think therefore that the study of quantum dynamics could discriminate between 
such models and those we have considered where they are uncorrelated. 
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We extend a recent construction for an integrable model describing Josephson tunneling 
between identical BCS systems to the case where the BCS systems have different single 
particle energy levels. The exact solution of this generalized model is obtained through 
the Bethe ansatz. 

1. Introduction. 

The experimental work of Ralph, Black and Tinkham1 '2 on the discrete energy 
spectrum in small metallic aluminium grains has generated substantial interest in 
understanding the nature of superconducting correlations at the nano-scale level. 
Their results indicate significant parity effects due to the number of electrons in 
the system. For grains with an odd number of electrons, the gap in the energy 
spectrum reduces with the size of the system, in contrast to the case of a grain 
with an even number of electrons, where a gap larger than the single electron 
energy levels persists. In the latter case the gap can be closed by a strong applied 
magnetic field. The conclusion drawn from these results is that pairing interactions 
are prominent in these nano-scale systems. For a grain with an odd number of 
electrons there will always be at least one unpaired electron, so it is not necessary 
to break a Cooper pair in order to create an excited state. For a grain with an even 
number of electrons, all excited states have a least one broken Cooper pair, resulting 
in a gap in the spectrum. In the presence of a strongly applied magnetic field, it is 
energetically more favourable for a grain with an even number of electrons to have 
broken pairs, and hence in this case there are excitations which show no gap in the 
spectrum. 

* email: jrl@maths.uq.edu.au. 
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The physical properties of a small metallic grain are described by the reduced 
BCS Hamiltonian3 '4 

c c 

HBCS = Y^ eini ~ 9 Y, 4 + 4 - C J - C J + - W 
J = l j,k 

Above, j = 1,..., C labels a shell of doubly degenerate single particle energy levels 
with energies ej and rij is the fermion number operator for level j . The operators 
cj±i cl± a r e t r i e annihilation and creation operators for the fermions at level j . The 
labels ± refer to time reversed states. 

One of the prominent features of the Hamiltonian (1) is the blocking effect. For 
any unpaired electron at level j the action of the pairing interaction is zero since only 
paired electrons are scattered. This means that the Hilbert space can be decoupled 
into a product of paired and unpaired electron states in which the action of the 
Hamiltonian on the subspace for the unpaired electrons is automatically diagonal 
in the natural basis. In view of the blocking effect, it is convenient to introduce 
hard-core boson operators bj = Cj-Cj+, b', = c]+Cj_ which satisfy the relations 

(6})2 = 0, [6j,6t]=5j.fc(i_26t6.) 

[bj,bk} = [b],b{}=0 

on the subspace excluding single particle states. In this setting the hard-core boson 
operators realise the su(2) algebra in the pseudo-spin representation, which will be 
utilized below. 

The original approach of Bardeen, Cooper and Schrieffer5 to describe the phe­
nomenon of superconductivity was to employ a mean field theory using a variational 
wavefunction for the ground state which has an undetermined number of electrons. 
The expectation value for the number operator is then fixed by means of a chemical 
potential term fi. One of the predictions of the BCS theory is that the number of 
Cooper pairs in the ground state of the system is given by the ratio A/d where 
A is the BCS "bulk gap" and d is the mean level spacing for the single electron 
eigenstates. For nano-scale systems, this ratio is of the order of unity, in seeming 
contradiction with the experimental results discussed above. The explanation for 
this is that the mean-field approach is inappropriate for nano-scale systems due to 
large superconducting fluctuations. 

As an alternative to the BCS mean field approach, one can appeal to the exact 
solution of the Hamiltonian (1) derived by Richardson and Sherman.6 It has also 
been shown by Cambiaggio, Rivas and Saraceno7 that (1) is integrable in the sense 
that there exists a set of mutually commutative operators which commute with the 
Hamiltonian. These features have recently been shown to be a consequence of the 
fact that the model can be derived in the context of the Quantum Inverse Scattering 
Method (QISM) using a solution of the Yang-Baxter equation associated with the 
Lie algebra su(2).8'9 One of the aims of the present work is to extend this approach 
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for application to generalised models. As a specific example, we will show that a 
model for strong Josephson coupling between two BCS systems falls into this class. 

Recall first that electron pairing interactions manifest themselves in macroscopic 
systems via three well known phenomena: 

• supercurrents 
• Meissner effect 
• Josephson effect 

As noted by von Delft,4 the notion of a supercurrent in a nano-scale system is 
inapplicable because the mean fee path of an electron is comparable to the system 
size. Likewise, the penetration depth of an applied magnetic field is comparable to 
the system size, which prohibits any Meissner effect. 

Josephson11 put forth a proposal for the tunneling of electron pairs between 
superconductors separated by an insulating barrier. A theory was derived to de­
scribe weak coupling between two superconductors treated at the mean field level in 
the grand-canonical ensemble. A remarkable prediction of the theory was that it is 
possible for a direct current to flow across the insulator for the case of zero applied 
voltage, whereas a constant voltage across the insulator produces an alternating cur­
rent. The essential features of the theory stem from the phase difference between 
the superconductors, which is well defined since the variational wavefunctions for 
the superconductors have undetermined particle numbers. 

For the case of nano-scale systems, the above predictions are again invalid due 
to the finite particle numbers for each system, giving rise to phase uncertainty. 
However, if we are to consider strong coupling where individual particle numbers 
are not conserved, only total particle number, it is appropriate to study the effective 
Hamiltonian 

C 

H = HBCS(1) + HBCSP) -£JJ2 O'lWMS) + 6}(2)6fc(l)) , (2) 
i,fc 

where ej is the Josephson coupling energy, for the purpose of investigating the na­
ture of pair tunneling at the nano-scale level. In a previous work10 it was shown that 
the above Hamiltonian is integrable for ej = g for the case when HBCS(1), HBCS{1) 

have identical single electron energy levels. Below we will extend this construction 
to the case where HBCSQ), HBCS(2) describe non-identical systems. 

2. A universal integrable system. 

First we introduce the Lie algebra su(2) with generators S+, S~, Sz satisfying the 
commutation relations 

[Sz, 5±] = ±S±, [S+, S~] = 2SZ. (3) 
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The Casimir invariant, which commutes with each element of the algebra, has the 
form 

C = S+S- + S~S+ + 2 (Szf . 

Associated with the su(2) algebra there is a solution of the Yang-Baxter equation 
in EndF ® EndV ® su(2), where V denotes a two-dimensional vector space. This 
solution reads12 

with 

Ru(u - v)Li(u)Li2(v) = L2(v)Li(u)Ri2(u - v) 

2 

u '-^ 
m,n 

L(u) = I <g> I + ^ (e\ ® Sz - e\ ® Sz + e\ ® 5 " + e2 ® S+) 

where {e™} are 2 x 2 matrices with 1 in the (m,n) entry and zeroes elsewhere. 
Above, / is the identity operator and r/ is a scaling parameter for the rapidity 
variable u which plays an important role in the subsequent analysis. With this 
solution we construct the transfer matrix 

t(u) = tr0 (G0Loc(u - ec)-L0i(u - ei)) (4) 

which is an element of the £-fold tensor algebra of su(2). Above, tro denotes the 
trace taken over the auxiliary space and G = exp(ar7a) with a = diag(l, —1). A 
consequence of the Yang-Baxter equation is that [t(u), t(v)] = 0 for all values of the 
parameters u and v, and independent of the representations of su(2) in the tensor 
algebra. Defining 

Tj = hm z-Z-tiu) 

for j — 1,2, .. . ,£, we may write in the quasi-classical limit Tj = Tj + 0(77) and it 
follows that [TJ, rfe] = 0, \/j, k. Explicitly, these operators read 

rj=2aSz + f:-^- (5) 
W €j €k 

with 6 = S+ ® S' + S~ <g> S+ + 2SZ (8) Sz. 
We define a Hamiltonian through 

£ c c A c 

3 3,k j 3 

a i,k 

The Hamiltonian is universally integrable since it is clear that [H, Tj] = 0, V? 
irrespective of the realizations of the su(2) algebra in the tensor algebra. 
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Realizing the su(2) generators through the hard-core bosons; viz 

st=b*> si=bh ^=\{i-nj) (8) 
one obtains (1) (up to a constant) with g = 1/a as shown by Zhou et al.8 and von 
Delft and Poghossian.9 

We now turn to applying (7) for the study of two coupled BCS systems. To 
accommodate this, it is convenient to first consider three index sets Po, Pi, Pi such 
that individually the BCS Hamiltonians are expressible 

c c 

HBcs(i)= Yl eJnJ-9 Yl bkbr 
j 6 ( P 0 U P i ) j,k€{PoUPi) 

If the single particle energy €j is common to both systems, then j G Po. Hence it 
is meant to be understood that ej ^ eft ^ q V j G Pi, k G P2, I G P3. In the case 
that j G Po, the local su(2) operators are described by the tensor product of two 
pseudo-spin realisations acting on the four-dimensional tensor product space. We 
can now realise (7) in terms of the hard-core boson representation (8) 

Sf = bj(i), Sr=b](i), 5 ; = ! ( / -« , • (»)) 

for j G Pi, i — 1,2 whereas for j G Po we take the tensor product representation 

Sf = Ml) + 6,(2) 
Sj=b){l) + b){2) 

S ; = / - 5 ( n , - ( l ) + n , ( 2 ) ) . 

Under this representation of (7) we obtain (2) with ej — g = 1/a, establishing 
integrability at this value of the Josephson coupling energy. For the case when the 
index sets P i , P2 are both empty, i.e., the two BCS systems are identical, this result 
was previously shown by Links et al..10 

3. The exact solution. 

In addition to proving integrability for ej = g, we can also obtain the exact so­
lution from the Bethe ansatz. Below we will derive the energy eigenvalues for the 
Hamiltonian (7) in a very general context, which includes those of (2) with ej = g 
as a particular case. 

For each index k in the tensor algebra in which the transfer matrix acts, and ac­
cordingly in (7), suppose that we represent the su(2) algebra through the irreducible 
representation with spin Sfc. Thus {S~£, S^, S%} act on a (2sfc + l)-dimensional 
space. Employing the standard method of the algebraic Bethe ansatz12 gives that 
the eigenvalues of the transfer matrix (4) take the form 

c , M 

A(w) = exp(m7) I I I J-
•L,-L U — 6k X ± U — Wj 

k 3 
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C M 
I \ TT U ~ €k ~ VSk T T u ~ efc - V$k T T u -Wj + f] 

U-tk x x U - Wj 
K J 

Above, the parameters Wj are required to satisfy the Bethe ansatz equations 

e x p ( 2 m ? ) I T " » » - 6 f c + w = _ f r m - i P j + i ^ 
V- wi - ek - r/Sfe -"-A tuj -Wj -r) 

K J 

The eigenvalues of the conserved operators (5) are obtained through the appro­
priate terms in the expansion of the transfer matrix eigenvalues in the parameter 
X]. This yields the following result for the eigenvalues Xj of Tj 

such that the parameters Vj satisfy the coupled algebraic equations 

2 Q + V - ^ = ; r ^ — . (10) 

Through (9) we can now determine the energy eigenvalues of (7). It is useful to 
note the following identities 

M M c 
VjSk 

i 3 k vl €k 

M C 

t k ^ - £ f c 

M C ML C 

• t vi ~ ek ^ V VJ ~ek v 
3 k J 3 k J k 

Employing the above it is deduced that 

c c 

E A j = 2 a E ^ ' ~~ 2aM 

j j 
C C M M C M 

E eA- = 2a E w + E E sJsfc -2 M Esfc - 2 a E vi + M(M -x) 
3 3 3 k^3 k 3 

which, combined with the eigenvalues %SJ(SJ + 1) for the Casimir invariants Cj, 
yields the energy eigenvalues 

M C 

£ = 2E«j-2Es*6*- (n) 
3 k 

From the above expression we see that the quasi-particle excitation energies are 
given by twice the Bethe ansatz roots {VJ} of (10). 
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In order to specialise this result to (2) a t integrable coupling, it is useful to 

first make the following observation. For j £ Po, in which case the su(2) algebra 

is realised via the tensor product of two hard-core boson representat ions, it is well 

known that the representation space is completely reducible into triplet states and 

a singlet state. Note however, t ha t for the singlet s ta te the su(2) generators act 

trivially, and hence this s tate is blocked from scattering in analogy with the blocking 

of single particle states discussed in t h e introduction. Hence the su{2) algebra will 

only act non-trivially on the triplet s ta tes . In specialising (10,11) to the case of (2), 

we need only to set Sj = 1/2 for j G Pi U Pi and Sj = 1 for j £ P0. 

4 . Conc lus ion 

We have displayed the existence of a general class of integrable systems which 

includes the reduced BCS Hamil tonian and a model for strong Josephson tunneling 

between two reduced BCS systems. By deriving the models through the QISM we 

have also determined the exact solution via the Bethe ansatz. A further application 

of this approach is the computa t ion of form factors and correlation functions.8 '1 0 
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I will review the finite density algorithm for lattice QCD based on finite chemical po­
tential and summarize the associated difficulties. I will propose a canonical ensemble 
approach which projects out the finite baryon number sector from the fermion deter­
minant. For this algorithm to work, it requires an efficient method for calculating the 
fermion determinant and a Monte Carlo algorithm which accommodates unbiased esti­
mate of the probability. I shall report on the progress made along this direction with the 
Pade-Z2 estimator of the determinant and its implementation in the newly developed 
Noisy Monte Carlo algorithm. 

1. Introduction 

Fermions at finite density or finite chemical potential is a subject of a wide range 
of interest. It is relevant to condensed matter physics, such as the Hubbard model 
away from half-filling. The research about nuclei and neutron stars at low and high 
nucleon density is actively pursued in nuclear physics and astrophysics. The sub­
ject of quark gluon plasma is important for understanding the early universe and 
is being sought for in relativistic heavy-ion collisions in the laboratories. Further­
more, speculation about color superconducting phase has been proposed recently 
for quantum chromodynamics (QCD) at very high quark density.1 

Although there are models, e.g. chiral models and the Nambu-Jona-Lasinio 
model which have been used to study QCD at finite quark density, the only way 
to study QCD at finite density and temperature reliably and systematically is via 
lattice gauge calculations. There have been extensive lattice calculations of QCD at 
finite temperature.2 On the contrary, the calculation at finite density is hampered 
by the lack of a viable algorithm. 

In this talk, I shall first review the difficulties associated with the finite density 
algorithm with chemical potentials in Sec. 2.1 will then outline in Sec. 3 a proposal 
for a finite density algorithm in the canonical ensemble which projects out the 
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nonzero baryon number sector from the fermion determinant. In Sec. 4, a newly 
developed Noisy Monte Carlo algorithm which admits unbiased estimate of the 
probability is described. Its application to the fermion determinant is outlined in 
Sec. 5. I will discuss an efficient way, the Pade-Z2 method, to estimate the Tr log 
of the fermion matrix in Sec. 6. The recent progress on the implementation of the 
Kentucky Noisy Monte Carlo algorithm to dynamical fermions is presented in Sec. 
7. Finally, a summary is given in Sec. 8. 

2. Finite Chemical Potential 

The usual approach to the finite density in the Euclidean path-integral formalism of 
lattice QCD is to consider the grand canonical ensemble with the partition function 

ZGC{») = Y, ZNe~'iN = fvu det M[U, fi]e-s°M, (i) 
N •* 

where the fermion fields with fermion matrix M has been integrated to give the 
determinant. U is the gauge link variable and Sg is the gauge action. The chemical 
potential is introduced to the quark action with the e^a factor in the time-forward 
hopping term and e~Ma in the time-backward hopping term. Here a is the lattice 
spacing. However, this causes the fermion action to be non-Hermitian, i.e. 75M75 ^ 
M. As a result, the fermion determinant det M[U] is complex and this leads to the 
infamous sign problem. 

There are several approaches to avoid the sign problem: 

2.1. Fugacity Expansion 

It was proposed by the Glasgow group3 that the sign problem can be circumvented 
based on the expansion of the grand canonical partition function in powers of the 
fugacity variable eM/T, 

B=3V 

ZGC(ji/T,T,V) = Y, e^TBZB(T,V), (2) 
B=-3V 

where ZB is the canonical partition function for the baryon sector with baryon 
number B. ZQC is calculated with reweighting of the fermion determinant 

ZGc{fl) ~ <detM[tf,0]>M=°' ( 3 ) 

Since the reweighting is based on the gauge configuration with \i = 0, it avoids the 
sign problem. However, this does not work, except perhaps at small // or near the 
finite temperature phase transition. We will dwell on this later in Sec. 3. This is 
caused by the 'overlap problem'4 where the important samples of configurations in 
the /x = 0 simulation has exponentially small overlap with those relevant for the 
finite density. As a result, the onset of baryon begins at \i ~ mn/2 instead of the 
expected M J V / 3 which resembles the situation of the quenched approximation. 
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2.2. Imaginary Chemical Potential 

In this approach, the chemical potential is taking an imaginary value fi — iv. The 
fermion determinant is real in this case and one can avoid the sign problem.5-7 The 
partition function is 

Zacliv/T, T,V) = Tr e~fl/Tei^/T, (4) 

which is periodic with respect to v with a period of 2TVT. Comparing with Eq. 
(2), one can in principle obtain canonical partition function ZB from the Fourier 
transform 

ZB(T, V) = ^fJo dvZGC{iv/T, T, V)e-^T. (5) 

In this approach, one needs to integrate over the whole range of v from 0 to 2'KT 
after one obtains the Monte Carlo configurations of ZociivjT, T, V) at different v. 
In practice, it is proposed to calculate the following ratio in the two-dimensional 
Hubbard model,7 

ZGC(tvo/T,T,V) J V K o ; d e t M ( ^ 0 ) V ' 

with a reference value VQ. Several patches each centered around a different reference 
point VQ are used to cover the range of v. This was successful for the two-dimensional 
Hubbard model with a 42 x 10 lattice up to B — 6 where the determinant was cal­
culated exactly. While this works for a small lattice in the Hubbard model, it would 
not work for reasonably large lattices in QCD. This is because the direct calculation 
of the determinant is a V3 (or V2 for a sparse matrix) operation which is an im­
practicable task for the quark matrix which is typically of the dimension 106 x 106. 
Any stochastic estimation of the determinant will inevitably introduce systematic 
error. Furthermore, this will also suffer from the 'overlap' problem discussed above. 
Any Monte Carlo simulation at a reference point u0 will have exponentially small 
overlap with those configurations important to a nonzero baryon density. 

2.3. Overlap Ensuring Multi-parameter Reweighting 

To alleviate the sign problem with the real chemical potential and the overlap 
problem due to reweighting, it is proposed8 to do the reweighting in the multiple 
parameter space. The generic partition function ZQC in Eq. (1) is parametrized by 
a set of parameters a, such as the chemical potential ^, the gauge coupling /3, the 
quark mass mq, etc. The partition function can be written to facilitate reweighting 

ZGC{a)= [ VUdetM[U,Qo]e-^°o]{e-sg[E/,a]+s9[I/.«o] d e t fJU a] 
J detM[c7, aoj 

where the Monte Carlo simulation is carried out with the ao set of parameters and 
the terms in the curly bracket are treated as observables. This is applied to study 
the end point in the T-/x phase diagram. In this case, the Monte Carlo simulation 
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is carried out where the parameters in ao include fi — 0 and (3C which corresponds 
to the phase transition at temperature Tc. The parameter set a in the reweighted 
measure include mu ^ 0 and an adjusted /3 in the gauge action. The new (3 is 
determined from the Lee-Yang zeros so that one is following the transition line in 
the T-/i plane and the large change in the determinant ratio in the reweighting is 
compensated by the change in the gauge action to ensure reasonable overlap. This 
is shown to work to locate the transition line from fx = 0 and T = TC down to the 
critical point on the 44 and 63 x 4 lattices with staggered fermions.8 

While the multi-parameter reweighting is successful near the transition line, it is 
not clear how to extend it beyond this region, particularly the T = 0 case where one 
wants to keep the /3 and quark mass fixed while changing the fi. One still expects 
to face the overlap problem in the latter case. For large volumes, calculating the 
determinant ratio will be subjected to the same practical difficulty as discussed in 
the previous section 2.2. 

3. Finite Baryon Density — A Canonical Ensemble Approach 

We would like to propose an algorithm to overcome the overlap problem at zero 
temperature which is based on the canonical ensemble approach. To avoid the 
overlap problem, one needs to lock in a definite nonzero baryon sector so that 
the exponentially large contamination from the zero-baryon sector is excluded. To 
see this, we first note that the fermion determinant is a superposition of multiple 
quark loops of all sizes and shapes. This can be easily seen from the property of 
the determinant 

detM = e ^ = l + £ ^ ^ . (8) 
n = l 

Upon a hopping expansion of log M, Tr log M represents a sum of single loops with 
all sizes and shapes. The determinant is then the sum of all multiple loops. The 
fermion loops can be separated into two classes. One is those which do not go across 
the time boundary and represent virtual quark-antiquark pairs; the other includes 
those which wraps around the time boundary which represent external quarks and 
antiquarks. The configuration with a baryon number one which entails three quark 
loops wrapping around the time boundary will have an energy MB higher than that 
with zero baryon number. Thus, it is weighted with the probability e~MBNtat com­
pared with the one with no net baryons. We see from the above discussion that the 
fermion determinant contains a superposition of sectors of all baryon numbers, pos­
itive, negative and zero. At zero temperature where MsNtO-t > 1, the zero baryon 
sector dominates and all the other baryon sectors are exponentially suppressed. It 
is obvious that to avoid the overlap problem, one needs to select a definite nonzero 
baryon number sector and stay in it throughout the Markov chain of updating 
configurations. To select a particular baryon sector from the determinant can be 
achieved by the following procedure:9 first, assign an U(l) phase factor e"1^ to 
the links between the time slices t and t + 1 so that the link U/W is multiplied 

168 



Finite Density Algorithm in Lattice QCD 2021 

by e l<^/e**; then the particle number projection can be carried out through the 
Fourier transformation of the fermion determinant like in the BCS theory 

i r2* 
PN = TT # e - ^ N d e t M [ 0 ] (9) 

tit Jo 

where N is the net particle number, i.e. particle minus antiparticle. Note that all 
the virtual quark loops which do not reach the time boundary will have a net phase 
factor of unity; only those with a net N quark loops across the time boundary will 
have a phase factor el(^N which can contribute to the integral in Eq. (9). Since QCD 
in canonical formulation does not break Z(3) symmetry, it is essential to take care 
that the ensemble is canonical with respect to triality. To this end, we shall consider 
the triality projection9'10 to the zero triality sector 

d e t M = ^ ] T detM[0 + fc27r/3]. (10) 
k=0;±l 

This amounts to limiting the quark number N to a multiple of 3. Thus the triality 
zero sector corresponds to baryon sectors with integral baryon numbers. 

Another essential ingredient to circumvent the overlap problem is to stay in the 
chosen nonzero baryon sector so as to avoid mixing with the zero baryon sector 
with exponentially large weight. This can be achieved by preforming the baryon 
number projection as described above before the accept/reject step in the Monte 
Carlo updating of the gauge configuration. If this is not done, the accepted gauge 
configuration will be biased toward the zero baryon sector and it is very difficult 
to project out the nonzero baryon sector afterwards. This is analogous to the situ­
ation in the nuclear many-body theory where it is known13 that the variation after 
projection (Zeh-Rouhaninejad-Yoccoz method14 '15) is superior than the variation 
before projection (Peierls-Yoccoz method16). The former gives the correct nuclear 
mass in the case of translation and yields much improved wave functions in mildly 
deformed nuclei than the latter. 

To illustrate the overlap problem, we plot in Fig.l Tr log M[(f>] for a configuration 
of the 83 x 12 lattice with the Wilson action with /3 = 6.0 and K = 0.150 which 
is obtained with 500 Z-z noises. We see that the it is rather flat in <f> indicating 
that the Fourier transform in Eq. (9) will mainly favor the zero baryon sector. On 
the other hand, at finite temperature, it is relatively easier for the quarks to be 
excited so that the zero baryon sector does not necessarily dominate other baryon 
sectors. Another way of seeing this is that the relative weighting factor e-

MBNtat 

can be 0(1) at finite temperature. Thus, it should be easier to project out the 
nonzero baryon sector from the determinant. We plot in Fig. 2 a similarly obtained 
Tr log M[<j>] for a configuration of the 8 x 202 x 4 lattice with /? = 4.9 and « = 0.182. 
We see from the figure that there is quite a bit of wiggling in this case as compared 
to that in Fig. 1 indicating that it is easier to project out a nonzero baryon sector 
through the Fourier transform at finite temperature. 
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83 x 12 /3 = 6.0 K = 0.150 Wilson action lattice 
~i 1 1 1 r 

$ f f ^ ^ ^ l > ^ ^ -

j i i i i I 

0 2 4 6 8 

(j) = 27T * x/9 

Fig. 1. Trlog M[(j>] for a 83 x 12 configuration with Wilson action as a function of <j>. 

We should mention that while we think we can overcome the overlap problem 
and the determinant detM[</>] is real in this approach, nevertheless in view of the 
fact that the Fourier transform in Eq. (9) involves the quark number N the canonical 
approach may still have the sign problem at the thermodynamic limit when N and 
V are very large. However, we think it might work for small N such as 3 or 6 for 
one or two baryons in a finite V. This should be a reasonable start for practical 
purposes. 

While it is clear what the algorithm in the canonical approach entails, there 
are additional practical requirements for the algorithm to work. These include an 
unbiased estimation of the huge determinant in lattice QCD and, moreover, a Monte 
Carlo algorithm which accommodates the unbiased estimate of the probability. We 
shall discuss them in the following sections. 

4. A Noisy Monte Carlo Algorithm 

There are problems in physics which involve extensive quantities such as the fermion 
determinant which require V3 steps to compute exactly. Problems of this kind with 
large volumes are not numerically applicable with the usual Monte Carlo algorithm 
which require an exact evaluation of the probability ratios in the accept/reject step. 
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Fig. 2. Tr log M[<j>\ for a 8 x 202 x 4 finite temperature configuration with dynamical fermion. 

To address this problem, Kennedy and Kuti11 proposed a Monte Carlo algorithm 
which admits stochastically estimated transition probabilities as long as they are 
unbiased. But there is a drawback. The probability could lie outside the interval 
between 0 and 1 since it is estimated stochastically. This probability bound violation 
will destroy detailed balance and lead to systematic bias. To control the probability 
violation with a large noise ensemble can be costly. 

We propose a noisy Monte Carlo algorithm which avoids this difficulty with two 
Metropolis accept/reject steps. Let us consider a model with Hamiltonian H(U) 
where U collectively denotes the dynamical variables of the system. The major 
ingredient of the new approach is to transform the noise for the stochastic estimator 
into stochastic variables. The partition function of the model can be written as 

J[DU]e-H^ 

J[DU][Dt]Ps(Of(U,t). (11) 

where f(U, £) is an unbiased estimator of e~H^ from the stochastic variable £ and 
P$ is the probability distribution for £. 

The next step is to address the lower probability-bound violation. One first 
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notes that one can write the expectation value of the observable O as 

(O) = j{DU}[DH\ Ps(0O(U) sign(f) \f(U,0\/Z, (12) 

where sign(f) is the sign of the function / . After redefining the partition function 
to be 

Z = J[DU][Dt]Pt(t)\f(U,0\, (13) 

which is semi-positive definite, the expectation of O in Eq. (12) can be rewritten as 

(O) = (0(U) sign(/))/(sign(/)). (14) 

As we see, the sign of f(U, £) is not a part of the probability any more but a part 
in the observable. Notice that this reinterpretation is possible because the sign of 
/(£/, £) is a state function which depends on the configuration of U and £. 

It is clear then, to avoid the problem of lower probability-bound violation, the 
accept/reject criterion has to be factorizable into a ratio of the new and old proba­
bilities so that the sign of the estimated f(U, £) can be absorbed into the observable. 
This leads us to the Metropolis accept/reject criterion which incidentally cures the 
problem of upper probability-bound violation at the same time. It turns out two 
accept/reject steps are needed in general. The first one is to propose updating of U 
via some procedure while keeping the stochastic variables £ fixed. The acceptance 
probability Pa is 

Pa(UuZ^U2,t) = m i n ( l , f f i ^ | { ) . (15) 

The second accept/reject step involves the refreshing of the stochastic variables £ 
according to the probability distribution P^(0 while keeping U fixed. The accep­
tance probability is 

Pa(U,Ci -> U,&) = min(l, j - ^ j j ) . (16) 

It is obvious that there is neither lower nor upper probability-bound violation in 
either of these two Metropolis accept/reject steps. Furthermore, it involves the 
ratios of separate state functions so that the sign of the stochastically estimated 
probability f(U,£) can be absorbed into the observable as in Eq. (14). 

Detailed balance can be proven to be satisfied and it is unbiased.12 Therefore, 
this is an exact algorithm. 

5. Noisy Monte Carlo with Fermion Determinant 

One immediate application of NMC is lattice QCD with dynamical fermions. The 
action is composed of two parts - the pure gauge action Sg(U) and a fermion action 
Sp{U) = — TrlnM({7). Both are functionals of the gauge link variables U. 
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To find out the explicit form of f(U,£), we note t h a t the fermion determinant 
can be calculated stochastically as a r a n d o m walk process 1 7 

TrinM , ™ , , , / - T r l n M , „ T r l n M . ... .„„, 
eTrlnM = j + T j . ^ ̂  _| (1 + (...))) . (17) 

^ o 
This can be expressed in the following integral 

eTrlnM 

[1 + lyf l n M r ^ l + 0(p2 - ^)r,\ lnMr?2(l + 0(p3 - \)4 lnMV3(...}, (18) 

where P^ffe) is the probability distribution for the stochastic variable r\i. It can be 
the Gaussian noise or the Z2 noise [Pn{j]i) — S(\r]i\ — 1) in this case). The latter 
is preferred since it has the minimum variance.18 pn is a stochastic variable with 
uniform distribution between 0 and 1. This sequence terminates stochastically in 
finite time and only the seeds from the pseudo-random number generator need 
to be stored in practice. The function f(U,r],p) ( £ in Eq. (11) is represented by 
two stochastic variables rj and p here) is represented by the part of the integrand 
between the the square brackets in Eq. (18). One can then use the efficient Pade-Z2 

algorithm19 to calculate the 77, lnM^i in Eq. (18). We shall discuss this in the next 
section. 

Finally, there is a practical concern that T r l n M can be large so that it takes 
a large statistics to have a reliable estimate of e ^ l n M from the series expansion in 
Eq. (18). In general, for the Taylor expansion ex = J^a;n/n!, the series will start to 
converge when xn/n\ > xn+1/(n + l)\. This happens at n = x. For the case x = 100, 
this implies that one needs to have more than 100! stochastic configurations in the 
Monte Carlo integration in Eq. (18) in order to have a convergent estimate. Even 
then, the error bar will be very large. To avoid this difficulty, one can implement the 
following strategy. First, one notes that since the Metropolis accept/reject involves 
the ratio of exponentials, one can subtract a universal number XQ from the exponent 
x in the Taylor expansion without affecting the ratio. Second, one can use a specific 
form of the exponential to diminish the value of the exponent. In other words, one 
can replace ex with (e(^-^o)/N^JV t o satjsfy \x _ x0\/N < 1. The best choice for xo 
is x, the mean of x. In this case, the variance of ex becomes es /N — 1. 

6. The Pade-Z2 Method of Est imating Determinants 

Now we shall discuss a very efficient way of estimating the fermion determinant 
stochastically.19 

6.1. Pade approximation 

The starting point for the method is the Pade approximation of the logarithm 
function. The Pade approximant to log(z) of order [K, K] at ZQ is a rational function 
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N(z)/D(z) where deg N(z) — deg D(z) = K, whose value and first 2K derivatives 
agree with logz at the specified point ZQ. When the Pade approximant N(z)/D(z) 
is expressed in partial fractions, we obtain 

whence it follows 
K 

log det M = Tr logM « 60TrI + £ bk • Tr(M + c fcI)_1. (20) 
fc=i 

The Pade approximation is not limited to the real axis. As long as the function 
is in the analytic domain, i. e. away from the cut of the log, say along the negative 
real axis, the Pade approximation can be made arbitrarily accurate by going to a 
higher order [K, K] and a judicious expansion point to cover the eigenvalue domain 
of the problem. 

6.2. Complex Z? noise trace estimation 

Exact computation of the trace inverse for N x N matrices is very time consuming 
for matrices of size N ~ 106. However, the complex Z2 noise method has been shown 
to provide an efficient stochastic estimation of the trace.18 '20 '21 In fact, it has been 
proved to be an optimal choice for the noise, producing a minimum variance.22 

The complex Z2 noise estimator can be briefly described as follows.18'22 We 
construct L noise vectors r?1,7/2, • • •, rjL where if = {i^, rf2, rf3, • • •, rfN}T, as follows. 
Each element rfn takes one of the four values {±1, ±1} chosen independently with 
equal probability. It follows from the statistics of rfn that 

1 L 1 L 

E[< Vn >} = E[- £ rfn] = 0, E[< V*mVn >] = E[- £ r « ] = <W (21) 

The vectors can be used to construct an unbiased estimator for the trace inverse of 
a given matrix M as follows: 

1 L N 

E[< r/tM-S >] E £ [ ^ ^ rtiM-)njn] 

= E AC + ( £ M-]n)[± £ « ] 

= TrM" 1 . 

The variance of the estimator is shown to be22 

a2
M = Var[< ^ M " 1 ^ >] = E [| < ^M"1?? > -Tr M"1]2] 

1 N 1 N 

= - £ M-\(M-\r = z £ IM-^I2 . 
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The stochastic error of the complex Z2 noise estimate results only from the 
off-diagonal entries of the inverse matrix (the same is true for Zn noise for any 
n). However, other noises (such as Gaussian) have additional errors arising from 
diagonal entries. This is why the Z2 noise has minimum variance. For example, 
it has been demonstrated on a 163 x 24 lattice with j3 — 6.0 and K = 0.148 for 
the Wilson action that the Z2 noise standard deviation is smaller than that of the 
Gaussian noise by a factor of 1.54.18 

Applying the complex Z2 estimator to the expression for the TrlogM in Eq. 
(20), we find 

5>fcTr(M + Cfe)'1 

k 

= iEEwt^, (22) 

where £*••>' = (M + cfcI)~ V 
are the solutions of 
(M + ckI)dk'j = r?, (23) 

Since M+Cf.1 are shifted matrices with constant diagonal matrix elements, Eq. (23) 
can be solved collectively for all values of Ck within one iterative process by several 
algorithms, including the Quasi-Minimum Residual (QMR),23 Multiple-Mass Min­
imum Residual (M3 R),2 4 and GMRES.25 We have adopted the M3 R algorithm, 
which has been shown to be about 2 times faster than the conjugate gradient al­
gorithm, and the overhead for the multiple Cfc is only 8%.26 The only price to pay 
is memory: for each c^, a vector of the solution needs to be stored. Furthermore, 
one observes that Cfc > 0. This improves the conditioning of (M + c^I) since the 
eigenvalues of M have positive real parts. Hence, we expect faster convergence for 
column inversions for Eq. (23). 

In the next section, we describe a method which significantly reduces the stochas­
tic error. 

6.3. Improved PZ estimation with unbiased subtraction 

In order to reduce the variance of the estimate, we introduce a suitably chosen 
set of traceless N x N matrices Q^p \ i.e. which satisfy 5Zn = 1 Qn,n = 0, p = 
1 • • • P. The expected value and variance for the modified estimator < ry^(M_1 — 
J2p=i ^PQ ( P ) )»? > are given by 

p 

E[< ^ ( M - 1 - Y^ APQ(p)))r/ >] = Tr 1VT1 , (24) 
P=i 
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A M (A) = Var[< r ^ M " 1 - £ A p Q ^ f a >} 

P = i 

(25) 
771^71 p = i 

for any values of the real parameters Xp. In other words, introducing the matr ices 

Q(p) into the estimator produces no bias, bu t may reduce the error bars if t h e Q(p) 

are chosen judiciously. Further, Xp may be varied at will to achieve a min imum 

variance estimate: this corresponds to a least-squares fit to the function rj^'M.~1r) 

sampled a t points rjj, j = 1---L, using the fitting functions { l ^ ^ Q ^ r / } , p = 

I--P. 

We now turn to the question of choosing suitable traceless matrices Q(p) to use in 

the modified estimator. One possibility for the Wilson fermion matrix M = I — KD 

is suggested by the hopping parameter — K expansion of the inverse matr ix , 

( M + C f c l ) - 1 ^ 
M + c , I (l + C f e ) ( l _ I T ^ - I D ) 

1 + Cfc (1 + Cfc) 
rD + 

( l + cfe)
: D2 + 

(1 + cfe) 
r D 3 .(26) 

This suggests choosing the matrices Q(p) from among those matrices in the hopping 

paramete r expansion which are traceless: 

Q ( 1 

Q<2 

Q<3-

Q« 

Q(2r+1 

(1 + Cfc) 
_2 

rD, 

K 

(1+Cfc) 

(1+Cfc) 

ft4 

(1 + ckf 

(l + cfc)6 

:& 

rD3, 

( D 4 - T r D 4 ) , 

D 5 

(1 + Cfc 

(1 + Cfc 

7 ( D b - T r D b ) , 

\2r+2 D 2r+l r = 3 ,4 ,5 , -

It may be verified that all of these matrices are traceless. In principle, one can 

include all the even powers which entails the explicit calculation of all the allowed 

loops in TrD2r. In this manuscript we have only included Q^ 4 \ Q ^ 6 \ and Q ( 2 r + 1 ) . 

176 



Finite Density Algorithm in Lattice QCD 2029 

6.4. Computation of TrlogM 

Our numerical computations were carried out with the Wilson action on the 83 x 12 
(N = 73728) lattice with (5 = 5.6. We use the HMC with pseudofermions to generate 
gauge configurations. With a cold start, we obtain the fermion matrix M i after 
the plaquette becomes stable. The trajectories are traced with r = 0.01 and 30 
molecular dynamics steps using K = 0.150. M2 is then obtained from M i by an 
accepted trajectory run. Hence Mi and M2 differ by a continuum perturbation, 
and log[detMi/detM2] ~ 0(1). 

We first calculate log detMi with different orders of Pade expansion around 
ZQ =0 .1 and ZQ — 1.0. We see from Table 1 that the 5th order Pade does not give 
the same answer for two different expansion points, suggesting that its accuracy is 
not sufficient for the range of eigenvalues of M i . Whereas, the 11th order Pade gives 
the same answer within errors. Thus, we shall choose P[ l l , l l ] (z) with ZQ = 0.1 to 
perform the calculations from this point on. 

Table 1. Unimproved and improved PZ estimates for log [detMi] with 100 complex Z2 noise 
vectors, K = 0.150. 

P[K,K](z) 
z0 = 0.1 

20 = 1.0 

K = 
Original: 

Improved: 
Original: 

Improved: 

5 
473(10) 

487.25(62) 
798(10) 

812.60(62) 

7 
774(10) 

788.17(62) 
798(10) 

812.37(62) 

9 
796(10) 

810.83(62) 
798(10) 

812.36(62) 

11 
798(10) 

812.33(62) 
799(10) 

812.37(62) 

In Table 2, we give the results of improved estimations for Tr logMi. We see 
that the variational technique described above can reduce the data fluctuations by 
more than an order of magnitude. For example, the unimproved error 60 = 5.54 in 
Table 2 for 400 Z2 noises is reduced to 6n = 0.15 for the subtraction which includes 
up to the Q1 1 matrix. This is 37 times smaller. Comparing the central values in 
the last row (i.e. the l l t / l order improved) with that of unimproved estimate with 
10,000 Z2 noises, we see that they are the same within errors. This verifies that the 
variational subtraction scheme that we employed does not introduce biased errors. 
The improved estimates of Tr log Mi from 50 Z2 noises with errors Sr from Table 2 
are plotted in comparison with the central value of the unimproved estimate from 
10,000 noises in Fig. 3. 

7. Implementation of the Kentucky Noisy Monte Carlo Algorithm 

We have recently implemented the above Noisy Monte Carlo algorithm to the sim­
ulation of lattice QCD with dynamical fermions by incorporating the full determi­
nant directly.28 Our algorithm uses pure gauge field updating with a shifted gauge 
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Table 2. Central values for improved stochastic estimation of log[det Mi] and rth—order improved 
Jackknife errors 5 r are given for different numbers of Z2 noise vectors, re is 0.150 in this case. 

#z2 
0 t h 

So 
1 St 

Si 
2na 

52 
3 r d 

53 
4** 

54 
5th 

55 

6 t s 

56 
•jts 

Sr 
gth, 

59 
l l t f t 

5 n 

50 
802.98 
±14.0 
807.89 
±4.65 
813.03 
±2.46 
812.07 
±1.88 
812.28 
±1.20 
813.50 
±0.82 
813.54 
±0.67 
814.18 
±0.44 
813.77 
±0.40 
813.54 
±0.38 

100 
797.98 
±9.81 
811.21 
±3.28 
812.50 
±1.65 
812.01 
±1.31 
812.52 
±0.94 
813.07 
±0.62 
813.23 
±0.49 
813.74 
±0.36 
813.62 
±0.30 
813.41 
±0.27 

200 
810.97 
±7.95 
814.13 
±2.48 
811.99 
±1.34 
811.79 
±1.01 
812.57 
±0.68 
813.36 
±0.47 
813.22 
±0.35 
813.44 
±0.26 
813.49 
±0.22 
813.45 
±0.21 

400 
816.78 
±5.54 
815.11 
±1.84 
812.86 
±1.01 
812.44 
±0.74 
812.86 
±0.48 
813.70 
±0.34 
813.28 
±0.25 
813.42 
±0.19 
813.40 
±0.16 
813.44 
±0.15 

600 
815.89 
±4.47 
814.01 
±1.50 
811.87 
±0.83 
812.18 
±0.58 
812.85 
±0.39 
813.47 
±0.29 
813.20 
±0.21 
813.39 
±0.16 
813.43 
±0.14 
813.43 
±0.13 

800 
813.10 
±3.83 
814.62 
±1.29 
812.89 
±0.72 
812.99 
±0.51 
813.25 
±0.35 
813.54 
±0.25 
813.37 
±0.18 

7 
-

1000 
816.53 
±3.41 
814.97 
±1.12 
813.04 
±0.64 
813.03 
±0.44 
813.40 
±0.30 
813.50 
±0.22 
813.26 
±0.16 

7 
-

3000 
813.15 
±1.97 

__ 

-

10000 
812.81 
±1.08 

7 
7 
-

coupling to minimize fluctuations in the trace log is the Wilson Dirac matrix. It 
gives the correct results as compared to the standard Hybrid Monte Carlo simu­
lation. However, the present simulation has a low acceptance rate due to the pure 
gauge update and results in long autocorrelations. We are in the process of working 
out an alternative updating scheme with molecular dynamics trajectory to include 
the feedback of the determinantal effects on the gauge field which should be more 
efficient than the pure gauge update. 

8. Summary 

After reviewing the finite density algorithm for QCD with the chemical potential, 
we propose a canonical approach by projecting out the definite baryon number 
sector from the fermion determinant and stay in the sector throughout the Monte 
Carlo updating. This should circumvent the overlap problem. In order to make 
the algorithm practical, one needs an efficient way to estimate the huge fermion 
determinant and a Monte Carlo algorithm which admits unbiased estimates of the 
probability without upper unitarity bound violations. These are achieved with the 
Pade-Z2 estimate of the determinant and the Noisy Monte Carlo algorithm. So far, 
we have implemented the Kentucky Noisy Monte Carlo algorithm to incorporate 
dynamical fermions in QCD on a relatively small lattice and medium heavy quark 
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Fig. 3. The improved PZ estimate of TrlogMi with 50 noises as a function of the order of 
subtraction and compared to that of unimproved estimate with 10,000 noises. The dashed lines 
are drawn with a distance of 1 a away from the central value of the unimproved estimate. 

based on pure gauge updating. As a next step, we will work on a more efficient 

upda t ing algorithm and project out the baryon sector to see if the finite density 

algori thm proposed here will live up to its promise. 

A c k n o w l e d g m e n t s 

This work is partially supported by the U.S. D O E grant DE-FG05-84ER40154. T h e 

au thor wishes to thank M. Faber for introducing the subject of the finite density 

to him. Fruitful discussions with M. Alford, U.-J. Wiese, R. Sugar, and F . Wilczek 

are acknowledged. He would also thank the organizer, Ge Mo-lin for the invitat ion 

to a t t end the conference and his hospitality. 

R e f e r e n c e s 

l. M. Alford, K. Rajagopal, and F. Wilczek, Phys. Lett. B422, 247 (1998); R. Rapp, 
T. Schaefer, E.V. Shuryak, and M. Velkovsky, Phys. Rev. Lett. 81 , 53 (1998); for a 
review, see for example, K. Rajagopal and F. Wilczek, hep-ph/0011333. 
For recent review, see S. Ejiri, Nucl. Phys. B (Proc. Suppl.) 94, 19 (2001). 
I. M. Barbour, S. E. Morrison, E. G. Klepfish, J. B. Kogut, and M.-P. Lombardo, 
Nucl. Phys. (Proc. Suppl.) 60A, 220 (1998); I.M. Barbour, C.T.H. Davies, and Z. 
Sabeur, Phys. Lett. B215, 567 (1988). 

179 



2032 K.-F. Liu 

4. M. Alford, Nucl. Phys. B (Proc. Suppl.) 73, 161 (1999). 
5. E. Dagotto, A. Moreo, R. Sugar, and D. Toussaint, Phys. Rev. B41 , 811 (1990). 
6. N. Weiss, Phys. Rev.D35, 2495 (1987); A. Hasenfratz and D. Toussaint, Nucl. Phys. 

B371, 539 (1992). 
7. M. Alford, A. Kapustin, and F. Wilczek, Phys. Rev. D59 , 054502 (2000). 
8. Z. Fodor and S.D. Katz, hep-lat/0104001; JHEP 0203, 014 (2002) [hep-lat/0106002]. 
9. M. Faber, Nucl. Phys. B444, 563 (1995) and private communication. 

10. M. Faber, O. Borisenko, S. Mashkevich, and G. Zinovjev, Nucl. Phys. B(Proc. Suppl.) 
42, 484 (1995). 

11. A.D. Kennedy, J. Kuti, Phys. Rev. Lett. 54 (1985) 2473. 
12. L. Lin, K. F. Liu, and J. Sloan, Phys. Rev. D61 , 074505 (2000), [hep-lat/9905033]. 
13. For reviews on the subject see for example C.W. Wong, Phys. Rep. 15C, 285 (1975); 

D.J. Rowe, Nuclear Collective Motion, Methuen (1970); P. Ring and P. Schuck, The 
Nuclear Many-Body Problem, Springer-Verlag (1980). 

14. H.D. Zeh, Z. Phys. 188, 361 (1965). 
15. H. Rouhaninejad and J. Yoccoz, Nucl. Phys. 78, 353 (1966). 
16. R.E. Peierls and J. Yoccoz, Proc. Phys. Soc. (London) A70, 381 (1957). 
17. G. Bhanot, A. D. Kennedy, Phys. Lett. 157B, 70 (1985). 
18. S. J. Dong and K. F. Liu, Phys. Lett. B 328, 130 (1994). 
19. C. Thron, S. J. Dong, K. F. Liu, H. P. Ying, Phys. Rev. D57, 1642 (1998). 
20. S.J. Dong, J.-F. Lagae, and K.F. Liu, Phys. Rev. Lett. 75, 2096 (1995); S.J. Dong, 

J.-F. Lagae, and K.F. Liu, Phys. Rev. D 5 4 , 5496 (1996). 
21. N. Eicker, et al, SESAM-Collaboration, Phys. Lett. B389, 720 (1996). 
22. S. Bernardson, P. McCarty and C. Thron, Comp. Phys. Commun. 78, 256 (1994). 
23. A. Frommer, B. Nockel, S. Giisken, Th. Lippert and K. Schilling, Int. J. Mod. Phys. 

C6, 627 (1995). 
24. U. Glassner, S. Giisken, Th. Lippert, G. Ritzenhofer, K. Schilling, and A. Frommer, 

hep-lat/9605008. 
25. A. Frommer and U. Glassner, Wuppertal preprint BUGHW-SC96/8, to appear in 

SIAM J. Scientific Computing. 
26. He-Ping Ying, S.J. Dong and K.F. Liu, Nucl. Phys. B(proc. Suppl.) 53, 993 (1997). 
27. S. Duane, A. D. Kennedy, B. J. Pendleton, D. Roweth, Phys. Lett. B195 (1987) 216. 
28. B. Joo, I. Horvath, and K.F. Liu, hep-lat/0112033. 

180 



International Journal of Modern Physics B, Vol. 16, Nos. 14 & 15 (2002) 2033-2038 
© World Scientific Publishing Company 

SHORT-TIME BEHAVIORS OF LONG-RANGED INTERACTIONS* 

H. FANG, C. S. HE, Z. B. LI#, S. P. SETO 

Zhongshan University, Guangzhou, China 

Y. CHEN 

Guangzhou University, Guangzhou, China 

M. Y. WU 

Dongguan Institute of Technology, Dongguan, China 

Received 15 January 2002 

Recent results on the short-time behaviors of a few models possessing a common feature 
of long-ranged interaction will be summarized. For the disorder initial state, the initial 
order increase is observed for each model in a heat-bath at the critical temperature. The 
dynamic exponents are calculated. For arbitrary initial order and environment temper­
ature, universal characteristic functions are introduced in order to generalize the scaling 
relations. Remarkable consistence between the theoretic renormalization group results 
and the simulations are found in the long-range regime. 

The short-time phenomena are those which happen at the times just after a 
microscopic time-scale ^mic 

needed for a system to forget its microscopic details, 
and much smaller than the macroscopic time scale im a c ~ r~vz. In this time regime, 
the system still remembers the macroscopic feature of the initial state. Since the 
pioneer work of H.K. Janssen et al.,1 universal short-time scaling has been found 
in a variety of different models (for a review, see Ref. 2). For initial states of zero 
correlation length and zero (or very small) initial order, the order increases in the 
short-time regime with a power law te where 6' is a characteristic exponent of the 
short-time regime. 

Recently, we generalized the results of Ref. 1 to systems with long-ranged in­
teractions,3 with an anisotropic cubic term,4 '5 and with impurities.6'7 Hopefully 
these models could describe some realistic systems. On the other hand, we expect 
that the analytical calculations for long-ranged interactions based on expansions 
around the upper critical dimensions are more reliable in physical dimensions since 

*The research is supported by the National Natural Science Foundation of China and the Advance 
Research Center of Zhongshan University. 
* Corresponding author, E-mail: stslzb@zsu.edu.cn 
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the longer range of interaction the lower critical dimension(e = la — d with a the 
decay power of the interaction). 

A common observation is that the critical exponent 6' depends on the range of 
interactions. In the theoretic renormalization group calculation, the crossover from 
the long-ranged interaction(LRI) to the short-ranged interaction(SRI) is subtle and 
needs extra effort8 since the fixed point of LRI does not continuously approach 
that of the SRI as the interaction range decreases. There is a competition between 
two fixed points in the regime of the weakly long-ranged interaction. The exactly 
solvable kinetic spherical model provides a concrete example for the short-time 
behavior of LRI.9 

In one dimension, Monte Carlo simulation is possible. The theoretic results of 
LRI can be checked numerically. In order to have a picture for the crossover of LRI 
and SRI, we simulate an adsorption-desorption model which has a dynamic phase 
transition even for SRI. 

1. Kinetic spherical model 

The Hamiltonian of the spherical model is 

i ij 

with the constraint 

£ S ? = JV (2) 
i 

where i, j are labels of lattice sites, N is the total number of spins. In the dynamic 
process, a is a time-dependent Lagrange multiplier corresponding to the constraint. 
Joyce10 first studied the static spherical model with long-ranged ferromagnetic in­
teractions. In a d-dimensional lattice, 

^ = W d + s ) / £ ^ ( d + s ) 

3 

with 0 < s < 2 for long-ranged interactions and s = a, while s > 2 for short-ranged 
interactions and a = 2. Where r^ is the distance between the sites i and j . 

The Langevin equation for this constrained spin system is 

dSj, 
dt -\aSi + \pJ2JvSJ+rIi (3) 

where A is the kinetic coefficient and rji being Gaussian white noises. 
A remarkable observation is that the ordering process (governed by the zero-

temperature fixed point) and the critical dynamics (governed by the critical fixed 
point) can be uniquely described by a characteristic function. The universal char­
acteristic function for arbitrary initial order11 is also found analytically. The gen­
eralized scaling relation for the relative order mr = (m(t) — m(oo))/m(oo) are 

mr(t, T', m0) = mr(b-% e{b, T'), <p(b, m0)) (4) 
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with X" = T/Tc. The characteristic function <p(b, TUQ) is given by 

p(&,m0) = [ 6 - * ( m 0 - 2 - l ) + l ] - * (5) 

The function e(6, T") is the solution of the following equation 

ek(b,T') = 6 _ 2 ( f c _ 1 ) T^_ ( 6 ) 

l-e(b,T') 1-T' 

Where k = d/a and z = a. At the critical point e(6,1) = 1. As mo —> 0, <p(b, mo) ->• 
bz/2mo, one attains 

m(i) ^ m o t 1 - * (7) 

That is ff = 1 - jfe/2. 
By use of the characteristic functions, the response propagator and correlation 

function have the generalized scaling forms which are valid for the times larger than 
tm;c and for an arbitrary mo, 

G p ( t , f ,mo)=p- 2 +"+^(pC( t ) ,p$( t ' ) , c (p- 1 , r ' ) ,¥ ' (p- 1 ,mo)) (8) 

Cp(tJ,m0)=p-2^g(pZ(t),pZ(t'),e(p-\T%<p(p-\mo)) (9) 

where the domain size12 £(i) ~ tp with p = 1/cr, h and g are two universal functions. 

2. Dynamic Ginzburg—Landau model 

The Ginzburg-Landau model with anisotropic cubic term has a hamiltonian 

w-/^|f(vS)2+^(v^)2+^2+|(S
2)2+|f:(o4} (io) 

where s — (sa) are n-component order parameter fields; gi and ga are the cou­
pling constants for the isotropy and the anisotropy respectively. The SRI model 
corresponds to a = 1 and b = 0, whereas for the pure LRI model a < 2, a = 0 
and 6 = 1 . The long-time relaxation behavior of the model has been extensively 
studied.10 '13-15 Here we will concentrate on the short-time behavior. 

The dynamics is given by the Langevin equation 

where A is the kinetic coefficient. The random forces £ = (£a) are assumed to be 
Gaussian distributed. 

The anisotropic cubic fixed point is stable when n > nc = 4 — 2Dae where 
Da = ip(l) — 2ij){a/2) + ip(cr) with ip(x) being the logarithmic derivative of the 
gamma function. In the two-loop level, we attained for n> nc 

H 

3(771 (_ 

n 2 - 1 8 n + 24 2(71 + 2) , , „ 

6n2 3<rn 
(12) 
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Pure P.P. 
n > 4, S < Si 

n+'l 
2<r(n+8)t 

n ^ 1, (5 > <5i or 52 
2(n-l)p+3ne 

2<r(5n+4) 

SRQI F.P. 
1 < n < 4, 5 < <52 

4CT 

n = 

LRQI F.P. 
n = 1, 6 > 53 

e 
6CT 

n = 

= 1, S < S3 

0 

1, S^e1'2 

0 

Here we have introduced 

B^K^ S^[i+x<J+{e+^n 

with e a unit vector in the 2o--dimensional space, Kia = 21~2°/[n'7T(a)}. 
For n < nc one has the same result as in the isotropic model (ga = 0 and 

a < 2 — risr, with r]sr the Fisher exponent at the SRI fixed point) 

& = - Vs+Va+ V0 
2z 

e(n + 2) 
2o{n + 8) 

1 + 
7n + 20 1 2 ( ^ 2 - 0 - 5 ^ ) ' 

[(n + 8)2 a(n + 8) 
(13) 

A discussion on the weakly long-range regime of 2 — r)sr < a < 2 is given in Ref. 8. 

3. Dynamic Ginzburg-Landau model with impurities 

The Hamiltonian with both LRI and long-range quenched impurities (LRQI) is de­
fined as 

H[S] = | ^ { i ( V t S ) 2 + ^ 2 + |f(S
2)2 + V 4!' 

(14) 

The static random-impurity noises <j){x) describe the quenched disorders (ran­
dom temperatures ) and satisfy the following configurational averages 

{<Kx))av = o, (<p(x)<p(x'))av = [9l + <?2(-v2)~p/2]<Kz - x'), 

where g\ corresponds to the SRQI, whereas 52 represents the LRQI.16 

Table 1 gives the results for d < 2a to the first order in e and p, or e1/2. We have 
defined S = e + p, <5i = 2(n + 2)e/(n + 8), 52 = 3ne/[4(n-l)] , and S3 = \{tlDa)

xl2. 
For n < 4, the impurities are relevant because of the extended Harris criterion.16 It 
is remarkable that the exponent 8' at the SRQI fixed point does not depend upon 
n for 1 < n < 4 and vanishes for n — 1. 

Rich scaling patterns are found at the upper critical dimension d = 2a. They 
are (1) the impurity irrelevant phase of n > 4 

m(t) = mo (In — (15) 
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(2) the short-range disorder phase of 1 < n < 4 
(4-n) n+2 

m(i)=m 0 (^J (hi-J (16) 

(3) Ising short-range disorder of n = 1. In this case, the one-loop exponents are 
non-universal due to the degeneracy of /^-function.6 The two-loop result is 

m(t) ~ mo exp j ( ^ - ) ^ [ ( l n ^ ) ) 1 ' 2 - (Ht/t'>))1/2] | (17) 

In the above three equations, io>*d>*o a n d *i>*2 are microscopic time-scales 

4. Monte Carlo simulations 

Monte Carlo simulation for 1-d LRI Ising model is being done.17 The preliminary 
results are encouraging. For a = 0.7, the simulation gives 9' = 0.1648. This value 
agrees with our theoretical prediction 9' = 0.1673. Contrast to this, the theoretic 
values of 9' of the SRI are 0.131 for d = 3 and 0.356 for d = 2, whereas the results 
of Monte Carlo are 0.104 and 0.191 respectively. 

We also simulated a one-dimensional adsorption-desorption process (ADP) which 
is an irreversible non-equilibrium model. Each site could be either occupied(denoted 
by Si = 1) or not-occupied(denoted by Si — 0). The possibility of adsorption is A 
(provided the site under consideration is vacant). The desorption has a long-ranged 
correlated probability 

w(8i = l->si = 0)=A £ (1-sj) ) (18) 
li-i|>o lJ l | 

By choosing A, the desorption probability is normalized to unity for the state that 
all sites are vacant. The critical exponent 9' versus the interaction range parameter 
a is plotted in Figure 1. Within the statistical error, one sees that the exponent of 
a > 2 has the same value as that of the short-range model.18 In the last reference, 
the characteristic function is also discussed. 
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We describe generalized D = 11 Poincare and conformal supersymmetries. The corre­
sponding generalization of twistor and supertwistor framework is outlined with 05p ( l | 64 ) 
superspinors describing BPS preons. The ^ BPS states as composed out of n = 32 — k 
preons are introduced, and basic ideas concerning BPS preon dynamics is presented. 
The lecture is based on results obtained by J.A. de Azcarraga, I. Bandos, J.M. Izquierdo 
and the author.1 

1. Introduction 

M-theory has been proposed as a hypothetical quantum theory describing elemen­
tary level of matter, which should incorporate and possibly explain various prop­
erties of "new string theory" (for review see e.g. Refs. 2,4). One of the features 
of such new theory of fundamental interactions should be the appearance of many 
extended elementary objects (p-(super)branes, D-(super)branes etc.) related with 
each other via duality/dimensional reductions net. Such a variety of basic objects 
in the theory makes sensible a search for some underlying composite structure. 

The basic dynamical degrees of freedom in M-theory yet are not known—there 
were presented only some proposals usually related with D = 11 space-time geom­
etry. We postulate that the composite structure of M-theory should be formulated 
in terms of new degrees of freedom related with new geometry. Because M-theory 
is supersymmetric, and supersymmetry reveals more elementary nature of spino-
rial objects, we shall postulate that the basic fundamental geometric structure in 
M-theory is spinorial. 

The only well-known part of the description of M-theory is algebraic. Assuming 
that M-theory lives in D = 11 ( this assumption is consistent with description of 
D = 11 SUGRA as the low energy limit of M-theory) we can postulate the following 

'Supported by KBN grant 5PO3B05620 
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basic D = 11 M-superalgebraa 

{Qr, QS} = zrs(rvC)rsp
k + CT k l c) r s 2H + (r[Ml_Ma]c)rs Z^-M . (i) 

where /x, f — 0 , 1 , . . . 10, r,s = 1 , . . . 32. The collection of 528 Abelian generators 
Zrs {Zrs = ZST) describes the generalized momenta in M-theory. Introducing dual 
generalized coordinate space 

xrs = (r„c)rs x» + ( r M c ) „ x^ + ( i W M c ) r s x^-^, (2) 

we obtain large generalized phase space, with coordinates and positions described 
by the adjoint representations of Sp(32) algebra. 

Let us recall the assumption of Penrose twistor formalism in D = A8,11 that 
basic spinorial degrees of freedom in twistorial theory of elementary particles are 
described by N twistors (i = 1 . . . N) 

tW = ( A « , < ^ ) , (3) 

where A^\ u^A (A = 1,2) are the pairs of D = 4 Weyl spinors. The following 
formula for the composite four-momentum is assumed9'11 

^ = X>K\ (4) 

where PAg = ^AB^- We shall propose analogous formula in D = 11 for general­
ized momenta 

N 

Z „ = £ ; A « A W , (5) 
i = l 

where Ar (r = 1 . . . 32) are D = 11 real Majorana spinors. In D = 4 the twistors 
(3) are the fundamental representations of the spinorial covering SU(2, 2) of D = 4 
conformal algebra (SU(2,2) = 50(4 ,2)) . In D = 11 there exists only minimal con-
formal spinorial algebra12 '14 describing the classical real algebra Sp(64), containing 
D = 11 conformal algebra 

50(11,2) C 5p(64; i?). (6) 

In Sect. 2 we shall consider the generalization of D = 11 Poincare and conformal 
superalgebras, supersymmetrizing the minimal D = 11 conformal spinorial algebra. 
In Sect. 3 we shall introduce in D = 11 the generalization of twistor and super-
twistor formalism, with the extensions of Penrose-Ferber relations, which relate 
05p(l |64) supertwistor space described by real coordinates (£2 = 0; R = 1 . . . 65) 

TR = (\r,u>r,0, (7) 

a T h e relation (1) is the standard, minimal M-superalgebra. One can also add arbitrary spin-tensor 
central charges (see e.g. Refs. 5,6). The most general case was considered by Sezgin.7 
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with the generalized phase space (Xrs, Prs) (see (1-2)). In Sect. 4 we shall describe 
algebraically -^BPS states by n — 32 — k superspinors (7) representing D = 
11 generalized supertwistors. These supertwistorial constituents we shall call BPS 
preons. It appears that our model geometrically corresponds to new type of Kaluza-
Klein theory, with discrete internal extension of space-time coordinates. 

2. D = 11 Conformal M-(Super)Algebra 

Let us observe that the D = 4 conformal algebra (P^, M^„, D, K^) is endowed with 
the following three-grading structure 

L\ LQ L _ I 

(8) 

Grading (8) in determined by the scale dimensions of generators 

[ D , i y = *M> I A M J = 0, [D,Ktl] = -K» (9) 

and it is easy to see that the conformal algebra (8) has two Poincare subalgebras: 
(Pn,M^) and (K^M^). For D = 4 superconformal algebra 577(2,2; 1) = (P^ 
M^v, D, A, K^; QA, QA, $A, SA) the three-grading (8) is extended to the following 
five-grading 

L\ L\j2 LQ £-1/2 L-i 
(10) 

P„ QA, QA M^V, D, A SA, SA K„ 

where consistently 

[D,QA] = \QA, [D,SA\ = - \ S A , 

[D,QA\ = \QA, [D,SA] = \SA, 

and again SU(2,2; 1) contains as subsuperalgebras the Poincare superalgebras (P^, 
M^v, QA; QA) a n d (K^M^SA^J). 

The structure of D = 11 generalized superconformal algebra, which we call 
conformal M-superalgebra is quite analogous. The D = 11 conformal M-algebra 
Sp(QA) can be in analogy to (8) described by the following three-grading 

Z/rs **-rs ^rs (12) 

528 Abeiian GL(32; R) 528 Abelian 

generators algebra generators 

We see that Sp(64) contains two copies of generalized D = 11 Poincare algebras, 
described by inhomogeneous Sp(32) algebras (Sp(32; R) C GL(32;R)) with 528 
Abelian translation generators. 
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The superextension of D = 11 conformal M-algebra 05p( l ;64) which we call 
conformal M-superalgebra is described by the following five-grading (see also Refs. 
15,16) 

L\ L1/2 LQ £-1/2 L-i 

(13) 
£*TS St 7" " T S ^ 7 * " 7 " S 

where (Qr, Sr) are the pair of 32-component supercharges, transforming as fun­
damental representations of Sp(32), with RrS C Sp(32) if RrS = Rsr. The sub-
algebras spanned by the generators (Qr, Zrs) and (Sr, Zrs) describe two copies of 
M-superalgebra given by the relations (1). 

It should be added that the gradings (12,13) correspond to the grading structure 
of real Jordanian (super) algebras.17 '18 

3. D = 11 Supertwistors and Their Relation with Generalized 
Superspace 

Let us recall two basic relations of Penrose twistor theory in D = 4 8 ' n 

(i) relation between the generators of Poincare algebra and twistor components (2) 

PAB = *A\B, (14) 

MAB = \ A WB) , MAB = ~\(A u)B) (15) 

where MAB = \{a^v)ABM'lu and MAB = ^ ( v J ^ M ' " ' 1 ' . The relations (15) 
can be extended to all 15 generators of D = 4 conformal algebra, 

(ii) Penrose incidence relation between twistor and space-time coordinates 

u>A = i\BXBA UJA = -iXABXB (16) 

where XBA = (XAB)* describe four real Minkowski coordinates if the SU(2,2) 
twistor norm vanishes 

(t,t)=i(\Au>A-\Au>A)=Q. (17) 

The relations (14-17) can be supersymmetrized. If we introduce the D = A 
supertwistor (ta,r)), which is the fundamental representation of SU{2,2; 1) with 
complex Grassmann variable rj (r/2 = rf = 0, {r/, rj} = 0), the relations (14-15) 
has been extended by Ferber19 to all generators of D = 4 superconformal group 
SU(2,2;1). 

The Penrose relations (16-17), firstly supersymmetrized in Ref. 19 look as fol­
lows 

bWe recall that {O^)AB = M^^AB^^B ~ (< 7")AB^B1 = - § < ^ " P T ( < T P T ) A B = [(07,1/)^]* 
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wA = i\B ZBA = i\B (XBA - ieBeA) 

uJA=i(xAB+i6A0B)\B 

V = XAOA rj=XA6 . (18) 

For D = 11 the generalized twistors and supertwistors are real (see (7)) and the 
real OSp(l; 64) superalgebra (R, S = 1... 64) 

{QR,QS} = RRS, (19) 

can be obtained if we assume thatc . 

RRS =TRTS QR = -i= TRZ, (20) 

where TR describes D = 11 real twistorial quantum phase space (TJRS = —TJSR is 
the 5^(64) antisymmetric metric) 

[TR,TS] = iriRS , (21) 

supplemented with trivial one-dimensional Clifford algebra relation £2 = 1. 
The relations (19) are extended to D = 11 as follows: 

wr = {Xrs - iOT 8s) \ s £ = 9r\r. (22) 

Relations (22) relate the D = 11 supertwistor space coordinates (7) with the ex­
tended D = 11 superspace (Xrs,6s), described by 528 bosonic and 32 fermionic 
coordinates. 

4. BPS States in M-Theory and Composites of BPS Preons 

The -^BPS state |fc) can be denned as an eigenstate of generalized momenta gen­
erators 

Zrs\k) — zrs\k), (23) 

such that det zrs = 0. The number k determines the rank of generalized momenta 
matrix zrs 

k 
—BPS state: {rank zrs = n = 32 - k; 1 < k < 32} . (24) 

^.Frorn (24) follows that the BPS state \k) preserves a fraction v = ^ of super-
symmetries. 

cBy Bott periodicity this realization is related with twistor framework in D = 3 (see Ref. 20), 
also with real structure. In D = 5, 6, 7 one has to use the extension of Penrose framework to 
quaternionic twistors (see e.g. Ref. 21 for D = 6). 
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We call BPS preon the hypothetical primary object carrying the following gen­
eralized momenta1 

Zirs = Xr A S . \4o) 

The formula (25) corresponds to putting n = 1 in the relation (5) and describes 
^BPS state. More general formula (5) describes the generalized momenta of a 
system composed out of n BPS preons and it describes (for 1 < n < 32) the 
^BPS state (we recall that k - 32 - n). 

The number n = 32 — k of zero eigenvalues of the matrix zrs determines the 
number of independent supercharges Qr , annihilating the BPS state |fe). These 
supersymmetries, preserving the BPS state, are called in p-brane theory the K-
transformations. We see that the supersymmetric D = 11 single BPS preon dynam­
ics should have 31 K-symmetries. Recently22 such dynamical superparticle modelsd 

with fundamental OSp(l;2n) superspinor as basic variable has been proposed. It 
should be recalled here (see e.g. Ref. 24) that in the standard super p-brane for­
mulations half of the supersymmetries are promoted to K-transformations, i.e. in 
D = 11 we obtain 16 /^-transformations. 

Using the D = 11 supertwistor description with the relations (22) and (25) pro­
viding a bridge between BPS preons and generalized space-time, we can formulate 
three different geometric pictures: 

(i) Purely supertwistorial picture, with basic phase space parametrized by BPS 
preon coordinates T^' (see (7)). The canonical Liouville one-form describing 
free action is given by the relation 

n 

fil = Y. {^^ dXir + £W dZ(i)) . (26) 

which can be supplemented by some algebraic constraints, 
(ii) Mixed geometric picture, with the components w ^ expressed by means of the 

relation (22). One obtains from (26) 

n 

n2 = ] T A « r A<*> (dXrs - i6T d6s) , (27) 
i = l 

(iii) Generalized space-time picture, with the relation (5) inserted in (27). 

0 3 = Zrs (dXrs - i9r d6s) . (28) 

The application of these three geometric pictures to the description of D = 11 
dynamics (for n > 1) is under consideration. 

d For D = 4,6 and 10 see Refs. 22,23. 
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5. F i n a l R e m a r k s 

We mention here two interesting aspects of t h e presented approach which deserve 

further attention; 

(i) geometric confinement of BPS preons 

Because the space-time coordinates a re composed out of preonic degrees of 

freedom, the D = 11 space-time point can be determined only in te rms of at 

least 16 preonic set of spinorial coordinates . This is the D = 11 extension of 

known property of Penrose theory in four dimensions wi th two twistors needed 

for the definition of composite Minkowski space-time points . 

(ii) internal symmetries 

The formula (5) expresses 528 generalized momenta in terms of 32n preonic 

spinorial coordinates A , (i = 1, . . . n ) . T h e internal symmetries can be ob­

tained by interchanging BPS preons. For the case n = 1 6 corresponding to the 

choice of v = ^SUSY one can introduce internal 0 ( 1 6 ) symmetries, leaving 

the values of Zrs invariant. 
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We have performed a Random Matrix Theory (RMT) analysis of the quantum four 
state chiral Potts chain for different sizes of the quantum chain up to eight sites, and 
for different unfolding methods. Our analysis shows that one generically has a Gaussian 
Orthogonal Ensemble statistics for the unfolded spectrum instead of the GUE statistics 
one could expect. Furthermore a change from the generic GOE distribution to a Pois-
son distribution occurs when the hamiltonian becomes integrable. Therefore, the RMT 
analysis can be seen as a detector of "higher genus integrability". 

Introduction : the quantum chiral Potts chain 

Since the pioneering work of Wigner1 and Dyson,2 Random Matrix Theory (RMT) 
has been applied successfully in various domains of physics. One motivation is to 
describe, in a united universal framework, various phenomena implying chaos3 or at 
least complexity. An extreme case is the emergence of integrability which manifests 
itself in the drastic change of the generic wignerian energy level spacing distribution 
into poissonian distribution. The first examples of this connection emerged when 
one considered simple harmonic oscillators or free fermions models. This reduction 
to Poisson distribution reflects nothing but the independence of the eigenvalues. At 
this point it is natural to ask whether this link between Poisson reduction and Yang-
Baxter integrability still holds when the solutions of the Yang-Baxter equations are 
no longer parametrized in terms of abelian varieties. The perfect example to address 
this question is the chiral Potts model for which Au-Yang et-al have found a higher 
genus Yang-Baxter solution.4 The Hamiltonian of the quantum chiral Potts chain 
first introduced by Howes, Kadanoff and den Nijs5 and also by von Gehlen and 
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Rittenberg6 is defined as : 

J V - 1 

H^Hx + Hzz = YlHjj+i = -J2Il[^-(XJr + an-(ZjZ}+ir} (1) 
j j n=l 

where Xj = IN ® • • • ® X <8> • • • ® IN and Zj = IN®---®Z<8>---® IN- Here 
IN is N x N unit matrix, while X and Z are N x N matrices whose elements 
are defined by Z^m = 5j,m exp[27ri(j — l)/iV] and Xjitn = Jj,m+i (mod N). The 
self-dual model7 corresponds to an = a^. Some spectral analysis of this model have 
been performed for the quantum self-dual model or the 3-state model.6'8 In this 
paper we examine the N = 4 (four state chiral Potts model) non self-dual case. 
The conditions for the quantum Hamiltonian to commute with the transfer matrix 
family (integrability conditions) read (see equations (33a), (33b), (33c) and (33d) 
in Ref. 9) : 

of = al al2+al2
 = a\ + <*§ (2) 

aict3 aids ' o j a.2 

{a\ - al)(2a\ - « ia 3 ) = 0, {of - o^2)(2o^2 - a^) = 0 

In order to have a real spectrum we also choose to have an hermitian hamiltonian 
restricting to conditions ai = 03 and a~\ = 03* (where the star denotes the complex 
conjugate). A possible parametrization is then : 

ot\ = a% = y/l + r + iy/1 - r, a2 = 1 (3) 

ai" = 03* = y n 2 + rn + i\/n2 —rn, a^ — n 

where r and n are real. The value n = 1 corresponds to the self dual situation. 

1. The R M T machinery. 

RMT analysis considers the spectrum of the (quantum) Hamiltonian, or of the 
transfer matrix, as a collection of numbers, and looks for some possibly univer­
sal statistical properties of this collection of numbers. Obviously, neither the raw 
spectrum, nor the raw level spacing distribution, have any universal properties. In 
order to uncover universal properties, one has to perform some normalization of the 
spectrum: the so-called unfolding operation. This amounts to making the local den­
sity of eigenvalues of the spectrum equal to unity everywhere3. In other words, one 
subtracts the regular part from the integrated density of states: one considers only 
the fluctuations. It has been found that the unfolded spectra of many quantum sys­
tems are very close to one of four archetypal situations described by four statistical 
ensembles. For integrable models this is the statistical ensemble of diagonal random 

3 The unfolding can be achieved by different means. Let us note however that there is no rig­
orous prescription and the "best criterion" is the insensitivity of the final result to the method 
employed or to the parameters (for "reasonable" variation). A detailed explanation and tests of 
these methods of unfolding are given in Ref. 10. 
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matrices and the level spacing distribution is close to a Poissonian (exponential) 
distribution, P(s) = exp(—s). For non-integrable systems it can be the Gaussian 
Orthogonal Ensemble (GOE), the Gaussian Unitary Ensemble (GUE), or the Gaus­
sian Symplectic Ensemble (GSE), depending on the symmetries of the model under 
consideration. If the hamiltonian is time reversal invariant13 the level spacing dis­
tribution is either described by the Gaussian Orthogonal Ensemble (GOE), or by 
the Gaussian Symplectic Ensemble (GSE): 

P G 0 E ( * ) = | s exp( -7 r S
2 / 4 ) , PGSE(S) = B3s4exV(-Bs2) (4) 

where B = ( | ) ^ ~ 2.263. Note that GOE can also occurs in a slightly more 
general framework ("false" time-reversal violation, A-adapted basis12). When one 
does not have any time-reversal symmetry (or "false time-reversal symmetry") the 
Gaussian Unitary Ensemble distribution should appear : 

PGm(s) = ^s2eM-^2M (5) 

To quantify the "degree" of level repulsion, it may be convenient to use a para­
metrized distribution which interpolates between the Poisson law and the GOE 
Wigner law. Among the many possible distributions we have chosen the Brody 
distribution: 

Pf}(s)= (l + /3)c2s / 3exp(-c2s / 3 + 1) , with c2 = 

1.1. Representation theory 

In the presence of symmetries, one should distinguish eigenstates according to their 
quantum numbers. This is an essential requirement of the method. For instance both 
lattice shift and shift of colour commute with the hamiltonian H. They generate a 
symmetry group S = ZL (g> Z4 which does not depend on the parameters cti,ai of 
the hamiltonian H. Since the group 5 = ZL ® Z4 is abelian one may diagonalize 
simultaneously all the elements of the group S as well as the hamiltonian H on the 
S-invariant spaces. This amounts to block-diagonalizing H and to split the spectrum 
of H into the many spectra of each block. The construction of the projectors is done 
with the help of the character table of irreducible representations of the symmetry 
group. Details can be found in Ref. 10 and Ref. 14. 

In this work we concentrate on the four-state case (N = 4) of the quantum 
hamiltonian (1). For generic r and n in parametrization Eq. (3), the total sym­
metry group is ZL ® Z4. Since the characters of Z^ (g> Z\ are complex, one has 
to use complex numbers even though the final results are real, which increases the 
programming difficulties. We always restricted ourselves to hermitian hamiltonians. 
Consequently the blocks are also hermitian and there are only real eigenvalues. The 
diagonalization is performed using standard methods of linear algebra (contained 
in the LAPACK library). 

/3 + 2 

/3 + 1 

-«-TM 

(6) 

197 



2050 J.-Ch. Angles d'Auriac et al. 

2. Results . 

We show in this paper that the RMT analysis can act as an integrability detector. 
More specifically we want to exhibit the transition to integrability when the param­
eters meet conditions Eq.(2). We thus choose to move in the a*, 57 parameter space 
along a trajectory compatible with the hermiticity of the hamiltonian, generalizing 
the parametrization (4) and crossing the integrable variety Eq.(2) : 

a.\ = a% = y/l + r + i\J\ —r , a2 = t 

o l = 03* = \ / n 2 + rn + iyn2 — rn, 0 2 = n (7) 

where t, r and n are real, with n / 1 to avoid the self-dual case. The value a2 = t = 1 
thus corresponds to the occurrence of genuinely "higher genus integrability" on this 
trajectory. 

We have constructed the quantum Hamiltonian (1), of the four state Potts 
model (1), for various linear sizes, up to size eight (L = 8), leading to matrices of 
size up to 48 x 48 = 65536 x 65536. The results, displayed below, show that the 
size L = 8 is sufficient to answer the question we addressed. Using the complex 
characters and projectors associated with the group Zi ® Z4 we have performed 
the block diagonalization of the hamiltonian. The sum of the dimensions of all the 
blocks corresponding to the 8 x 4 = 32 representations, is 48 = 65536 as it should. 
We then performed the unfolding in each block independently. The behavior in the 

L=8, R-(0,0) n-2.1, r-0.5, t-1.5, b=0.99 

T 1 1 1 r 

Fig. 1. Level spacing distribution versus GOE, GUE, GSE and Poisson. 
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various blocks (representations) is not significantly different. We also compared four 
different unfolding procedures, again getting similar results. We display the results 
on the largest size L = 8 for the best unfolding procedure, namely the gaussian 
unfolding. 

Figure 1 shows the level spacing distribution P(s), for the representation (0,0) 
and for r = 0.5, n = 2.1, and t = 1.5, which corresponds to ct\ = a^ = 1.225 + 
i 0.707, a2 = t = 1.5, en = 03* = 2.337 + i 1.833 and o£ = 2.1. 

This figure shows the energy level spacing distribution and the corresponding 
brody fit (6) for the (least square) best value found to be fibrody = 0.99. On the 
same figure the GOE level spacing distribution is also displayed, both curves are 
almost indistinguishable. The GUE or GSE level spacing distribution are clearly 
ruled out, as well, of course, as the Poisson distribution. Very similar results are 
obtained for all the distributions corresponding to the other representations and 
other values away from the integrability value #2 = t = 1. 

Let us now consider the (higher genus) integrable case which corresponds, with 
our parametrization, to a<z = t = 1. 

L=8, R=(0,0) n=2.1, r=0.5, t=1,(J=0.04 

Fig. 2. Level spacing distribution on the integrability variety. 

Figure 2 displays the level spacing distribution, compared to a Poisson distri­
bution (and also to the GOE level spacing distribution), for the integrable case 
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r = 0.5, n = 2.1, and t = 1 which corresponds to cti = a\ = 1.225 + i 0.707, 
a2=t = l, Q7 = 5 J * = 2.337 + i 1.833 and a j = 2.1. The best brody distribution 
approximation of the data is found to be for Pbrody = 0.04 using a least square 
fit. We have obtained very similar results (namely an extremely good agreement 
with a Poisson distribution) with other values of the parameters n and r, and for 
the various representations, when t is kept equal to the (higher genus) integrability 
value t = 1. 

The RMT analysis can therefore be used to detect integrability even when the 
integrability is not associated with abelian curves but is a more subtle integrability 
where higher genus curves occur. 

This extremely good agreement with an independent eigenvalues framework is 
found for t = 1 exactly. When t is slightly different from 1, one is clearly no longer 
Poissonian in agreement with the fact that the Poissonian framework should only 
correspond to the integrable value t = 1. In order to quantify the (finite size) 
transition from integrability to chaos, we calculate the best brody parameter, as a 
function of the parameter t, keeping r and n constant. Figure 3 displays (3brody, as 
a function of t, for all the representations. 

o i i i i i i i i i 

' 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 

Fig. 3. The brody parameter, as a function of the parameter t. 

These results confirm a quite sharp transition from a GOE distribution to a 
Poisson distribution. In the thermodynamic limit one can expect fibrody to be equal 
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to the G O E value fibrody — 1 for every value of the parameter t, except at point 

t = l, where t h e Poisson value Pbrody = 0 should occur. 
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We obtain an explicit expression for the defining relation of the deformed Wjy algebra, 
DWA(s[jv)g,t- Using this expression we can show tha t , in the q —> 1 limit, DWA(sljv)<3,t 

_ 27TX fe + JV 
with t = e *r q~H"~ reduces to the sl^r-version of the Lepowsky-Wilson's ^-algebra of 

-~ ~. _ 2-rri k+N 

level k, ZA(slN)k- m other words DWA(sljv)g,t with t = e N q N can be considered 
as a g-deformation of ZA(sljv)fc. 

In the appendix given by H. Awata, S. Odake and J. Shiraishi, we present an inter­
esting relation between DWA(s[jv)g,t and ^-function regularization. 

1. Introduction 

One of our motivation for study of elliptic algebras (deformed Virasoro and W alge­
bras, elliptic quantum groups, etc.) is to clarify the symmetry of massive integrable 
models. Massive integrable models includes quantum field theories with mass scale 
and solvable statistical lattice models. Typical examples of the latter are models 
based on s^: Andrews-Baxter-Forester (ABF) model and Baxter's eight vertex 
model. About these models we know the following:1 

model 

Boltzmann weight 

algebra 

gradation 
(energy level of He) 

space of states 
free field 

realization 

ABF (III) 

face type 

B«,A(al2) 
(B®{P,e«} = C7,,p(«[2)) 

homogeneous gradation 

irr. rep. space of DVA 
direct 

(construction of VO) 

8 vertex 

vertex type 

Aq,p(sl2) 

principal gradation 

irr. rep. space of Aq,p(sl2) 
indirect 

(map to ABF) 

"Talk at the APCTP-Nankai Joint Symposium on "Lattice Statistics and Mathematical Physics", 
8-10 October 2001, Tianjin China. 
todake@azusa.shinshu-u.ac.jp 
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In order to obtain more direct free field realization of the eight vertex model 
and its higher rank generalization, it may be useful to study (deformed) current 
algebras of sljv in principal gradation. Motivated by this, Hara et al.2 studied 
free field realization of the Lepowsky-Wilson's Z-algebra3 and found some relation 
between the deformed Virasoro algebra (DVA) and .Z-algebra. Recently Shiraishi 
constructed a direct free field realization of the eight vertex model with a specific 
parameter p = q3, where the type II vertex operator is given by the DVA current.4 

In this article we extend the relation between DVA and .Z-algebra to the higher 
rank case. In section 2 we present an explicit expression for the defining relation 
of the deformed WM algebra. This is a main result of this article. In section 3, by 
using this explicit expression, we show that the deformed W}v algebra reduces to 
the sljy-version of the Lepowsky-Wilson's Z-algebra in some limit. In the appendix 
given by Awata, Odake and Shiraishi, we present an interesting relation between 
the deformed WN algebra and ^-function regularization.5 

2. Deformed Wjv Algebra 

2 . 1 . Definition 

Let us recall the definition of the deformed WN algebra, DWA(s[jv)g,t-
6'7 It is defined 

through a free field realization. This algebra has two parameters(g and t), and we set 
t = q13 and p = qt_1. Let us introduce fundamental bosons hl

n (n 6 Z ; i = 1, • • •, N 
; J2i=iPinK. = 0) which satisfy 

K,HJ = - - ( i - gn)(i - t~n) v_ pNn P
N n e { i < j ) s n + m , 0 , (i) 

where 0(P) = 1 or 0 if the proposition P is true or false, respectively. Exponentiated 
boson Ai(z) (i = 1, • • •, N) is defined by 

\t(z) = : e x p ( £ htnz-n) : q^h°p^-\ (2) 
ra^O 

Here : * : stands for the usual normal ordering for bosons, i.e., hl
n with n > 0 

are in the right. By using this Aj(z), DWA(sljv)q,t current Wl(z) = E « e z ^ n z _ n 

(i = 1, • • •, TV — 1) is given by 

W*(z)= £ :Ah(p^z)AJ2(p^Z)...Aji(p-^z):, (3) 
l<j l<J2<"-<ji<W 

and we set W°(z) = WN(z) = 1. (Remark that Aj(z) corresponds to the weight of 
vector representation of sljv and Wl(z) corresponds to the i-th rank antisymmetric 
tensor representation.) DWA(sljv)g,t is defined as an associative algebra over C 
generated by W^.a 

a I t is also defined as a commutant of the screening currents.6. 
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The highest weight state |A) is characterized by Wn\X) = 0 (n > 0) and W&\\) = 
to* (A) | A) (wl(X) G C), and the highest weight representation space is obtained by 
successive action of WLn (n > 0). 

Since DWA(slN)q,t has two parameters^ and t), we can take its various limit 
by relating q and t. In the following limitb 

T- -*T J « = e,i> / i - > 0 
L a m t I : i t = gt>, /3:fixed (ao = V 3 - ^ ) , ( 4 ) 

DWA(s(jv)q,t reduces to the WN algebra with the Virasoro central charge c = (N — 
1)(1 - N(N + l)ao) because the g-Miura transformation of DWA(sljv) becomes the 
Miura transformation of WN algebra. Each DWA current Wl(z), however, reduces 
to some linear combination of WN currents. 

2.2. Relation 

In order to write down relations between DWA currents, we define the delta function 
6(z) = 2 „ G Z zn and the structure function fl,:>{z) = Yle>o fl'*2* (1 ^ M ^ -N-l ) , 

It has been expected that DWA currents satisfy quadratic relations, P^{^-)W%{z\) 
W:>(z2) — W^{z2)W%{z\)PA{^-) = (terms containing delta function), in mode ex­
pansion it becomes 

m, wi] = - £ fiJ (wLtwi+i - wi_twi+l) 
£>1 

-(-(contribution from the terms containing delta function). (6) 

For i = 1 and j > 1 case, the relation is6 '7 

fl>i{%)W\zx)Wt{z2) - W\Z2)W\Zl)P'\%) (j > 1) 

= -{1~f^~t~1\KP^%)W3+1(Ph2)-5(p-i¥%)WJ+\p-h2)), (7) 

and for i = 2 and j > 2 case, the relation is7 

/ 2 J ( a ) W 2 ( Z l ) W ( z 2 ) - Wi(z2)W
2(Zl)P'2(%) U > 2) 

i - p ( i - p ) ( i - P
2 ) 

( i _ g ) ( i _ r i ) 

I-P 
•(5(pi%)0

oW
1(p-h1)W

j+1(piz2)l 

bUsually we call this limit as a conformal limit. However there are many other limits in which the 
resultant algebras are related to conformal field theory. 
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-s(p-^yow
1(piz1)w^1(P-iz2yo) 

+(1" t-pr~1)2 (^(r^'+'fr*) + T^wi+2^) ^ 
-*(p"*S)(r^^+2(^) + i r ^ ^ V 1 * ) ) ^ 

Here a normal ordering for currents ° * ° is denned by 

SW*(rz)W"'(z)° 

OO 771 

= E E E # ' ' (rm-eWimWl+m + r ' - » - 1 e m . 1 r m + 1 ) • z-», (9) 
n€Z m=0 ^=0 

where y^r stands for ^«>o z™- ^ u e *° this n o r m a l ordering, infinite sums in the 
RHS of (6) become finite sums on the highest weight representation space. 

Eqs.(7) and (8) are directly calculated by using the commutation relation of h%
n. 

In principle, we can continue this calculation for i > 3 cases, but in practice it is 
hopeless. So we use another method: fusion and induction. To write down general 
formula, we extend the range(0 < i < N) of Wl{z) and that(l < i, j < N - 1) of 
P'j{z) toieZ and i , j e Z respectively ; W\z) = 0 for i < 0 or i > N, and f'j(z) 
is given by (5) for all i, j G Z. 

Explicit expression of the defining relation of DWA(s[jv)gj4 is as follows: 

f'j(^)Wi(z1)W\z2) - W^(z2)W
i(z1)f'

i(^) (0<i<j<N) 

y fc=l J = l 

x(d(p^i+kfi)f-
k'j+k{p-i^)Wi-k(p-h1)Wi+k(ph2) 

-8{p-^+k^)f-k'j+k(p^i)wi-k(ph1)w
j+k(p-h2)), (io) 

. i . (1 — qz)(l — i - 1 z) . . . . 
where 7(02z) = —7- 77- r—• We can rewrite the RHS of this relation in 

(l-z)(l-pz) 
terms of the normal ordering ° * ° by repeated use of the following formula, which 
is obtained from (9) and (10), 

fi'j(r-1)Wi(rz)Wj(z) (0<i<j<N) 

= iw*{rz)W{z)i+(1'f:rl)En^) 
V 
y fe=i 1=1 

( _ ^+k)f
i-k'i+h(P-Lii)wi-k(p1^tJ1z)w^k(ph) 

l _ ^ f i - W ^ ) w i - k { p - ^ z ) W J + k { p - ! t z ) \ { n ) 

,1—rp 

1 — rp 
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where r e C is a "good" number (such that it does not give poles, see (15)). For 
example, (8) is easily recovered by (10) with i = 2 and (11) with i = 1. 

In order to prove (10) we present some formulas. Direct calculation shows 

f1'i(p±'^z)fi'j(z) = f+^ip^z) x \ \ i=i±1 * < \ (j> 1), (12) 
L7U> 2 z) t>j 

f1'i(p±(^i+k)z)f1^(z) = f1'i-k(P
±i^z)f1'j+k(p±%z) 

(i,j,i-k,j + k>l), (13) 

f1'i(p±^iz)f^(z) = f^+i(p±^h(p±h) ( M > 1 ) , (14) 

and fa'b in the RHS of (10) is regular. By computing {\\f'j {^)Wi{z1)W^ {z2)\\) 
in the free field realization, we can show that (10) implies 

Poles of fi'j(^)Wi(zi)W^(z2) (0<i<j<N) are 

ZL=p±{^+k) (l<k<min(i,N-j)), (15) 

because (Xlf1^ {^)Wt(zi)W:> (z2)\X) is a Taylor series in ̂ -, and for any states of 
the highest weight representation space, \ip) and \<j>), (ip\f'l,:'(^)W"l(zi)WJ(z2)\4>) 
differs from {\\fh:'(fL)Wl(zi)W:>(z2)\\) only for finite number of terms (Laurent 
polynomials in z\ and z2), which do not create other poles. (See also Appendix C of 
Ref. 9 where different notation is used.) Therefore fa>bWaWb in the RHS of (10) is 
regular and we can reverse its order, fa>b(pc)WaWb = fb<a(p-c)WbWa. From (7) 
(or by using the free field realization), we have the following fusion relation 

lirn^ {l-p±^^)f1'j(^)W1(z1)W^z2) 

= T ( l - g ) ( l - * ~ a ) ^ + l ( p ± l Z 2 ) ^<j<N)f 

and if (10) is correct, (10) implies 

(16) 

^ (1 ~P:fipf2)f
J'WWj(z2)W

i(z1) 

= ±(-l~ ^ ~ * - 1 ) f[i(pl+li) • Wj+i(p^Zl) (0<i<j<N). (17) 

Proof of (10) : (i) The case i = 0 and i < Vj < N, and the case j - N 
and 0 < Vi < j are trivial, (ii) The case i = 1 and i < Vj < N, i.e. (7), is 
already proved, (iii) Let us assume (10) holds for i(< N) and i < Vj < N. We 
will show (10) holds for i + 1 and i + 1 < Mj < N. (For i = N — 1, we have 
i + l = N<j = N. Therefore it is sufficient to consider i < N — 1 and j < 
N.) Multiply f1'i(^)fhj(^)W1(z3) from left to (10) with i > 1 (whose second 
fa'b(pc)WaWb

 t e r m
3

i n the RHS is replaced by reversed order one fb'a(p~c)WbWa), 
rewrite / l j ' ( f f )W 1 (^ )W j (z 2 ) = P ' H f )W^{z2)W

1{z3) + - • • by using (7), multiply 
n-oUi- t - 1 )^ "~P - lT~;r)> an(^ t a ^ e a ^ r a ^ Z3 ~~̂  P _ i ^ z i - By using (12)-(16) and 
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(17) (with j —> j + 1), studying poles carefully and replacing z\ —tp^zi, we obtain 
(10) with i -* i + 1 (2 < i + 1 < j < N). (iv) Therefore we have proved (10) by 
induction on i. rj 

3. Relation to Z-Algebra 

Affine Lie algebra slff is an associative algebra over C with the Chevalley generators, 
ef and hi (i = 0 ,1 , • • •, N — 1), which satisfy 

[hi, hj] = 0, [hu ef] = ±Oijef, [ef,ej] = Sijhi, (18) 

and the Serre relation {&Aef)1~aiief = 0 (i ^ j), where (a,ij)o<ij<N-i is the 
Cartan matrix of A\<!_1 Dynkin diagram.10 This algebra admits various gradations 
and we denote its grading operator as d and p for the homogeneous and principal 
gradation respectively, which satisfy 

homogeneous gradation : [d, ef] — ±ef5io, ,.._.. 
principal gradation : [p, ef] — ±ef. 

In current basis SIN is given as follows: 
homogeneous gradation 
generators : Hl

n, E„'1 {n £ Z, 1 < i < N — 1), k : center, d : grading operator. 
relations : 

[Hi, Wm] = kaijn6n+mt0, [Hi E±>>] = ±aijE^m, 

[E+-*, E~^] = S*(Hl
n+m + knSn+m,0), [d, Xn] = nXn (X = H\ E^),(20) 

and [E„'%,E^] = [^nl*i,-Em+i] and the Serre relations which we omit to write 
explicitly, where (a,ij)\<ij<M-i is the Cartan matrix of AJV-I Dynkin diagram. 
principal gradation Let us set u = e~^. Symbol = stands for = (mod N). 
generators : (5n (n £ Z, n ^ 0), £„ ' (n G Z, 1 < p < N — 1, p is understood as 

mod TV), k : center, p : grading operator. 
relations : 

[/?„, pm] = kn6n+m,0 (n, m # 0) , [/3„, ajM] = (1 - a T " " ) ^ 

r>) xMi = J (<^Mm " w - w ) ^ } (M + v± 0) 
L n > m J ^ ( w - M m _ ^ n ) / ^ + A ; n W ^ ^ + m , o (M + V = 0) , 

[ p , X n ] = X n (X = (3,x^), 

(21) 

and the Serre relations. 
Since these two current basis are basis of the same Lie algebra sljy, they are related 
by linear transformation, 

N-u N 

PNm+v - 22 Em+V + 2J ^™ 
ii,i+v—N 
•'m+l 
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N-v N 

» ̂L+, = E^ii+u~1)E^+'/+ E uf^-vifttr", (22) 
J V - 1 

.00 _ v LUHHjp k K 

where m E Z and 1 < fJ,, u < N— 1. Here, for simplicity of the presentation, we have 
introduced glN generators E%j (n G Z, 1 < i, j < AT), which satisfy [E^,E1^'] = 
pi E^m — 6%* E^^ + 6li Sjt kndn+m,0, and the generators in the homogeneous 
picture are expressed as E+'* = E%i+1, E'^ = E^1'* and H^ = E^ - El

n
+1'i+1. 

We remark E^ = [E]£, El,ltm] (i ¥= J) a n d this RHS is independent on I and m. 
Next let us consider the splitting of the Cartan part: 

( S(JV generator) = (exponential of Cartan generators) x (new generator), (23) 

where new generator commutes with Cartan generators. For homogeneous grada­
tion, the algebra generated by these new generators is known as the (sljv version of) 
parafermion algebra of level k. For principal gradation, we name it as (sljv-version 
of) Z algebra of level k, ZA(sIjv)fc- (N = 2 case was studied by Lepowsky and 
Wilson.3) Explicitly the generators of ZA(slN)k, z£ (n e Z, 1 < fi < N - 1, fi is 
understood as mod N), are obtained by 

( C ) = : e x p ( - ^ i ( l - ^ " ) / 3 n r n ) :*"(C), (24) v s y - . ^ n k 

where : * : stands for the normal ordering for boson (3n and we have introduced 

currents XM(Q = E n e z ^ C - " a n d ^(0 = E n e z ^ C ~ n - Then (21) implies the 

relation of ZA(sljv)fc) 

^(£)^(CiK(C2) - ^(C2)^(Ci)^(|) 

kD6(cj»&) (/i + t/ = 0), 

where D = £ ^ , ^ ( C ) — EngznC™ a n d t n e structure function <7M'"(C) is given by 

5^(C) - exp(-i Y, ^ " wM")(1 " ^ " K " ) - (26) 
n > 0 
- ^ 0 

Next we present an interesting relation between DWA(sljv)q,t and ZA(sljv)fc- Let 
us consider the following limitc: 

Limit II : \ ; _\ k_±si 27 
L t — u q « , K : fixed. 

cFor this choice of t = u; *g w , we cannot take Limit I because /3 = ^ ± ^ — | ^ | depends on H. 
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We assume that DWA currents Wl(z) have the ^.-expansion 

W^p^C) = hu^z\Q + 0(h2). (28) 

Then, under the Limit II, we can show that the relation of DWA(slN)q,t (10) reduces 
to that of ZA(sljv)fe (25). (Eq.(10) begins from h2 term and its coefficient is (25). 
We remark that in this derivation we do not use free field realization at all.) In 

-—•. - k-\-N 

other words, DWA(s[jv)g,t with t = UJ q N can be considered as a ^-deformation 
of ZA(sljv)fc; which we denote as DZA(sljv)fe, 

DZAfeU)* = DWA(sljv) ^ . (29) 
q,t=w~1q N 

Concerning the free field realization, however, our assumption (28) does not hold 
on the Fock space except for N = 2 case. But calculation of some correlation func­
tions supports the assumption (28); We have checked (A|W/1(^i) • • • W1((^n)\X) = 
0(hn) for n < 6. We guess that the assumption (28) holds on the level of correla­
tion functions, or, on the irreducible representation space obtained by taking some 
BRST cohomology. For N = 2 case, (28) holds on the Fock space, and screening 
currents and vertex operators of DVA (after some modification of zero mode) reduce 
to those of ZA. 

Finally we mention the character of DZA(sl2)fc for k € Z>2, i.e. that of DVAg!t = 
DWA(si2),,t with t = e-niq*¥. We write W1^) and w1(X) as T(() and A respec­
tively, e.g., the highest weight state is defined by Tn\\) = X\\)5no (n > 0). Since 
degenerate representations of DVA occur at A = Ar,a = t%q~i + i ^Sg i , 1 let us 
consider A = A: j+i±z (J = — f>— f +1>'" ' ) f ) representations. Grading operator p 

satisfies [p, Tn] — nTn and —p\X) — (4LX2) ~ I ) W- ^ e character of DZA is defined 
by xf2A(T) = iiy~p where y = e2ntT and the trace is taken over irreducible DZA 
spin j representation space. Shiraishi and present author conjecturedd 

XDZA(T) =ym~i 1 J ] ( - i ) Y O ^ ) =»^*"*X?j!^(r). (30) 

Here Xr,s'P (T) is the Rocha-Caridi character formula1 

•y{p',p")fT\ — Y^ /y(p"r-p's+mp'p")m _ (r+mp')(s+rnp")\ /gj\ 

(2/;y)oomeZV / ' 

which gives the character of the Virasoro minimal representation when p' and p" 
are coprime, (p',p") = 1. In the above case, p' = 2 and p" = k + 2 imply that 
ip',p") = 1 for odd k but (p',p") = 2 for even A;. When q is not a root of unity, by 
studying the Kac determinant of DVA,1 we can check that (30) is true. We remark 
that the character of DZA(sl2)fc, xfZA> coincides with that of ZA(sl2)fc which is 
obtained by using the result of Ref. 11, BRST structure of principal sl2-

dWe remark that this character appears in the calculation of the one-point local height probability 
of the Kashiwara-Miwa model ( M. Jimbo, T. Miwa and M. Okado, Nucl. Phys. B275[FS17] 
(1986) 517-545). 
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Appendix A. DWA(sIjv)q ,t a n d ^-function regularization 
(by H . Awata , S. Odake a n d J . Shiraishi) 

In this appendix we present an interesting relation between DWA(s[jv)g,t and £-
function regularization.5 

In string theory,12 the physical state condition is given by (L0 - l)|phys) = 0 
(and its antichiral counterpart), where LQ is the zero mode of the Virasoro gen­
erator. This condition and the space-time dimension are derived by careful study 
of string theory (Lorentz invariance in the light-cone gauge, nilpotency of BRST 
charge, etc.), but there is a shortcut method, ( function regularization method. 

First we illustrate this method by taking a bosonic string theory as an example. 
In the light-cone gauge the Virasoro generator Ln is given by Ln = Y%t\ EmeZ \ 
: al

n_maz
m : where a%

n (n G Z, i — 1, • • •, 24) satisfies [a'n, a
3
m\ — nSzj6n+mfi and : * : 

stands for the normal ordering. The Virasoro zero mode without the normal order-

ing is Lg°N° = YZx E „ e z K X = E i = ! E n e z \ •• °tn< : +12"E„>o™"- Of 
course the sum " 53n>o n " 1S divergent and this expression is meaningless. But we 
replace the sum "X^ n >o n " by C(—1), where £(z) is the Riemann £ function. Then 
the above physical state condition is equivalent to the condition that the Virasoro 
zero mode without the normal ordering annihilates the physical state: 

LS° N ° |phys)=0 , i g o N O = L0 + 12C(-l), (A.l) 

because of the value £(—1) = — ̂ . We might say that the Virasoro generator 
"knows" the value C(~l)-

Next let us mimic the above procedure for DWA(slN)qj case. DWA current with­
out the normal ordering becomes Wi n o N O(z) = " / M ( l ) _ * " w\z), where " / M ( l ) " 
is divergent for generic (3 (recall t = q@ and q = eh). Let a\m be coefficients 
of the following ^-expansion (1 - <?")(! - t~n) \ ^ ^NI'" = E m >o 4™ W " -

Then /••*(*) is /*•*(*) = e x p ( £ „ > 0 £ E r o >o 4m(nh)2m zn). We define (-regularized 
/c-reg (1) ^ exchanging these summations over n and m and replacing ^2n>0 n 2 m _ 1 

with ((1 — 2m) as follows: 

/ ^ e g ( l ) = e x p ( £ 4 m C ( l - 2m)h2m). (A.2) 
m>0 

In the Limit I (4), DWA current behaves as Wl{z) = (^) + 0(h2), which can be 
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shown by using free field realization.7 So we require that /3 = ^ ^ or j$rj, which 

corresponds to the vanishing Virasoro central charge, and the zero mode of t h e i - th 

DWA current without normal ordering takes the above value ( i ) on the vacuum 

s ta te |vac), which is characterized by ft^|vac) = 0 (n > 0, Vi), 

W, i noNO |vac) = (^) |vac), W* n o N O(z) = / ^ e g ( l ) ^ W\z). (A.3) 

Since we can show Wd|vac) = ^ |vac), this requirement implies 

ĵyĵ UjT, [n]! = [n] • • • [1] and [n] = p | ~ p ~ f • We can check that this 

x2n (0 < \x\ < IT) and ((1 - 2m) = ( - l ) m f ^ (m = 1,2,---). Here Bn is the 
Bernoulli number defined by ^ + f = 1 + £ „ > O ( - 1 ) ' 1 _ 1 ( ! ? 7 T : E 2 " (M < 2*r). 

where 
L ' J L « - J » L - " — - J = " • ' - * - " - " p3-p~2 

equation really holds by using formulas log(sinha;) = log a; + Z ^ o C - ! ) " - 1 2 (2n)!n" 
Bm 
2m 

(_1\n-l 
(2n)! 

Therefore we might say that DWA(sljv)g,t (with t = g T r ^ K + r ) for each TV 

"knows" all the values ( (1 - 2m) (m = 1,2, • • •)• 
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In order to achieve in configuration space a dimensional reduction from dimension two 
to dimension one, the lowest Landau level (LLL) projection, also called the Peierls 
substitution, is not sufficient. One has also, once in the LLL, to take the vanishing 
magnetic field limit. 

It is commonly believed that projecting a bidimensional (2d) 1-body system onto the 
LLL of an external homogeneous magnetic field makes it essentially unidimensional 
(Id), due to the dimensional reduction of the 1-body phase space from four to two 
dimensions. Numerous applications have used this line of reasoning, usually referred 
to as the Peierls substitution.1 Starting from a 2d Hamiltonian 

H = -2dd + uc{zd - zd) + \u\zz + V^z, z) (1) 

for a particle in a scalar potential V\(z,z) coupled to a strong magnetic field (we 
assume without any loss of generality that eB > 0, u>c = +eB/2 is half the cyclotron 
frequency) and projecting it onto the LLL 

iKz) = f{z)e-^zz (2) 

where f(z) is analytic, one obtains an eigenvalue equation which, in its modern 
reformulation,2 rewrites as 

wc+:V1(z,±d)!)f(z)=Ef(z) (3) 

where the normal ordering :: means that — d is put on the left of z. Clearly, the 
commutative 2d space has been traded for a non commutative space (Id phase 
space like) 

[-70.,*] = -7 (4) 

However, this system is still bidimensional, as can be readily seen on its partition 
function, which, in the simplest case Vi = 0, scales like the 2d infinite surface of 
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the plane. I will argue that in order to achieve an actual dimensional reduction, i.e. 
not only in phase space but also in configuration space, the LLL projection is not 
sufficient per se. One has also, once the system has been projected onto the LLL, 
to take the vanishing magnetic field limit.3 

Firstly, it might be objected that taking the 5 —> 0 limit in the LLL is counter 
intuitive: the LLL projection is physically justified when the cyclotron gap is large 
compared to the temperature and/or the potential (hojc » kT,hwc » V\) so 
that the excited states above the LLL can be ignored. Thus the LLL projection 
is associated with a strong B limit, and clearly such an interpretation becomes 
meaningless when the magnetic field vanishes. However, the algorithm proposed 
here -LLL projection, then B —> 0 limit-, which basically amounts to ask about 
the whereabouts of the LLL Hilbert space in the particular limit when its defining 
parameter, the magnetic field, vanishes, is well defined mathematically. 

Secondly, the B —¥ 0 limit in the LLL might be a priori ambiguous. Still, it can 
be given a non ambiguous meaning if the system is regularized at long distance, for 
instance by a harmonic well of frequency OJ,A and, only after i) projecting onto the 
LLL harmonic eigenstates -the LLL eigenstates deformed by the harmonic well-
ii) letting B —> 0, can one take the thermodynamic limit u —> 0. Under these 
conditions, we will see that a dimensional reduction of the configuration space from 
dimension two to one is properly achieved. 

Let us first start by a reminder about what is meant by thermodynamic limit 
in a 2d harmonic well a: the 1-body spectrum is 

Enm = (2n + \m\ + l)u (5) 

with n > 0, m positive or negative integer. Clearly, the 2d harmonic well partition 
function 

1 1 
—u>->0 

( 2 s i n h ^ ) 2 - ^ u ( / ^ ; 2 (6) 

has to be identified in the thermodynamic limit, i.e. when u = 0, with the 2d free 
partition function Z%=2 — V/(2ir/3), where V is the infinite surface of the 2d plane. 
Therefore the 2d thermodynamic limit prescription should be that when UJ —> 0 

Let us now consider, in the presence of a magnetic field, the Landau Hamiltonian 
here for convenience expressed in the symmetric gaugeb 

HL = -2dd + wc(zd - zd) + -OJ2
CZZ (8) 

a T h e first author to use a harmonic well regularization was E. Fermi, see cond-mat 9912229 where 
the original article of Fermi5 is translated. 
b Considering rather the asymmetric gauge where the Landau eigenstates are product of a plane 
wave on one axis and a Hermite polynomial on the other axis would not help to understand the 
dimensional reduction mechanism. 
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and its spectrum 

Enm = (2n + \m\ + l)uic - muc (9) 

with an infinite degeneracy per Landau level eBV/(2n) - the product of the infinite 
surface of the 2d plane by the magnetic field strength. In the LLL, n = 0, m > 0, 
and E = uc, the 1-body LLL eigenstates are analytic (up to the Landau gaussian 
factor) 

. . m + l 

C^—r )iz
me-^'zZ (10) 

As already said, the LLL partition function 

ZLLL = ^ e " * - (11) 

is obviously 2d since it scales like the surface V of the 2d plane. 
What happens in the limit B —»• 0? Here an ambiguity arises due to the vanishing 

field strength multiplying the infinite surface of the plane. In order to cure this 
ambiguity, let us confine the system in a harmonic well, so that the 1-body LLL 
harmonic eigenstates (i.e the deformation of the LLL eigenstates n = 0, m > 0 by 
the harmonic well) are still analytic (up to the Landau-harmonic gaussian factor) 

{-L-T)\z
me~^zz (12) 

but now the spectrum is non degenerate 

E = u)t + (ojt - uc)m (13) 

with cjt = \jw*. + u>2. The LLL harmonic partition function becomes 

ZLLL+U, = 1 _ e_0(ut.UB) (14) 

At this point, one should keep u) fixed, let B —»• 0, and then take the thermody­
namic limit u> —> 0. 

Before doing so, let us check that by keeping B fixed but taking the thermo­
dynamic limit u) —> 0, one correctly recovers ZLLL- Since, when CJ —> 0, w* — u)c ~ 
UJ2l{2u)c) one indeed gets, using the 2d thermodynamic limit prescription (7), 

e - /3o ; e eQ 

ZLLL+U — -57 r ->w=o —-Ve~^c = ZLLL (15) 

Note that what we found here is yet an other way to actually show that the Landau 
degeneracy is, in the thermodynamic limit, eBV/(2ir). 

Now in the case of interest, first set B — 0, i.e. u)t = w, then take the thermo­
dynamic limit u -> 0, one gets, still using (7), 

1 / " v d = i 
*LLL+u> = . 0W ~ - 3 - ->u;=0 \\ T^a = Zo ( 1 6 ) 

2 s i n h I^Y w->o P<^ 
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i.e. the Id partition function for a free particle on a line of infinite length L = y/V. 
At the level of the spectrum, being in the LLL and a harmonic well, and taking, as 
advocated above, the B —> 0 limit, the LLL harmonic basis (12) and spectrum (13) 
have narrowed down to 

and 

m + l 
( r)*zm, m > 0 (17) 

irm 

w(m + l) , m > 0 (18) 

This amounts to pick up on each 2d harmonic energy level (j + 1)UJ, j > 0, with 
degeneracy j +1, the eigenstate of maximal angular momentum j , and consequently 
zero radial quantum number, yielding the spectrum (18) which happens to coincide 
with a Id harmonic spectrum, provided that the 2d positive angular momentum 
quantum number m is now interpreted as the Id harmonic quantum number. 

It is therefore manifest, both on the partition function and on the spectrum, 
that a dimensional reduction from d=2 to d = l has been achieved. To put it bluntly, 
we have shown that 

and accordingly for the density of states 

PLLL(E) = ^V5(E - Wc) -»• pi=\E) = - ^ L (20) 

where PLLL(E) and pf=1(E) stand respectively for the LLL and the free Id density 
of states. Clearly, setting directly B = 0 in ZLLL or in PLLL{E) has no meaning 
whatsoever. Still, (19,20) have been given a non ambiguous meaning through the 
long distance harmonic regularization. 

Up to now one has dealt with spectra and partition functions. The same logic 
applies as well to the Hamiltonian and the eigenstates: consider (1) but now in a 
harmonic well 

H = -2dd + u)c{zB - zd) + -u%zz + Vi(z, z) (21) 

and project it onto the LLL-harmonic basis 

i>{z) = f(z)e-^zs (22) 

to obtain the eigenvalue equation6 

Lt + {ut - ujc)zd+ : V^z, - U ) :) f(z) = Ef(z) 

When B —• 0 it becomes 

u(l + zd+ : V^z, i d ) :) f(z) = Ef(z) 

(23) 

(24) 
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acting on ijj{z) = f(z)e~*zz. It is obvious that the kinetic pa r t of the Hamil tonian 

(24) is nothing but the I d harmonic well Hamiltonian in a coherent s ta te repre­

sentation, with the mapping zm -> Hm(x) between the 2d analyt ic function zm 

and the Id Hermite polynomial Hm(x). Moreover, looking at t h e potent ia l Vi, one 

realizes that the 2d commuting space has been t raded for a non commutat ive space 

In the thermodynamic limit, w —> 0, one gets an infinite non commuta t iv i ty which 

should be viewed as the signature of the dimensional reduct ion which has taken 

place from a 2d to a Id system. 
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An exactly solvable hard-core Bose-Hubbard model, which is equivalent to a mean-
filed plus nearest-level pairing theory, for a description of well-deformed nuclei is used 
and applied t o the actinide region. Binding energies and pairing excitation energies of 
226-234T h i 230-240Tji a n d 236-243pu i s o t o p e s a r e calculated and compared with the 
corresponding experimental values. 

1. In t roduc t ion 

Pairing is an important residual interaction in nuclear physics. Typically, after 
adopting a mean-field approach, the pairing interaction is treated approximately 
using either Bardeen-Cooper-Schrieffer (BCS) or Hartree-Fock-Bogolyubov (HFB) 
methods, sometimes in conjunction with correction terms evaluated within the 
Random-Phase Approximation (RPA). However, both BCS and HFB approxima­
tions suffer from serious difficulties, the nonconservation of the number of particles 
being one that can lead to serious problems, such as spurious states, nonorthogonal 
solutions, etc. Another problem with these approximations is related to the fact 
that both BCS and the HFB methods break down for an important class of phys­
ical situations. A remedy in terms of particle number projection complicates the 
algorithms considerably, often without yielding a better description of higher-lying 
excited states that are a natural part of the spectrum of the pairing Hamiltonian. 
Over the past few years progress has been made in the development of better 
algorithms that bypass the Bogolyubov transformation and thus are free of prob­
lems related to particle number nonconservation.1,2 In these approximation, either 
a configuration-energy truncation scheme or a many-body Fock-space basis cutoff 
was used, so the results were still not exact. 

'Dedicated to Professor Wu F. Y. on his 70th Birthday Celebration 
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Exact solutions of the mean-filed plus pairing model were first studied for the 
equal strength pairing model.3-5 Recently, generalizations that include state depen­
dent pairing have been considered.6-9 In these cases, the Bethe ansatz was used, 
from which excitation energies and the corresponding wavefunctions can be deter­
mined through a set of nonlinear equations. Unfortunately, solving these nonlinear 
equations is not practical when the number of levels and valence nucleon pairs are 
large, which is usually the case for well-deformed nuclei. 

2. A Hard-core Bose-Hubbard Model for nuclei 

In Ref. 9, a hard-core Bose-Hubbard model was proposed, which is equivalent to 
a mean-field plus nearest-level pairing theory. As is well known, an equal strength 
pairing interaction, which is used in many applications, is not a particularly good 
approximation for well-deformed nuclei. In Ref. 2, a level-dependent Gaussian-type 
pairing interaction with 

dj = Ae-B^-^)2 (1) 

was used, where i and j each represent doubly occupied levels with single-particle 
energies ê  and tj. The parameters A < 0 and B > 0 are adjusted in such a way 
that the location of the first excited eigen-solution lies approximately at the same 
energy as for the constant pairing case. Of course, there is some freedom in adjusting 
the parameters, allowing one to control in a phenomenological way the interaction 
among the levels. Expression (1) implies that scattering between particle pairs 
occupying levels with single-particle energies that lie close are favored; scattering 
between particle pairs in levels with distant single-particle energies are unfavored. 
As an approximation, this pairing interaction was further simplified to nearest-level 
coupling in Ref. 9, namely, Gj, is given by (1) if the levels i and j lie adjacent to 
one another in energy, with Gy taken to be 0 otherwise. Hence, the Hamiltonian 
can be expressed as 

where the first sum runs over the orbits occupied by a single fermion which occurs 
in the description of odd-A nuclei or broken pair cases, and the second primed sum 
runs only over levels that are occupied by pairs of fermions. For the nearest-level 
pairing interaction case the i-matrix is given by ta = 2ej + Ga = 2e» + A and 
Ui+i — U+u = Gu+i with tij = 0 otherwise. The fermion pair operators in this 
expression are given by 

h+ = ai+aj+, bi = ajOi, (3) 
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where Oj+ is the i-th level single-fermion creation operator and at the corresponding 
time-reversed state. The bi+ and bi satisfy the following commutation relation: 

[bi,bj
+] = 6ij(l-2Nj, [Ni,bj

+]=6ijbj
+, [Ni,bj] = -6ijbj (4) 

where Ni — \(a,i+cn + a-^aj) is the pair number operator in the i-th level for 
even-even nuclei. 

In this paper the Nilsson Hamiltonian is used to generate the mean-field. In this 
case there is at most one valence nucleon pair or a single valence nucleon in each 
level due to the Pauli principle. Equivalently, these pairs can be treated as bosons 
with projection onto the subspace with no doubly occupied levels.9 

The eigenstates of (2) for fc-pair excitation can be expressed as 

|fc; £, (njl, nj2, • • •, njr)nf) = Yl'il<i2...<ik
Chl-ik * 

hjbij • • • bij\(nh,nh, • • ^n^rif), (5) 

where ji,J2, • • •, j r are the levels occupied by r single particles, the prime indicates 
that ii, 12, •• •, ik can not be taken to be ji, J2, •••, jr in the summation, and 
n; is the total numbers of single valence nucleons, that is rif = J2j nr Since only 
even-even and odd-A nuclei are treated without including broken pair cases in this 
paper, r is taken to be 1 for odd-A nuclei, and 0 for even-even nuclei. In Eq. (5), 
^hL—ik is a determinant given by 

9^ 9^ ••• 9*1 

gj2 gf2 ••• gf2 

of" qfk . . . qf" 

(6) 

where £ is a shorthand notation for a selected set of k eigenvalues of the t matrix 
without the corresponding r rows and columns denoted as t, which can be used to 
distinguish the eigenstates with the same number of pairs, k, and g^p is the p-th 
eigenvector of the t matrix. 

The excitation energies corresponding to (5) can be expressed as 

where the first sum runs over r Nilsson levels each occupied by a single valence 
nucleon, which occurs in odd-A nuclei or in broken pair cases, the second one is a 
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sum of k different eigenvalues of the i-matrix. Obviously, i is a (k — r) x (k — r) 
matrix, since those orbits occupied by single valence nucleons are excluded resulting 
from the Pauli blocking. #(&•) is the p-th. eigenvalue of the i-matrix, that is 

Y^kg^^E^gt*. (8) 
3 

Hence 

k r 

H\k;Z,(njl,nh,---,njr)nf)= £ £ $ > ) P £ > ; + E^^)x 
h<i2<---<ik M=l P *=1 

= £fc° I*! £. ("JI . "ja ' • • n3k )»/), (9) 

where P runs over all permutations, E^^ is the /i-th eigenvalue of the i matrix. 
Eq. (9) is valid for any k. If one assumes that the total number of orbits is N for 
even-even nuclei, the fc-pair excitation energies are determined by the sum of k 
different eigenvalues chosen from the N eigenvalues of the i matrix with r — 0, the 
total number of excited levels is N\/kl(N — k)\. While for odd-A nuclei or broken 
pair cases, the levels that are occupied by the single valence nucleons should be 
excluded in the original t matrix. In the latter case, the eigenvalue problem (4) can 
be solved simply by diagonalizing the corresponding i matrix as shown in Eq. (9). 

3. Applications to Actinide Isotopes 

In this section, we try to describe nuclei in the actinide region with the mean-field 
plus nearest-level pairing model using the axial-symmetric Nilsson potential as the 
mean-field. Other than what is manifest through the mean field, the quadrupole-
quadrupole interaction is not considered. In this case, exact solutions can be ob­
tained by using the above simple method. As for the binding energy, the contri­
butions from real quadrupole-quadrupole interaction is expected to be relatively 
small.10 This conclusion applies to low-lying 0 + excited states as well as ground 
states. As shown in Ref. 11, contributions from the pairing interaction is very im­
portant to the low-lying excited 0+ states in these deformed regions. Hence, the 
position of low-lying 0 + states is an estimate based on the Nilsson mean field plus 
pairing approximation. 

In this well-deformed region there are a lot of nuclei. The parameters were fixed 
by considering the 226-234Th; 230-240TJ) a n d 236-243pu i s o t o p e s . Specifically, the 

binding energies of these isotopes were calculated. Table 1 shows the binding energy 
results as well as pairing excitation energies of the theory for 226-234']^ 230-240TJ5 
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and 236-243pu^ -wifa tjje corresponding experimental values taken from Ref. 12. 
The parameters A and B in Eq. (1) were fit as follows to maximize agreement with 
experiment: 

A = QI +/3ifc + 7ira/, B = a2 + fok + ^nf, 

where a,, Pi, and 7, are parameters that were fit for each isotope. 

(10) 

Table 1. Calculated binding and pairing excitation energies are compared with the 
corresponding experimental values for various 2 2 6-2 3 4Th, 2 3°-2 4 0U, and 2 3 6 - 2 4 3 p u iso­
topes. Bth(MeV) and Sexp(MeV) denote, respectively, the theoretical and experimental 
binding energies. 

Nucleus 

226 rTYL 

2 2 7 T h 

228rpi 

2 2 9 T h 

230rp. 

2 3 1 T h 

232 rpi 

233o-iu 

2 3 4 T h 

231U 
232TJ 

233 , J 

2 3 4 u 

235yj 

Spin 
and 

Parity 

0+ 

1 + 
2 

0+ 

5 + 
2 
0+ 

5 + 
2 

0+ 
1 + 
2 

0+ 

5 -
2 
0+ 

5 + 
2 

0+ 

7 -
2 

Bexp(MeV) 

-1730.54 

-1736.00 

-1743.10 

-1748.36 
-1755.16 

-1760.27 

-1766.71 

-1771.50 

-1777.69 

-1758.72 
-1760.00 

-1771.74 

-1778.59 

-1783.89 

Btfc(MeV) 

-1732.17 

-1733.97 

-1739.30 

-1744.42 
-1756.90 

-1764.21 

-1768.66 

-1772.92 

-1779.81 

-1761.26 
-1758.94 

-1770.23 

-1774.41 

-1780.23 

Pairing excitation 
Energies of 

Exp. 

0 2
+ 

1 + 
2 2 ^ 
1 + 
2 3 
1 + 
2 4 , 
o2

+ 

5 + 
2 2 ^ 
5 + 
2 3 
o2+ 
5 + 
2 2 ^ 
5 + 
2 3 
5 + 
2 4 ^ 
0 2

+ 

0 3
+ 

1 + 
22 
o2

+ 

03
 + 

04+ 

0 2
+ 

5 + 
2 2 ^ 
5 + 
2 3 ^ 
0 2

+ 

0 3
+ 

o4
+ 

7 -
22 
7 -
23 

(MeV) 

0.805 

3.226 

5.188 

6.495 
0.831 

0.029 

0.317 
0.635 

0.241 

0.302 

0.317 
0.730 
1.079 

0.310 
0.810 
1.150 
1.470 

— 

0.691 

0.340 

0.546 
0.809 
1.044 
1.781 

0.670 

0.700 

Pairing excitation 
Energies of 
Th. 

o2
+ 

1 + 
2 2 L_ 1 + 
23 
1 + 
5 4 , 
0 2

+ 

5 + 
22j_ 
5 + 
23 
0 2

+ 

5 + 
2 2 ^ 
5 + 
23 
5 + 
24 L 

0 2
+ 

0 3
+ 

1 + 
22 
02

 + 

o3
+ 

o3
+ 

5 -
22 

o2
+ 

5 + 
22 L 
5 + 
2 3 ^ 

o2
+ 

o3
+ 

o4
+ 

7 -
22 
7 -
23 

(MeV) 

0.999 

1.299 

1.391 

1.415 
0.718 

0.057 

0.516 
1.199 

0.907 

1.204 

1.230 
1.647 
2.585 

0.907 
1.066 
2.562 
2.904 

0.646 
0.961 

0.732 

0.803 
0.747 
0.933 
1.696 

0.826 

1.056 

223 



2076 Y. Chen et al. 

Table 1 (Continued) 

Spin Pairing excitation Pairing excitation 
Nucleus and Bexp(MeV) Bt/j(MeV) Energies of Energies of 

Parity Exp. (MeV) Th. (MeV) 

0.919 
2.155 
2.750 

0.846 

0.905 
0.925 
0.993 

0.193 

0.734 

0.757 

3.000 

0.691 

0.696 
0.942 
1.134 
1.229 
1.427 

0.753 
0.860 
1.089 
1.526 

0.233 

0.801 
0.956 

0.333 

0.450 

0.742 

0 2
+ 

0 3
+ 

0 4
+ 

l + 
32 1 + 
3 3 , 
02 + 

0 3
+ 

5 + 
32 
5 + 
23 
5 + 
24 , 

o2
+ 

o2
+ 

7 -
32 
7 -
23 
o2+ 
o3

+ 

04 + 
0 5

+ 

1 + 
32 
0 2

+ 

o3
+ 

04 + 
5 + 
3 2 ^ 
5 + 
33 
02

 + 

7 -
32 
7 -
23 
7 -
24 

0.913 
1.186 
2.319 

0.586 

0.700 
0.877 
2.874 

0.185 

0.459 

0.786 
0.100 
0.645 

0.617 

2.173 
0.407 
1.987 
2.170 
2.681 

0.354 
1.030 
2.144 
2.626 

0.088 

0.587 
1.186 

0.845 

1.146 

1.815 
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236 U 

237 U 

238 U 

239 U 

240 

236 
U 
Pu 

237 Pu 

238 Pu 

239 Pu 

240 Pu 

241 

242 
Pu 
Pu 

243 Pu 

0+ 

1 + 
2 

0+ 

5 + 
2 

0+ 
0+ 

7 ~ 
3 

0+ 

1 + 
3 

0+ 

5 + 
2 
0+ 

7 
2 

-1790.44 

-1795.56 

-1801.715 

-1806.52 

-1812.45 
-1790.46 

-1795.56 

-1801.72 

-1806.52 
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-1816.64 
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-1826.63 

-1786.71 

-1795.48 

-1802.22 

-1810.23 

-1815.41 
-1792.36 

-1795.87 

-1799.96 

-1805.12 

-1810.68 

-1816.09 
-1821.89 

-1828.63 

0 2
+ 

0 3
+ 

0 4
+ 

l + 
32, 
1 + 
33 
0 2

+ 

0 3
+ 

5 + 
32 
5 + 
33 
5 + 
24 

0 2
+ 

7 -
32 
7 -
23 
0 2

+ 

0 3 + 

0 4
+ 

05 + 
1 + 
22 
o2+ 
0 3

+ 

o 4
+ 

5 + 
32, 
5 + 
2 3 ^ 
0 2

+ 

7 -
32 
7 
33 
7 ~ 
24 
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We study the algebra An, the basis of the Hilbert space Hn in terms of 6 functions of the 
positions of n solitons. Then we embed the Heisenberg group as the quantum operator 
factors in the representation of the transfer matrices of various integrable models. Finally 
we generalize our result to the generic 9 case. 
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1. Solitons on noncommutative plane 

In the noncommutative plane i?2, the coordinates x1 and x2 satisfy the following 
relation: 

[xi,x*]=i9, (1) 

here 6 is a constant. The algebra A associated with this space is generated by the 
functions of a;1 and x2. The functional form of the algebra A is defined by the Moyal 
* product 

/ * g{x) = eieije^^J f(x)g(y)\x=y. (2) 

The derivative di is the infinitesimal translation automorphism of the algebra A: 

xi —• xi + e\ (3) 

where el is a c-number. For algebra A this automorphism is internal: 

dif{x) = i6eij[x'*, f{x)\ = i0ij[x>*, f(x)], (4) 

here 6a = 9ea 

* Email:byhou@phy.nwu.edu.cn 
tEmail:dtpeng@phy.nwu.edu.cn 
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The operator form of A is generated by Weyl-Moyal transformation. 

a* = —7=(x1 + ix2), a=—={xx-ix2), (5) 

which obey 

[a,at] = l. (6) 

Since a and a) satisfy the commutation relations of the creation and annihilation 
operators, we can identify the function / ( x 1 , x2) as the functions of a and a? acting 
on the standard Fock space % of the creation and annihilation operators: 

« = {|0>,|1), • • • » , • • • } . (7) 

where |0) and \n) satisfy: 

(aUn 
a\0) = 0, \n) = ^-p^lO), a)a\n) = n\n). (8) 

Vn! 
The Weyl-Moyal transformation maps the ordinary commutative functions onto 
operators in the Fock space %: 

f(x) = f[z = x1 — ix2, z = x1 + ix2) —> 

/ ( a , a t ) = J l0y.f{xy\P^a-z)+p{^e^--z)]^ ( g ) 

where: 

P = ^ , P=y-^. do) 
It is easy to see that if 

/ — • / , a—>g, ( i i ) 

then 

f*g-+fg (12) 

and 

' d2xf{x) —> nOTrf(a, a"1). (13) 
/ • 

The translations of R2 are generated by di which are isomorphism to A while 
applying on the Fock space H: 

di i—> iQijij. (14) 

In paper 4, Harvey, Kraus and Larsen introduced a quasi-unitary operator to 
generate various soliton solutions in noncommutative geometry. In noncommutative 
plane R2, this operator is defined as 

T^^T- (is) 
va in , 
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Acting this operator T on the basis of the Hilbert space H, we have 

T\n) = \n + 1), (n\T* = {n + l\. (16) 

and 

r | n ) (n |T t = |n + l)(n + l|. (17) 

This means that 

TPnT* = Pn+1, (18) 

where Pn = \n)(n\ denote the projection operator onto the n-th states and P% = P. 
Thus we have 

TT*\n) = \n), (n < 1) and TT*\0) = 0, (19) 

and 

TT* = 1 — |0> (0| = 1 - P 0 . (20) 

T is the quasi-unitary soliton generating operator. 

2. Solitons on noncommutative torus T and Heisenberg group 

In the noncommutative torus T, the algebra A is generated by the Wilson loop Ui, 
(i = 1,2). The arbitrary element a £ A is 

a = Y,c,ijM1Ui' (21) 

For the periodicities / and 2-KIT of the torus, the generators of the algebra A are 

£/i = eilx\ U2 = e
a{-T*xl-Tlx2). (22) 

Since [a;1, a:2] = 10 locally, so 

UiU2 = U2Uie
il2T2e. (23) 

Now let us consider the integral torus case l-^- = A G N (or Z+) i. e. the 
normalized area A of the torus is an integer. Then the Wilson loop U\ and U2 are 
commutative 

Z7iC/2 = U2UL (24) 

We orbifold T into ~— = Tn by introducing 

Wi = (Ui)±, (25) 

then on Hn, the Hilbert space on Tn, we will have noncommutative algebra An 
generated by 

WiW2 = W2Wie^ = W2WHJ (26) 
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which satisfy 

, 2-jri 

where w = e » . 

W? = W? = 1 (27) 

The Basis vectors of the Hilbert space %n are 
n 

Va = £-F-a,fc, (a = 1,2, • • ' , " ) , 
6=1 

n 1 n 

here a = (a i , 02) & Znx Zn, and 

CTQ(Z) = 5 

j = i 

i + 2 1 

L 2 ^ n 

fe=l 

(z,r). 

(28) 

(29) 

The 9 function can be transformed to a operator form by the Weyl-Moyal trans­
formation: 

6»(*) = $ > iirm T-\-2nimz 6{z) = Y^e™m2T ••U™U% 

Since 

we have 

Wi : U?W? := uj±m : U^U^ : 

WtVaizi, ...,zn)=(]l Ti*> W 2 T V 0 ( * i , •••,zn) 

W2Va{zi, • • • , Zn) = ( f[ T^Alf^Vaiz!, • • • , Zn) , 

M = l ' 

where 

T^f(z)=f(z1,---,zi + a,.-.,zn). 

Substituting the expressions of Va we get 

WiVa(zi, •••,zn) = 14+1(21, • • •, zn), 

W2Va(Zl, — ,zn) = e2^Va(Zl, • • •, z^. 

Then the algebra 

An = {Wa = Waia2 = W?1 W%2} 

is realized as the 2™ x 2™ Heisenberg matrices Ia, 

(Ia) ab — 0a-^aita2UJ 

Corresponding to the di on R2, we have a sun(7^t) acting on V.n
l% 

sun(Tn) : {Ea\a ^ (0,0)}. 

(30) 

(31) 

(32) 

(33) 

(34) 

(35) 

(36) 

(37) 

(38) 
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Here 

Ea = {-!)** va(0)Y,U 
<Tg(Zjk) £ <*a(Zji) I 

n^ffa{Zji) 
-dj 

3 k^i 

a = ( a i , a 2 ) ^ (0,0) = (n,n), 

and 

E0 = -J^dj, 

(39) 

(40) 

where Zjk — Zj — Zk, dj = -^-. The commutation relation between Ea and E7 is 

[Ea, £ 7 ] = (oj~a^ - cu-a^)Ea+J, (41) 

or in more common basis, let Eij = ^ZaM{Ia)ijEa, we have 

[Ejk, Eim\ = Ejm5ki — EikSjm. (42) 

This commutation rule can also be obtained from the quasiclassical limit of the 
representation of the Sklyanin algebra.19 

Since the Wilson loops W\ and W2 acting on the noncommutative covering torus 
T is to shift Zi to (zi + ^ — 5inr) and (ZJ + ^ — Sin) respectively, we can get the 
automorphism of E@ E s«2(T) by noncommutative gauge transformation wa G A 

WxE^Wi1 =uj-a*Ea(Zi), 

W2Ea(zi)W2;
1=uaiEa(zi). 

Let Ea £ g to act on Va, we find that 

EaVa = ^ ( I a ) 6 a K -

Next, we know that 

WaVa = ^( /Q)6aV f e , 

so on ~Hn, we establish the isomorphism: 

sun(T) ^^A; Ea*—>Wa. 

The operator form of the projection operators becomes 

-Y/W
O(}(I0)ii = Pi = \Vi)(Vi\ 

and the ABS operators is simply 

£ l O ^ W l = £ | V a + l > ( K | 

(43) 

(44) 

(45) 

(46) 

(47) 

(48) 

(49) 

231 



2084 B.-Y. Hou & D.-T. Peng 

3. The integrable models for the solitons on noncommutative 
torus T 

In this section, we will embed the sun(T) derivative operators as the "quantum" 
operator factors in the representation of the transfer matrix (Lax operator) of the 
various integrable models i.e. 

The elliptic Gaudin model on noncommutative space20 is denned by the transfer 
matrix (quantum Lax operator): 

£ « ( « ) = E wa{u)Ea{Ia)ij (50) 
a^(0,0) 

where wa(u) = V fo) an(^ ^a anc* ^a a r e * n e generators of su(n) (or An-i 
Weyl) and Gu(n) respectively. This transfer matrix can also be obtained as the 
nonrelativistic limit of the Ruijsenaars-Macdonald operators. The common eigen-
functions and eigenvalues of Gaudin model is solved in terms of the Bethe ansatz.21 

Now we substitute the difference representation of su(n) Ea (39) into (50), we get 
a factorized L of the Gaudin model 

LG(u)i
j=E0+ Y, EM) 

a^(0,0) 

= j>(u,2)i<rW)^u -iYt^{u,z)\<r1{u,z)k
i, (5i) 

k k 

where the factors are the vertex face intertwiner 

4>(u,z)) = e 
i _ 
2 

1 
2 

(it + nzj - y~] zk + — — , n r ) . (52) 
k l 

For the Gaudin model on noncommutative torus, the Zi is the origin (position) of 
the i-th soliton, di as its infinitesimal translation is equivalently to [z^,]. 

Next, the elliptic Calogero-Moser model is defined by the Hamiltonian: 

n 

i=l i^j 

where p(z) — d2a(z). The corresponding Lax operator is 

W „ ) . _ ta - I £ ,„ MzWi _ L,m _ s-fJ^iA (54, 

This Lax operator can be gauge transformed into the factorized L (51) of the Gaudin 
model by the following matrix: 

6{u\ zY, 
G("^sn^Tfe) (55) 

The C.M. model gives the dynamics of a long distance interaction between n-
bodies located at Zi (i — 1, • • •, n). On noncommutative torus, it gives the dynamics 
of n solitons and Zi becomes the position of the center of the i-th soliton. According 
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to Ref. 9, the interaction between n-solitons is the Laplacian of a Kahler potential 
K, which is the logarithm of a Vandermonde determinant. Actually we have 

E »& 3) = E d ' los I I <zi -z") = E d?K^z) (56) 
i^j i j^k i 

and 

eK(u,z) = Y^u{zj-zk)(j{nu+r^) = det(^) = a(nu+1^±)l[a(zi-zj).(57) 

The variable u of the marked torus is the spectral parameter or evaluation param­
eter of Lax matrix Kj. 

This Ruijsenaars operators are related to the quantum Dunkle operators and the 
(/-deformed Kniznik-Zamolodchikov-Bernard equations. The eigenfunctions could 
be also expressed in terms of double Bloch wave as the algebraic geometric meth­
ods.22 We will show this in the more familiar formalism of the elliptic quantum 
group. 

4. The Zn X Zn Heisenberg group in case of the general 0 

For the generic 0 case, as in paper 23 we find that 9T = j], here 77 is the crossing 
parameter and the Zn x Zn Heisenberg group of shift of solitons is realized by 
the Sklyanin algebra STtV. The noncommutative algebra A is realized as Elliptic 
quantum group ETtTl. The evaluation module of ETyT] is expressed by the Boltzmann 
weight of the IRF model. 

n 

R(u, A) = E Ei,i ® Ei,i + E "(" ' A'J)-Ei,t ® Eo\o + E ^ U ' Xv)EiJ ® E3* (58) 
*=1 i¥=j i¥"3 

where 

a{u>A) = e(u-v)6(\y /3(u'A) = e(u - nwx) (59) 

It satisfies the dynamical YBE: 

R(Ul,u2, A - r)h^)12R(uuX)13R(u2, A - r]hw)23 

= R(u2, A)23J2(ui, A - 7]h^)nR(Ul - «2 , A)12 (60) 

where R(u, A — r]h^)12 acts on a tensor v\ (g> v2 <8> ^3 as R(u, A — 77/x) ® Id if U3 has 
weight /i. 

The elliptic quantum group ET^{sln) is an algebra generated by a meromorphic 
function of a variable h and a matrix L(z, A) with noncommutative entries: 

R(Ul - u2, A - f]h^)uL(Ul, X)13L(u2, A - rjh^)23 

= L(u2, X)23L(Ul, X - 7]h^)13R{Ul - u2, A)12. (61) 
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here L(z, A) gives an evaluation representat ion of the quantum group 

T h e Transfer mat r ix of I R F is expressed by the Ruijsenaars operators which 

gives the dynamics of solitons 

N 

T(u)f(X) = J2 Lu{u, A)/(A - Vh) (63) 

and the Rui jsenaars-Macdonald opera tor M is 

. ."7. " ^ i]) 

So we have 

Tif(X) = f(\i - r,b) (65) 

T h e n t h e Hilbert space of non-commutat ive torus becomes the common eigen­

vectors of t h e transfer matr ix . 

T h e wave functions have the form 

Tp^Yle^Heizi+U-r}) (66) 
i 

which will b e twisted by r\ when Zi changed by Wilson loop U\, U2-
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We briefly review recent progress on calculating susceptibilities in planar Ising models. 

1. Introduction 

First of all, a project like the current one cannot be undertaken by a single person. 
We owe a lot to our collaborators, teachers, and colleagues, especially R.J. Baxter, 
H.W. Capel, A.J. Guttmann, M. Jimbo, B.-Q. Jin, X.-P. Kong, T. Miwa, B.M. 
McCoy, B.G. Nickel, W.P. Orrick, M. Sato, and T.T. Wu. The literature on the 
two-dimensional Ising model also is very extended. Therefore, we shall only give 
limited citations, and encourage the interested reader to consult the quotations in 
these references. Most of the current work is a brief review of results in Refs. 1-4. 

The symmetric two-dimensional Ising model is defined by 

H = - J ^2 (am ,n<^m,n+l + <7m,n°'m+l,n)- (1) 
m,,n 

For this model it is convenient to define elliptic modulus5 

k = l/smh2(2J/kBT), (2) 

which is < 1 for T < Tc and > 1 for T > Tc, with k ->• \/k giving the Kramers-
Wannier duality transformation. 

The spontaneous magnetization is simply given by6 '7 

{a)-{ 0, T>TC. ( 3 ) 

The calculation of the pair correlation function 

C(ra, n) = {(Tofi(Jm,n) (4) 

*This work has been supported in part by NSF Grants No. PHY 97-22159, PHY 97-24788 and 
PHY 01-00041. 
t Email address perk@okstate.edu 
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is more involved and can be carried out using quadratic difference equations8 

[C(m, n+ l )C(m, n - 1 ) - C(m, n)2} 
+k[C*(m+l,n)C*(m-l,n) - C*(m,n)2] = 0 , (5) 

[C(m + 1, n ) C ( m - 1 , n) - C(m, n)2} 
+k[C*{m,n+l)C*(m,n-l) - C*(m,n)2] = 0, (6) 

where C*(m, n) is the dual correlation function obtained by replacing k —> 1/k. For 
the symmetric case (1), these two equations are equivalent. To solve them we need 
initial conditions. For T = Tc, we have 

^"'-"•'"-'-fiixT+fc)- (7) 

which form was already known to Onsager and Kaufman.9 For T ^ Tc, C(n, n) and 
C*(n,n) can be calculated by Toeplitz determinants1 '4 '7 

C(n,n) = ( - 1 ) " det ( { o ^ - i } ) , (8) 
l<t,]<n 

C*(n,n) = det ({a^}), (9) 

where 

an= (2nk~1an-1 + a_ ra)/(2n + 1), (10) 

a - n - i = (2nfca_„+ a„_i) / (2n + 1 ) , (11) 

for n = 1,2, • • •, with the initial conditions 

ao = J ^ [ E ( * ) - ( l - f c 2 ) K ( f c ) ] , o_i = ~ E ( f c ) . (12) 

However, it can be done faster by another set of quadratic difference equations 
due to Jimbo and Miwa.10 

2. High- and Low-Temperature Series for Susceptibility 

Very recently, with the help of (5) the high- and low-temperature series for the 
susceptibility were much extended by the authors of Ref. 2. In terms of the reduced 
susceptibility, 

oo 

X = kBTx= Yl (Ko<Tm,„)-(<70,o>2), (13) 

they found for T > Tc, 

X= 1 + 4sh + 12sl + 32sl + 764 + ™4 + 400sh + • • • 
+ 20073302588291729914311665722841070356623232518453\ 
67545550226445723763406738301159160108585998318576 sf3, (14) 
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with sh = s/2 = sinh(2iC)/2, and for T < Tc, 

X= 4s4 + 16sf + 104sf + 416s/0 + 2224s,12 + • • • 
+ 3051547724509044350855662072500389468463893273907\ 

5732810211229434299420849612234517174982030845245\ 
5331887458424846630637797467206682914215700492366\ 
9271259707379855275224873707435550114462001144064 sf46, (15) 

with Sj = 2/s = 2/sinh(2AT). The size of the coefficients may look ridiculous at 
first sight. However, it is well-known to series expanders that the new information 
in each successive coefficient is often in the last few digits. 

Near the ferromagnetic critical point, the susceptibility behaves asymptotically 
as 

P~'X±
 1/2 « C0 ±(2X cv /2)7 /4 | r | -7 /4F± + Bu (16) 

where {y/1 + r 2 + r ) 1 / / 2 = 1/^/s and r = (1/s - s)/2, and ± stands for T above or 
below Tc. In (16) the ferromagnetic background is given by2 

B{ = (-0.104133245093831026452160126860473433716236727314 
-0.07436886975320708001995859169799500328047632028r 
-0.0081447139091195995371542858655723893266057740-r2 

+0.004504107712232015926355020852986970591364528r3 

+ 0.16279253648974618861881216566686-r14) 
+( log | r | )x 

(0.032352268477309406090656526721221666637730948898r 
-0.0057755293796884630091487564013201013677152980-r3 

+ 0.041428586463052869356803144137620T14) 
+( log | r | ) 2 x 

(0.0093915698711458721317953318727075770649513654r4 

-0.00869592546287923802156416645191752987912922T6 

H 0.0055571002151161308034896964314679r14) 
+( log | r | ) 3 x 

(-0.000015771569138451840480001012621461738178T9 

+0.0000344282066208887553647799856857753380T11 

-0.0000524427177487226174161583779149393r13), (17) 

whereas, the ferromagnetic scaling amplitudes functions are given by2 

F+ = 1 + r 2 / 2 - r 4 / 12 - 0.1235292285752086663-r6 

+0.136610949809095r8 - 0 .13043897213T 1 0 + • • •, for T > Tc, (18) 

F_ = 1 + r 2 / 2 - r 4 / 12 - 6.321306840495936623067r6 

+6.25199747046024329r8 - 5.6896599756180r10 + • • •, for T < Tc. (19) 
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More coefficients are given in Ref. 2. The last digit in each term above may not be 
reliable. As we have normalized" F±(T) ->• 1 for T —>• Tc (or r ->• 0), we need to 
give also the leading susceptibility amplitudes: 

C(J~ = 1.000815260440212647119476363047210\ 
236937534925597789 (2iiT cv^)_ 7 / 4 \ /2, 

CQ = 1.000960328725262189480934955172097\ 
320572505951770117 (2JFsTcv

/2)"7/4v^/(127r). (20) 

Near the antiferromagnetic critical point, the susceptibility behaves as 

r 1% ~ -Baf, (21) 
{VTT^ + T) 

where 

1/2 

Ba f = 0.1588665229609474882333592313690210116925239008416 
+0.149566836938535905194382029433591286374711207262r 
+0.01071222587983288033470968550659996768542030678r2 

+ • • • + 0.007123677682511208149032476379667-r14 

+(log|r |) 
(-0.1553171901580110585934133538932734529992121600305r 
+0.03206714814586975221843437287457551882247161782r3 

+ 0.0094056230380765607719474925088649r14) 
+( log |r | ) 2 

(0.01153371437882328027949011442761203640684043805r4 

-0.011311734920691560067535056532207842716405684T6 

+ 0.00674470189451526288478200059343432r14) 
+( log | r | ) 3 

(0.0000578997194764877297760067221144062249541r9 

-0.00016991508824012890240796446744935908812T11 

+0.00032664884687465587957270016883093909-T13). (22) 

The difference of F+ and F- in Eqs. (18) and (19) implies that a suggestion 
of Aharony and Fisher11 breaks down in higher order. They had brought up the 
possibility that there are "no irrelevant variables." This they concluded from the 
speculation that the Ising model free energy in the critical region can be described 
entirely by two nonlinear but "analytic" (thermal and magnetic) scaling fields. Then 
the scaling amplitude can be found to be 

equal above and below Tc.
2 

aNote that we have a slight change of notation with respect to Ref. 2, as we have rescaled all B's 
and F's with a factor t/s. 
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We now know that this simple picture is incomplete and that corrections to 
scaling due to breaking of rotational symmetry must be considered. Indeed, the 
correlation functions have a kind of multipole long-distance expansion,12 which can 
explain the deviations from fourth order on. Very recently, a conformal field theory 
explanation has also been given.13 To study the effect in more detail we shall have 
to study the model on other lattices. 

Another interesting feature discussed in Ref. 2 is that the susceptibility has a 
natural boundary at the critical point, i.e. there exists a closed curve of (essential) 
singularities fully prohibiting analytic continuation in the complex temperature 
plane from high to low temperatures. The Ising susceptibility is not differentiably 
finite, unlike the zero-field free energy and the spontaneous magnetization. This 
then explains why there is no simple closed form expression available after half a 
century of research. Yet, we now have algorithms of polynomial complexity, which 
is as good for numerical analysis. 

3. Baxter's Z-invariant inhomogeneous Ising model 

Baxter's Z-invariant Ising model is defined in terms of a set of oriented straight lines 
carrying "rapidity" variables Uj, Vj, •••. In the scaling limit the scaled correlation 
function depends on a single distance variable R, as first discovered by Bai-Qi Jin,1 

2m ^ 2 ( 2m >, 2-i 1/2 

* - 5 I ^ c o s ( 2 U j ) l + i j > n ( 2 ^ ) l . (24) 
' 3 = 

This is given in terms of the 2m rapidity variables crossing between the two spins in 
question. Using the diagonal correlation length £d to introduce the scaled distance 

r = R/U, where ^ = \\ogk\, (25) 

we have found the most general form of the scaled correlation functions to be 

K ) « |1 - k-2\l'AF{r), {aa')* » |1 - Jfe-2|1/4G(r), (26) 

where the functions F(r) and G(r) satisfy 

FF" - F'2 = - r _ 1 G G ' , GG" - G'2 = -r^FF', (27) 

and the front factor is the square of the spontaneous magnetization for T < Tc or 
k > 1. F(r) and G(r) are the Painleve functions for the uniform rectangular Ising 
lattice,14 see Refs. 1,4 for more details. 

4. Susceptibility in Z-Invariant Lattice 

For a general ferromagnetic Z-invariant lattice with J\f sites, the susceptibility \ is 
given by 

X = &BTx = ^lirn^-^ ^ ^ «^ml,mO,ma,ni,) - N ,o ) 2 ) , (28) 
m\,ni n%2,n2 
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where (mi ,n i ) and {1712,712) run through the possible coordinates of the spins. In 
periodic cases one of the two sums can be done trivially. In quasiperiodic cases this 
can only be done asymptotically at the largest distance scale. Hence, in the scaling 
limit and for both periodic and quasiperiodic ^-invariant lattices, x becomes 

j—00 J—00 "• 

where 

^ l = \l-k-^(G(R/^)-l), (30) 

^ ^ = | l - f c - 2 r F W e d ) , (31) 

K = l/£d = I log A;I, and R reduces to 

R = VaM2 + 2bMN + cN2 (32) 

with a, b, and c known constants that can be calculated choosing suitable integer 
coordinates M and N. Also, go is the corresponding multiplicity factor counting 
how many spin distance vectors fall exactly or asymptotically within a unit cell in 
the (M, N) plane. Therefore,4 

X = ~^t== / ° °d r r 3 / 4 F ± ( r ) *~7 / 4 + • • • = A±\t\~^ + 0(\t\^% (33) 
Vac — \r Jo 

with t = \T — Tc\/Tc, giving the exact T > Tc and T <TC susceptibility amplitudes 
for all periodic and quasiperiodic Z-invariant lattices. 

Note that this result implies that the ratio A+/A- is universal for all periodic 
and quasiperiodic ferromagnetic Z-invariant Ising models. This may be the first 
time that this is shown to this generality for the magnetic susceptibility. For the 
analysis of the long susceptibility series in the isotropic square lattice A+ and A_ 
were evaluated to very high precision by Nickel. 

Therefore, we can now give A+ and A- for the isotropic square (sq), triangular 
(tr) and honeycomb (he) lattices to many places, i.e.4 

As* = 0.9625817323087721140443298094334694951671391947579365, 
A% = 0.9242069582451643296971575778559317176696261520028389, 
A% = 1.046417076152338359733871672674357433252295746539088, 

As3 = 0.02553697452202390538595345622639847192921968727077455, 
AlI = 0.02451890447700000489080855239719772023653022851422950, 
A^ = 0.02776109842539704507743379795258285503609969877633251. (34) 

Also, more generally, 

X = - 7 ^ = I log(fc)|-7/4 r ° d r r » / ^ ± ( r ) (35) 
Vac — oJ Jo 

is a product of a factor depending on rapidities and the modulus and a factor 
which is a universal integral over a Painleve V function. Hence, the amplitudes 
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are known—in principle—to this high accuracy for all Z-invariant (quasi)-periodic 

cases. We plan to use these values later to analyze long series for the isotropic 

triangular and honeycomb lattices, once they are available. 

We note that the numbers given above agree to a few places wi th earlier series 

extrapolations. Four of the six agree to about ten places wi th those of Wu et al .1 4 

and of Vaidya.15 For T above Tc, they agree to be t te r t h a n th ree places with those 

obtained from the Syozi-Naya16 approximation, but this can be unders tood as this 

approximation is precisely the x< approximation in Wu et al. 

5. Out look 

We are working to extend and analyze series for other lat t ices in order to get 

more information on irrelevant variables in the corrections to scaling, having a 

preliminary algorithm of polynomial complexity for the isotropic honeycomb and 

triangular lattices which reproduces the known series coefficients. But more work 

needs to be done to increase its efficiency, as we will need to go to one to two 

hundred terms, before being able to see clearly the effect of t h e irrelevant variables. 

We are also looking at the susceptibility of Ising models on Penrose tilings. 

Finally, we also want to look at the effect of frustration, which occurs in the regime 

where elliptic modulus k is purely imaginary. 
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In this report, we study the algebraic geometry aspect of Hofstadter type models through 
the algebraic Bethe equation. In the diagonalization problem of certain Hofstadter type 
Hamiltonians, the Bethe equation is constructed by using the Baxter vectors on a high 
genus spectral curve. When the spectral variables lie on rational curves, we obtain the 
complete and explicit solutions of the polynomial Bethe equation; the relation with the 
Bethe ansatz of polynomial roots is discussed. Certain algebraic geometry properties of 
Bethe equation on the high genus algebraic curves are discussed in cooperation with the 
consideration of the physical model. 

1. Introduction 

It is known for the past decade that algebraic geometry has played a certain in­
triguing role in certain 2-dimensional solvable statistical lattice models, a notable 
example would be the chiral Potts iV-state integrable model (see e.g., Refs. 1,3 and 
references therein). In the note, we report the algebraic geometry aspect of another 
model of physical interest in solid state physics. In the early 90's, motivated by 
the work of Wiegmann and Zabrodin12 on the appearance of Uq{sl2) symmetry in 
problems of magnetic translation, Faddeev and Kashaev6 pursued the diagonaliza­
tion problem on the following Hamiltonian by the quantum transfer matrix method 
which was developed by the Leningrad school in the early eighties: 

HFK = n{aU + a^U'1) + u(pV + p^V'1) + P(jW + 7 " 1 W~l) , (1) 

where U, V, W are unitary operators with the Weyl commutation relation for a 
primitive iV-th root of unity OJ and the iV-th power identity property, UV = uiVU, 
VW = wWV, WU = wUW; UN = VN = WN = 1. As a special limit case for 
p = 0, the model is reduced to the (rational flux) Hofstadter Hamiltonian, a model 

*e-mail: Iin@math.ntu.edu.tw 
t Supported in part by the NSC grant of Taiwan. 
t e-mail: maroan@ccvax.sinica. edu.tw 
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possessing several physical interpretations with the history which can trace back to 
the work of Peierls11 on Bloch electrons in metals with the presence of a constant 
external magnetic field. By the pioneering works of the 50s and 60s,2 '5 ,7 '9 '13 the 
role of magnetic translations was found, and it began a systematic study of this 2D 
lattice model. In 1976, Hofstadter8 found the butterfly figure of the spectral band 
versus the magnetic flux which exhibits a beautiful fractal picture. Here the phase 
of u> represents the magnetic flux (per plaquette). In Ref. 6, a general frame work 
to determine the eigenvalues of certain quantum chains appeared in the transfer 
matrix was presented. The method relies on a special monodromy solution of the 
Yang-Baxter equation for the six-vertex i?-matrix; this solution appeared also in 
the study of chiral Potts model.3 For a finite size L, the trace of the monodromy 

matrix gives rise to the transfer matrix acting on the quantum space ® C ; while 
the Hofstadter type Hamiltonian (1) can be realized in the case L = 3. In general, 
the diagonalization problem of the transfer matrix can be formulated into the Bethe 
equation through the Baxter vector3, visualized on a "spectral" curve associated 
to the corresponding model. In Ref.,10 we presented a detailed and rigorous math­
ematical study on the Bethe equation associated to the Hofstadter type model. In 
particular, we obtained the complete solution of the Bethe equation for models with 
rational spectral curves for L < 3, among which a special Hofstadter type of HFK 
in Ref. 6 is included, and further expended to all the other sectors. In this note, we 
explain the main results we have obtained in Ref. 10; detailed derivations, as well 
as extended references to the literature, may be found in that work. 

This paper is organized as follows. In Sect. 2, we first recall results in transfer 
matrix relevant to our discussion; then introduce the Bethe equation (or Baxter 
T-Q equation) through the Baxter vector on the spectral curve. In Sect. 3, we 
consider the case when the spectral data lie on rational curves and perform the 
mathematical derivation of the answer. We present the complete solutions of the 
Bethe polynomial equations of all sectors for L < 3. In Sect. 4, we discuss the "de­
generacy" relation between the Bethe solutions and the eigenspaces in the quantum 
space of the transfer matrix for L = 3; also its connection with the usual Bethe 
ansatz technique in literature, in particular the result obtained in Ref. 6. In Sect. 
5, we describe the algebraic geometry properties of the high genus spectral curve 
arisen from the Hofstadter Hamiltonian. 

No ta t ions . The letters Z, R, C will denote the ring of integers, real, complex 
numbers respectively, N — Z>o, ZJV = Z/iVZ. Throughout this report, N will 
always denote an odd positive integer with M = [y]: N = 2M + 1, M > 1; u) is a 
primitive ./V-th root of unity, and q := w5 with qN = 1, i.e., q = w M + 1 . An element v 
in the vector space CN is represented by a sequence of coordinates, Vk, k G Z, with 
the iV-periodic condition, Vk = Vk+N, i.e., v = (vk)ke2, • The standard basis of C ^ 
will be denoted by \k), with the dual basis of C^* by (k\ for k G ZJV. For a positive 

aIt is also called as the "Baxter vacuum state" in other literature. 
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integers n, we denote ® C the tensor product of n-copies of the vector space CN. 
We use the notation of p-shifted factorials: (a; p)n = (1 — a)(l — ap) •••(!.— ap n _ 1 ) 
for n € N, and (a; p)o = 1. 

2. Transfer Matrix and the Bethe Equation 

We consider the Weyl algebra generated by the operators Z, X satisfying the Weyl 
commutation relation with the 7V-th power identity, ZX = CJXZ, ZN = XN = 
I, and denote Y := ZX. In the canonical irreducible representation of the Weyl 
algebra, the operators Z,X,Y act on C with the expressions: Z(v)k = wkVk, 
X{v)k = Vfc-i, Y{v)k = oJkVk-\- It is known that the following L-operator for an 
element h = [a : b : c : d] of the projective 3-space P with operator-entries acting 
on the quantum space C ^ , 

r , , ( aY xbX\ _ 
L^x)={xcZ d J ' XeC> 

possesses the intertwining property of the Yang-Baxter relation, 

R(x/x')(Lh(x)(g)l)(l<g)Lh(x')) = (l(g)Lh(x'))(Lh(x)(g)l)R(x/x') , (2) 
aux aux aux aux 

where R(x) is the matrix of a 2-tensor of the auxiliary space C 2 with the following 
numerical expression, 

(xw-x'1 0 0 0 \ 
0 u}{x-x~l) w - 1 0 
0 w - 1 x-x'1 0 

\ 0 0 0 xuj-x'1/ 

By performing the matrix product on auxiliary spaces and the tensor product of 
quantum spaces, one has the L-operator associated to an element h = (ho, • • •, / » L - I ) 

e (P 3 )L , L^(x) = 0 j j o Lhj(x), which again satisfies the relation (2). The entries 
L N 

of L^(x) are operators of the quantum space (g) C , and its trace defines the com­
muting transfer matrices for x G C, T^(x) = tiaux(L^(x)). The transfer matrix 
T%(x) can also be computed by changing L^ to L\lj via a gauge transformation: 

^ ( Z . & . C J + I ) = AjLhj(x)Ajl1,0 < j < L- 1, with A, = L 7 ) a n d 

AL := AQ. One has 

where Fh(x,^^') := £aY - xbX + g&cZ - id. Hence TK(x) = trami(LR(x,$), 

£••= ( £ O , - - - , £ L - I ) where 

J?(x) 

J=0 
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We consider the variables (x, £o, • • • > £ L - I ) in the following spectral curve, 

fN N _ NhN 
C-- fi*r-(-1)1*22+121 °i j-Q r - l (3) 

^•+1a; cj aj 

and denote pj = (x,£j,£j+i). Then the operator Fhj(x,£j,£j) has 1-dimensional 
null space in C generated by the vector \pj) with the form: 

/Olo \ = 1 (mIPj) = ^ + i Q J ^ W ~ ^ j 
U W ' (m-l\pj) -Zjiti+itW" - dj) • 

The Baxter vector \p) for p £ C^ is defined by |p) := \po) <g> . . . ® | P L - I ) 6® C N , 
which possesses the following property: 

^ L i f o ^ l P ) = k-P>A_(p), ^ . 2 , 20z, | ) |p> = \r+p)A+(p) , ZK.2jl(a:,£)|p) = 0 , 

where A± are functions of C^ defined by A_ (x, £) = Ylj=o (dj—x£j+icj), A+(a;,£) = 

rijM) g°J /a~-zb-Cj ' a n (^ T± a r e t n e automorphisms, r±(a;, £) = (q ,±1s, 9 -1^)- It 
follows the important relation of the transfer matrix on the Baxter vector over the 
curve Cfr, 

TK(x)\p) = |r_p)A_(p) + \T+p}A+(p) , for p e CK . (4) 

As Tjfcc) are commuting operators for x € C, a common eigenvector {<̂ | is a 

constant vector of <g> C with an eigenvalue A(ar) € C[x\. Define the function 
Qip) =

 (<P\P) °fCfc then it satisfies the following Bethe equation, 

Mx)Q(p) = Q(r_(p))A_(p) + Q(r+(p))A+(p) , for p e C% . (5) 

By the definition of T^(x),A(x), one can easily see that T%(x) is an operator-

coefficient even x-polynomial of degree 2[Lr] with the constant term To = fT Jo aj 

0 7 + EL Jo dj. Hence the polynomial A(x) in (5) is an even function of degree 

< 2[j] with A(0) = ql Ylj=0 aj + Ylj=o dj for some I € ZN. For L = 3, we have 

Tn(x) =T0 + x2T2 where 

T2 = b0cia2X ® Z (g) y + a 0bic 2y 0 X <g> Z + c0aib2Z ® y <g> X . . 
+ co&icfo-Z ® X ® / + doc^I ®Z ®X + b0d1c2X ®I®Z . ' 

The above T2 can be put into the form of the Hofstadter type Hamiltonian (l).6 , 1 0 

In the equation (5), Q(p) is a rational function of Cr with zeros and poles. Hence 
the understanding of the Bethe solutions of (5) relies heavily on the function theory 
of CJI, and the algebraic geometry of the curve inevitably plays a key role on the 
complexity of the problem. 
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3. The Rational Degenerated Bethe Equation 

In this section, we consider the case when the spectral curve C% degenerates into 
an union of rational curves under the conditions:^ = q~xdj, bj = q~xCj for j = 
0, ...,L — 1. By replacing Cj,dj by ^ - , 1 , we assume dj = 1 for all j with the 
parameter CjS to be generic. In this case, C^ is the union of disjoint copies of the 
a;-(complex) line, containing the following r±-invariant subset of C^ which will be 
sufficient for the discussion of Bethe equation, 

C := {{x, & , . . . ,£L-i)l£o = • • • = &-1 = ql, I € ZN}. 

We shall make the identification C = P 1 x ZJV via (x,ql,... ,ql) -f-> (a;,I). The 

automorphisms T± on C become T±(X,I) = (q±1x,I — 1), by which the action (4) of 

T(x)(:= T^(x)) on the Baxter vector \x, I) now takes the form, 

T(x)\x,l) = \q-1x,l-l)A-(x,l) + \qx,l-l)A+(x,l) , (7) 

where A± are the rational functions of x:A-(x,l) = Ylj=0 (1 — xcjq1), A+(x,l) = 

T\j=a i-xc q~l • Furthermore, one can express the Baxter vector \x, I) over the curve 
I — A — 2 . — l - \ 

C in the component-form: (k\x, I) = q^ JJjZo Lc- i+*-u)—~i- Here the bold letter 
k denotes a multi-index vector k = (A;o,... , & L - I ) for kj £ ZN with the square-
length of k defined by |k|2 := ^ , C 0 k2. Each ratio-term in the above right hand 
side is given by a non-negative representative for each element in ZJV appeared in 
the formula. We have the following result on the Bethe equation and its connection 
with the transfer matrix T(x): 

Theorem 1: Denote fe, f° the functions on C, fe(x, 2n) = U^} (^!J;a'"x)"+1, and 

f°(x, 2n + 1) = Uf=o ^{xc-ZZlT • F o r x e p l ' l e ZN' w e d e f i n e t h e folkwing 
L N 

vectors in £g> C , 

J V - 1 

\x)f = J2 \x> 2n) / e (x , 1n)Jn , la;)? = E ^ " 1 \x, 2n + l ) /° (x , 2n + l)Jn , 
n=0 

\x)t = \x)fq~lu(qx) + \x)°u(x); where u{x) := Uj^oi1 ~ xN cf){xcjq;q2)M . 

Then 
(i) \x)fu(qx) = \x)°qlu(x), or equivalently, |ai);

+ = 2q~l\x)fu(qx) = 2|a;}°w(a;). 
(ii) The T(a;)-transform on |a;)z

+ is given by 

q~lT(x)\x)+ = |g- 1x)+A_(a; , - l ) + |ga;)+A+(a;,0) , I £ ZN . 

(iii) For a common eigenvector (<p\ oiT(x) with the eigenvalue A(x), the function 
Q~i{x){:= (y>\x)f) and A(a?) are polynomials with the properties: deg.Q^~(a:) < 
(3M + l)L , deg.A(a;) < 2[f ], A(x) = A(-a;), A(0) = q21 + 1, and the following 
Bethe equation holds: 

i - l L-l 

q-lA(x)Q+(x) = ] } ( 1 - MiQ-^QtixQ-1) + U.0- + xCj)Qt(xq) . (8) 
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Furthermore for 0 < m < M, Qm(x),Qti-m(x) a r e elements in 

By (iii) of the above theorem, the equation (8) for the sector m,N — m can be 
combined into a single one. For the rest of this report the letter m will always 
denote an integer between 0 and M: 0 < m < M. By introducing the polynomials 
Am{x),Q{x) via the relation, 

L-l 

{Am{x), xm H(l-xNc?)Q(x)) = (q-mA(x), Q+(x)), (qmA(x), Q+
N_m{x)) , 

3=0 

the equation (8) for I = m,N — m becomes the following polynomial equation of 
Q(x),Am(x): 

L-l L - l 

Am{x)Q{x) = q~m J J (1 - xcjq^Qixq-1) + qm J ] (1 + xCj)Q{xq) , (9) 

with deg.Q(a;) < ML-m, deg.Am(ai) < 2[f-], Am(a;) = Am ( -a ; ) , Am(0) = qm + 
q~m. The general mathematical problem will be to determine the solution space of 
the Bethe equation (9) for a given positive integer L. 

For L = 1,2, we have the following result. 

Theorem 2: (I) For L = 1, we have Am(x) = qm + q~m and the solutions Qm(x) 
of (9) form an one-dimensional vector space generated by the following polynomial 
of degree M — m, 

M~m i nm+i-l _ „-m-i 

Bm(x) = i + £ (II „mi
g._m JL-i ^ + J W qm + q-

j=i i=i 

(II) For L = 2, the equation (9) has a non-trivial solution Qm(x) if and only 
if deg.Qm(a;) = M — m + m' for 0 < m' < M. For each such m', the eigenvalue 
Am(x) in (9) is equal to Am<m>(x) qi(q™'~i + g-m'-2)a;2CoCi + qm + q~ and 
the corresponding solutions of Qm(x) form an one-dimensional space generated by 
a polynomial Bmtmt(x) of degree M — m + m' with -Bm>m-(0) = 1. 

For L = 3, this is the case related to the Hamiltonian (1). We consider the 
N x N matrix, 

/ <5w-i U'N-I 0 • • • 0 0 \ 

S'f jV-2 u iV-2 " iV-2 0 

w V S'N N-3 uN-3 uN-3 "JV-3 U 

\ o 0 
»i ^i u[ 
w'0 v'0 6'0 j 

(10) 
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with the entries defined by w'k — qk+ 2 +q k 2—qm—q m,v'k = (qk+*—q k 2)(co+ 
ci+c 2) , S'k = (qk~i +q~k~i){c0c1+c1c2 + c2Co), u'k = (qk-§ -q-k~§)c0c1c2. Then 
one can derive the following result. 

Theorem 3: For L = 3, the condition of the eigenvalue Am(a;) = \mx2+qm+q~m, 
0 < m < M, with a non-trivial solution Qm(x) in the equation (9) is determined 
by the solution of det(A — Am) = 0, where A is the matrix defined by (10). For 
each such Am(x), there exists an unique (up to constants) non-trivial polynomial 
solution Qm{x) of (9) with the degree Qm(x) equal to 3M — m and Qm(0) ^ 0. 

4. The Degeneracy and B e t h e Ansatz Relation of Roots of Bethe 
Polynomial 

We first discuss the degeneracy relation of eigenspaces of the transform matrix T(x) 
L N 

in <8> C * with respect to the Bethe solutions obtained in the previous section. As 
before, we denote A(x) the eigenvalues of T{x), whose constant term is given by 

L 
T0 = D + l, where D := q~L <g> Y; hence A(0) = qL + 1. For I G ZN, we denote 
E;

L the iVL_1-dimensional eigensubspace of ® CN* of the operator D with the 
eigenvalue ql. For 0 < m < M, the equation (9) describes the relation of A(x) and 
its eigenfunctions with A(0) = q2m + 1 or ^2(JV_m) + 1. We now consider the case 
for L — 3, where T2 in (6) is now expressed by 

T2 = q~2{cQcxX <g> Z ® Y + cxc2Y ®X®Z + CQC2Z ®Y®X) 
+q-1(c0c1Z ® X <g> / + cic27 ® Z ® X + CQC2X ®I®Z). 

We have qD = {Z®X®I){X®I®Z){I®Z®X). We shall denote O3 the operator 
algebra generated by the tensors of X, Y, Z, I appeared in the above expression of 
T2. Then O3 commutes with D, hence one obtains a 03-representation on E3 for 
each /. With the identification, U = D~^2Z® X® I, V = D'^^X®I®Z,0^is 
generated by U, V which satisfy the Weyl relation UV = uVU and the JV-th power 
identity. Hence O3 is the Heisenberg algebra and contains D as a central element. 
Then qD~T2 has the following expression, 

coCl{U + U'1) + c0c2(V + V-1) + Clc2(qD5/2UV + q^D-^V^U'1) . (11) 

The above Hamiltonian is the same as HFK (1) with W — q~1D~5/2V~1U~1, 
a = /3 = 7 = 1. Our conclusion on the sector m = M is equivalent to that in Ref. 6 
as it becomes clearer later on. There is an unique (up to equivalence) non-trivial 
irreducible representation of O3, denoted by Cp , which is of dimension N. For each 
I, E3 is equivalent to AT-copies of C ^ as £>3-modules: E 3 ~ N C%. For 0 < m < M, 
we consider the space E 3 with ql = q±2m. The evaluation of E 3 on |x)±TO gives rise 
to a AT-dimensional kernel in E 3 . By Theorem 3, there are N polynomials Qm(x) 
of degree 3M - m as solutions of (9) with the corresponding N distinct eigenval­
ues Am(ar). The AT-dimensional vector space spanned by those Qm(x)s becomes a 
realization of the irreducible representation Cp for the Heisenberg algebra O3. 
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Now we discuss the relation between the Bethe equation (9) and the usual 
Bethe ansatz formulation in literature. For 0 < m < M, a solution Qm(x) in 
(9) always have the property Qm(0) ^ 0 by Theorem 3, hence one has the form 
a3M-mQm(x) = U^=i~m(x ~ Tt)

 w i t h zi £ c * % setting x = zf1 in (9), we 
obtain the following relation among 2/s, which is called the Bethe ansatz relation, 

2 , 3M-m 

< r + ! T T i L ± £ L = TT S f L l i " , t < / < 3 M - m . 
f^zi-Cj J^zi-qzn 

For the sector m = M, the comparison of the ^-coefficients of (9) yields the 
expression of eigenvalue, 

2M 

AM = (q^~ +q~)s2 + (qi - q~)si ^ z n + (qi + q~ - q? -q~)^zizn . 
n = l Kn 

With the substitution, p, = q^c^1^ = q^c^[l,p = q^c^1, the above expression 
coincides with (5.27) in Ref. 6. Note that the Bethe ansatz relation can be shown 
to be equivalent to the Bethe equation (9) for the sector M. However, the parallel 
statement is no longer true for other sectors m ^ M, i.e., it does exist some non-
physical Bethe ansatz solutions in the above form, while not corresponding to any 
polynomial solution of Bethe equation (9). Some example can be found in the 
(M - l)-sector. 

5. High Genus Curves for the Hofstadter Model 

We are now going back to the general situation in Sect. 2. Note that the values ^ s 
of the curve C^ in (3) are determined by £Q and xN, denoted by y = xN, r] = $ . 
The variables (y, rj) defines the curve which is a double cover of y-line, 

% = Cn(yW + (AR(y) - DR(y))V - BR(y) = 0 

where the functions A^,B^,CR,DR are the following matrix elements, 

(-At{v) B%(y) \ Jyf (-a? yb? \ 

Now we consider only the case: L = 3, ao = do = 0, bo = Co = 1, with generic hi, h2. 
The expression of T(x) is given by 

T(x) = x2(cia2X ®Z®Y + axb2Z ® Y ® X + bxd2Z ® X <g> i" + dxc2X <g> I ® Z), 

equivalently, x~2D~T(x) is equal to the Hofstadter Hamiltonian (l)p=o with U = 
D~l/2Z <g> X <g> I, V = D'1/2X ® I ® Z and //, v, a, (3 related to hi, h2 by \i2 = 
qb\Cia2d2, a2 = q~xb\c^ 1a2~

1d2, v2 = qa,\dib2C2, /32 — q~1a,i1dib2~
1C2. By factoring 

out the y-component of B^, the main irreducible component of B^ is the curve, 

B : (y26f c»+a»a»)Tj2 + (a»b»+b?d»-c»a»-d?c»)yr,-(y2c?&^+«) = 0 , 
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which is an elliptic curve as a double-cover of the y-line. For the curve C^, the 
variables £o and £1 are related by ^ = £J~N, which implies that Cg can be identified 
with W x ZAT where W is a genus 6N3 — 6iV2 + 1 curve with the following equation 
in the variable p — (x, £o, £2)5 

-tNaN 4- rNhN -PNnN 4- <rNhN 

w . t-N _ S2 "l + x ° 1 ^JV _ SO " 2 ^ x ° 2 
K V - ?0 TNj:NrN _ JN ' S2 „N cN„N JN ' 

X c;2
 c l " l x SO c 2 — a 2 

By averaging the Baxter vectors \p,s) of C^ over an element p of VV, \p) := 
1? S s=o IP> s)ls ' which defines the Baxter vector on W. Furthermore, the transfer 
matrix can be descended to one on W with the following relation, 

x-2T(x)\p) = |T_(p))A_(p) + |r+(p))A+(p) , 

where A± are the functions on W: A_(z, £0,6) = ( 8 6 C l -* jg o C a - < f a >, A+(x, &, 6 ) 

= g 2 ( ^ \ t a : - X t t - x t ) 2 C 2 ) - F o r a n eigenvector (<p\ e £ C** of x ^ T ( x ) , the 
eigenvalue is a scalar A s C, and the function Q(p) := (<p|p) of W satisfies the 
Bethe equation: XQ(p) = Q(r_(p))A_(p)+Q(r+(p))A+(p), where T ± are the trans­
formations of W with the same expression as before, but only in the coordinates 

3 

(£>£<)) £2)- Consider the -D-eigenspace decomposition of <g> CN* = © i G z ^ 3 - ^he 
evaluation of the Baxter vector over W gives rise to the following linear transfor­
mation, Ei : E 3 —> {rational functions of W} with si(v)(p) := (v\p), for I € ZN. 
One has the following result. 

Theorem 4: For I € ZJV, the linear map ei is injective, hence it induces an iden­
tification of E 3 with a 7V2-dimensional functional space of W. 

By the discussion in Sect. 4, as the Heisenberg algebra O3 representations , E 3 

is equivalent to TV copies of the standard one. Hence it induces an 03-module 
structure on the function space £j(E3), induced by the one of E 3 by above theorem. 
The mathematical structure of the functional space £;(E3) in terms of the divisor 
theory of Riemann surfaces in corporation with the interpretation of Heisenberg 
algebra representation remains an algebraic geometry problem for further study. 
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In this note we give an introduction to the topic of Quantum Control, explaining what 
its objectives are, and describing some of its limitations. 

1. What is Quantum Control? 

The objectives of Quantum Control are 

• To determine quantum mechanical systems which will drive an initial given state 
to a pre-determined final state, the target state. 

• To describe—and hopefully implement—quantum systems which will through 
time evolution optimize given operator expectations corresponding to observables 
of the system. 

Among a wealth of applications are those to Quantum Computing, where it is 
clearly essential to be able to start off a quantum procedure with a given initial 
state, and to problems involving the population levels in atomic systems, such as 
the laser cooling of atomic or molecular systems. 

The mathematical tools necessary for the theoretical investigation of these con­
trol problems are diverse, involving algebraic, group theoretic and topological meth­
ods. 

The questions that one may ask include: 

(i) When is a given quantum system completely controllable? 
(ii) If a system is not completely controllable, how does this affect optimization of 

a given operator? 
(iii) How near can you get to a target state for a not completely controllable system? 

* Permanent address: Quantum Processes Group, Open University, Milton Keynes MK7 6AA, 
United Kingdom. Email: a.i.solomon@open.ac.uk 
tEmail: s.g.schirmer@open.ac.uk 
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The answer to the first question depends on a knowledge of the Lie algebra generated 
by the system's quantum hamiltonian, that to the second arises from properties of 
the Lie group structure, while the last clearly involves ideas of topology. 

Especially in the area of Lie group theory, there is a large corpus of classical 
mathematics which can supply answers to questions arising in quantum control. 
In particular, for the type of controllability known as Pure State Controllability 
classical Lie Group theory has already given the basic results. 

The quantum control system we shall consider is typically of the form 
M 

H = H0 + Y, fm(t)Hm, (1) 
m = l 

where Ho is the internal Hamiltonian of the unperturbed system and Hm are in­
teraction terms governing the interaction of the system with an external field. The 
dynamical evolution of the system is governed by the unitary evolution operator 
U(t,0), which satisfies the Schrodinger equation 

ih-U(t,0)=HU(t,0) (2) 

with initial condition {7(0,0) = I, where / is the identity operator. By use of the 
Magnus expansion, it can be shown that the solution U involves all the commu­
tators of the Hm. The operators Hm, 0 < m < M, in (1) are Hermitian. Their 
skew-Hermitian counterparts iHm generate a Lie algebra L known as the dynami­
cal Lie algebra of the control system which is always a subalgebra of u(N), or for 
trace-zero hamiltonians, su(N). The degree of controllability is determined by the 
dynamical Lie algebra generated by the control system hamiltonian H. If L = u(N) 
then all the unitary operators are generated and we call such a system Completely 
Controllable. A large variety of common quantum systems can be shown to be Com­
pletely Controllable.1'2 The interesting cases arise when L is a proper subalgebra 
of u(N). Such systems may still exhibit Pure State Controllability, in that starting 
with any initial pure state any target pure state may be obtained, as distinct from 
the Completely Controllable case, when all (kinematically admissible) states—pure 
or mixed—may be achieved. 

2. Pure s t a t e controllability 

We shall restrict our attention here to finite-level quantum systems with JV discrete 
energy levels. The pure quantum states of the system are represented by normalized 
wavefunctions |\P), which form a Hilbert space H. However, the state of a quantum 
system need not be represented by a pure state |$) € H. For instance, we may 
consider a system consisting of a large number of identical, non-interacting particles, 
which can be in different internal quantum states, i.e., a certain fraction w\ of the 
particles may be in quantum state | * i ) , another fraction w^ may be in another 
state |*2) and so forth. Hence, the state of the system as a whole is described by a 
discrete ensemble of quantum states \^n) with non-negative weights wn that sum 
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up to one. Such an ensemble of quantum states is called a mixed-state, and it can 
be represented by a density operator po on H with the spectral representation 

N 

P0 = Y^Wn\^n)(^n\, (3) 
n=l 

where {\$n) '• 1 < n < TV} is an orthonormal set of vectors in H that forms an 
ensemble of independent pure quantum states. The evolution of po is governed by 

p(t) = U(t,0)PoU(t,Q)\ (4) 

with U(t, 0) as above. Clearly if all the unitary operators can be generated we have 
the optimal situation, complete controllability. However, classical Lie group theory 
tells us that even when we only obtain a subalgebra of u(N) we can obtain pure 
state controllability. 

The results arise from consideration3 of the transitive action of Lie groups on 
the sphere Sk. The classical "orthogonal" groups 9(n, F) where the field F is either 
the reals SR, the complexes C or the quaternions %, are denned to be those that 
keep invariant the length of the vector v = {v\,V2, • • • ,vn); the squared length is 
given by v^v = £]™=1iTO, where Hi refers to the appropriate conjugation. These 
compact groups are, essentially, the only ones which give transitive actions on the 
appropriate spheres, as follows: 

(i) 9(71,3?) = 0(n) transitive on S^""1) 
(ii) Q(n,C) = U(n) transitive on S(2n~V 

(iii) ®{n,U) = Sp{n) transitive on Sf4™-1). 

Since we may regard our pure state as a normalized vector in CN and thus as a 
point on S^2N~l\ we obtain pure state controllability only for U(N) (or SU(N) if 
we are not too fussy about phases) and Sp(N/2), the latter for even N only. (Note 
that we cannot get 0(2N) as a subalgebra of U(N).) 

Complete controllability is clearly a stronger condition than pure state control­
lability. To illustrate our theme of the limitations on quantum control, we now 
give two examples based on a truncated oscillator with nearest-level interactions 
for which the algebras generated are so(N) and sp(N/2). Both these examples are 
generic. 

3. Examples 

3.1. Three-level oscillator with dipole interactions. 

Consider a three-level system with energy levels E\, Ei, E3 and assume the inter­
action with an external field /1 is of dipole form with nearest neighbor interactions 
only. Then we have H = HQ + f(t)H\, where the matrix representations of HQ and 
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Hi are 

H0 = 
Ei 0 0 " 
0 E2 0 
0 0 E3_ 

, HX = 
"0 di 0 
di 0 d2 

. 0 d2 0 

If the energy levels are equally spaced, i.e., E2 — E\ = E3 — E2 = /x and the 
transition dipole moments are equal, i.e., d\ = d2 = d then we have 

H'Q V 

- 1 0 0 
0 0 0 
0 0 1 

Hx 
0 1 0 
1 0 1 
0 1 0 

where H'Q is the traceless part of HQ. Both \H'0 and \H\ satisfy 

A + Af = 0 A J + J A = 0 

where 

J 

which is a defining relation for so(3). The dynamical Lie algebra in this case is in 
fact so(3). It is easy to show that the matrix B = UAU^ is a real anti-symmetric 
representation of so(3) if U — U*J. Explicitly, a suitable unitary matrix is given 

by 

"0 
0 

.1 

0 1" 
- 1 0 
0 0. 

u 

1/V20 1 /V2 ' 

i/y/2 0 -i/y/2 

0 i 0 

Since the dynamical algebra and group in the basis determined by U consists of 
real matrices, real states can only be transformed to real states; this means that for 
any initial state there is a large class of unreachable states. This example is generic 
as it applies to iV-level systems, although for even N we need other than dipole 
interactions to generate so(N). The analogous dipole interaction generates sp(N/2) 
in the even N case, as we now illustrate. 

3.2. Four-level oscillator with dipole interactions. 

Consider a four-level system with Hamiltonian H — HQ + f{t)Hi, 

Ho 

-Ei 
0 
0 
0 

0 0 0 
-Eh 0 0 

0 E2 0 
0 0 Ex 
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and 

Note that \HQ and \H\ satisfy 

x = -

for 

(5) 

0 

.—IN/2 

IN/2 

0 

Orfi 0 0 
di 0 d2 0 
0 d 2 0 - d i 
0 0 - d i 0 

cf, xTJ + Jx = 0 

0 0 0 1 ' 
0 0 10 
0 - 1 0 0 

_ - l 0 0 0. 

where J is unitarily equivalent to 

(6) 

which is a defining relation for sp(N/2). Consider an initial state of the form 

po = ix + OIN, (7) 

where x satisfies (5), it can only evolve into states 

pi = \y + aIN, (8) 

where y satisfies (5), under the action of a unitary evolution operator in exponential 
image of L. Hence, any target state that is not of the form (8) is not accessible from 
the initial state (7). Note that the initial state 

Po 

is of the form po = x + 0.25/4 and that 

IX = 1 

satisfies (5). Consider the target state 

Pi 

"0.35 0 
0 0.30 
0 0 
0 0 

1 that 

0.10 0 
0 0.05 
0 0 -
0 0 

state 

"0.30 0 
0 0.35 
0 0 
0 0 

0 0 " 
0 0 

0.20 0 
0 0.15. 

0 0 
0 0 

-0.05 0 
0 -0.10 

0 0 " 
0 0 

0.20 0 
0 0.15. 
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which is clearly kinematically admissible since 

0 100]f 

1000 
0010 
0001. 

but note that pi=y + 0.25/4 and 

'0.05 0 0 0 " 
. _ . 0 0.10 0 0 
1 2 / _ 1 0 0 -0.05 0 

. 0 0 0 -0 .10 . 

does not satisfy (5). Hence, p\ is not dynamically accessible from po for this system. 
Given a target state p\ that is not dynamically accessible from an initial state 

Po, we can easily construct observables whose kinematical upper bound for its ex­
pectation value can not be reached dynamically. Simply consider A = p\. The ex­
pectation value of A assumes its kinematical maximum only when the system is in 
state pi. Since p\ is not reachable, the kinematical upper bound is not dynamically 
realizable. 

4. Conclusions 

In this short introduction to Quantum Control theory, we have described the goals 
of the subject briefly, and then illustrated the limitations by generic examples where 
complete control is not possible. The tools we have used are, in the main, those of 
classical Lie group theory. Theoretical problems that remain to be tackled include 
to what extent these non-controllable systems can, in fact, be controlled; and, of 
course, the paramount problem of implementing these controls in practice. 
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In this talk, we shall briefly review some results on the strongly correlated electron 
systems, derived recently by applying Lieb's spin-reflection-positivity method. To explain 
the basic ideas of this method to a wide audience, we emphasize the important role played 
by Marshall's rule in studying the many-body systems 

Keywords: Strongly Correlated Electron Systems, Marshall's Rule, Spin-reflection-positivity 
Method 

In the past several decades, the strongly correlated electron systems attract many 
physicists' interest. In particular, interplay between the itinerant magnetic orderings 
and the quantum transport properties of these systems is a main focus of the 
current research. To get insight into the strongly correlated electron materials, 
various models have been introduced and investigated. The best known examples 
are the Hubbard model,1 the periodic Anderson model,2 and the Kondo lattice 
model.3 

As a concrete example, let us consider the Hubbard model. On a lattice A with 
N\ sites, the Hamiltonian of the Hubbard model has the following form 

Jfff = - * E E (^+ d l d i°) +UJ2 (ftit -1) (% -\)-PN, (i) 
& < y > ieA ^ ' ^ ' 

where c\a (cja) denotes the fermion creation (annihilation) operator which creates 
(annihilates) an electron of spin a at lattice site i. < ij > is a pair of lattice sites. 
t > 0 and U > 0 are parameters representing the hopping energy and the on-
site Coulomb repulsion of electrons, respectively. In the following, we shall assume 
that, in terms of the Hamiltonian, lattice A is bipartite. In other words, it can be 
separated into two sublattices A and B, and electrons hops only from a site i in 
one sublattice to a site j in another sublattice. 

'Dedicated to Professor F. Y. Wu's 70th birthday. 
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These models enjoy some symmetries, which can be exploited to simplify their 
analysis. For instance, the Hubbard Hamiltonian HH commutes with the total par­
ticle number operator N = Xa(^i t+"u)- Therefore, the Hilbert space of this model 
can be divided into numerous subspaces (V(N)}. Each of them is characterized by a 
conserved particle number JV. HH also commutes with the following spin operators 

igA ieA i€A 

Consequently, both S2 and Sz are good quantum numbers. 
Furthermore, when /x = 0, the ground state of the Hubbard Hamiltonian in the 

half-filled subspace with N = N\ is actually its global ground state. In this case, 
the Hubbard Hamiltonian has another symmetry: The pseudospin spin symmetry. 
More precisely, HH commutes with operators 

J+ = '%2 e(i)CitgU' ^" = Y. eCOcuCi-r, Jz = 2 5Z(«n + "14. - 1), (3) 
i6A igA i6A 

where e(i) = 1 for i £ A and e(i) = — 1 for i £ B. In literature, these operators are 
called the pseudospin operators.4 

In one dimension, the Hubbard model can be exactly solved by applying the 
Bethe ansatz.5 However, in higher dimensions, this approach fails. Instead, various 
approximate analytical techniques were introduced and developed. Most of them 
are based on the mean-field theories.6 By applying effectively these methods, many 
interesting results on the strongly correlated electron systems have been derived. 
On the other hand, if it is possible, one would naturally like to re-establish some 
of these conclusions on a more rigorous basis. It will deepen our understanding on 
the electronic correlations in these models. 

In a seminal paper published in 1989, Lieb introduced a powerful method, the 
spin-reflection-positivity technique, to investigate the Hubbard Hamiltonian with 
an even number of electrons.7 With this method, Lieb proved that the ground 
state of the Hubbard Hamiltonian at half-filling is nondegenerate and has total 
spin 5 = (1/2)\NA — NB\, where NA and NB are the numbers of the sites in 
sublattice A and B, respectively. Later, this technique was also applied to both the 
periodic Anderson model and the Kondo lattice model.8 '9 Similar conclusions were 
established. 

Later, we applied this method to investigating the spin and the off-diagonal 
correlation functions, as well as the excitation gaps of these strongly correlated 
electron models. In a series of papers, we proved that 

• The on-site pairing correlation function of the negative-C/ Hubbard model is 
nonnegative.10 More precisely, for any pair of lattice sites h and k, inequality 

<*o(-C0 I 4 e h 4 ^ c k t I *o(-EO> > 0 (4) 

holds true for the ground state of the negative-?/ Hubbard model in V(2M). 
This inequality confirms that the Bose-Einstein condensation in the negative-?/ 
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Hubbard model occurs at zero-momentum. 
• At half-filling, the spin correlations in the ground states of the periodic Anderson 

model and the Kondo lattice model are antiferromagnetic.11 Very recently, by ex­
tending the spin-reflection-positivity method to the case of nonzero temperature, 
we also proved that, at any T ^ 0, the antiferromagnetic spin correlation in these 
models is dominant.12 

• On some special lattices subject to condition \NA — NB\ = 0(NA), such as the 
example shown in Fig. 1, the ground state of the Hubbard model has both the 
antiferromagnetic and ferromagnetic long-range orders. In other words, it is a 
ferrimagnet.13 

• Define Aqp = E0(NA + 1) + E0(NA - 1) - 2E0(NA) and As = E0(NA, S = 
1) — EQ(NA, S = 0) to be the quasi-particle gap and the spin excitation gap of 
the Hubbard model, respectively. Then, relation Aq p > Ag holds true. Similar 
inequalities were also proven for the periodic Anderson model and the Kondo 
lattice model.14 

• Define A c = E0(J = 1)-E0(J = 0) = E0(NA+2)-E0(NA) to be the charged gap 
of these strongly correlated electron models, then inequality A c > As holds.15 

Fig. 1. The lattice structure of organic conjugated polymers. 

Due to the page limit of this paper, it is impossible to discuss the spin-reflection-
positivity method and its applications in details. In the following, we shall briefly 
explain the basic ideas of it. As a matter of fact, this method is closely related to a 
very simple but important observation: After a proper unitary transformation, the 
ground state of a realistic quantum many-body Hamiltonian, in general, satisfies 
Marshall's rule,16 in a sense. 

To begin with, let us first consider a simple quantum mechanical system: One 
particle moving in a one-dimensional well, as shown in Fig. 2. The ground state 
^o(x) of this system satisfies the Schrodinger equation 

h2 d2ty0(x) . . T , . _ T . , 
(5) 

When v(x) — 0, $o{x) can be explicitly solved and we have ^o(x) = y/2/Rsm(Trx/R) 
> 0 for any 0 < x < R. This is Marshall's rule for <3>o in this special case. A direct 
corollary of this rule is that the ground state ^o(^) is nondegenerate. 
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Fig. 2. The potential function of a one-dimensional quantum well. 

To show that ^?o(%) also satisfies the Marshall's rule when v(x) ^ 0, we notice 
that tyo(x) is a ground-state solution of Eq. (5), if and only if it is also a minimizing 
function of the following energy functional 

™=LL 
n2 fRm{x) \ '* 

dx Jo 
x)dx (6) 

in some function space -ff1(0, R), requiring that both l^l2 and \dif)/dx\2 are inte-
grable over (0, R). 

Assume that ^o(x) has indefinite sign in the interval, as shown in Fig. 3. Then, 

i 

\ 
/ / / / / / / / 

k i 

l\ A 
/ \ / \ « 1 \ \ \ A 

\ 1 \ l\ 1 \ / / i l l / \ / 1 1 1 / \ / 1 1 J—\—/-U-l 

V 

i 
/ / / / / / / / 

V=o° 

• 
0 

IW 

R 

V=oo 

X 

Fig. 3. The ground state wave functions *o(^) and |*o|(z)-

we construct a new function |\Po|(2:) by taking the absolute value of $o(x). We 
notice that replacement of ^Q{X) with l^olOc) does not change the value of the 
second term in Eq. (6). On the other hand, it can be shown 

/ ' 
Jo 

dV0(x) 

dx 
dx > f 

Jo 

d | *o | (x) 
dx 

dx (7) 

(8) 

(See the appendix of Ref. 17). Consequently, we have 

min £(i/>) = £(*„) > £(\ *o I) 

In other words, | \&o | (x) must be also a minimizing function of energy functional 
(6) and hence, a ground state solution of Eq. (5). 
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Next, we show that the ground state wave function ^o{x) has no zero point in 
(0, R). If this is not true, then, there must be, at least, one point XQ € (0, R) such 
that |^o|(a;o) — 0. However, as a nonnegative solution of a second order elliptical 
differential equation, |\&o|(a;) satisfies the so-called Harnack theorem, which tells us 
that, on any open interval (a, b) C (0, R), there is a constant C(aj;,) such that 

max | *o I (&) < C (o, b) min | * 0 I (x) (9) 
x£(a, b) xE(a, b) 

holds true.18 Now, we take an open interval containing xo- Harnack theorem implies 
that l^oK^) = 0 in this interval. Repeating this argument an appropriate number 
of times, we find that | ^o | must be identically zero in (0, R). This is certainly 
absurd. Therefore, we reach the conclusion that ^o(x) = |*o|(a0 > 0 in (0, R) and 
is nondegenerate. 

The same ideas can be also applied to study the strongly correlated electron 
systems. First, let us consider a simple model: The antiferromagnetic Heisenberg 
model on a bipartite lattice. The Hamiltonian of this model is of the following form 

HAF = £ JySi • 4 = 1 J2 J« ( ^ + 3 - + Si-Sj+) + Y, JaS-A (10) 
<«> <y> <y> 

with Jy > 0. Si is the spin operator at site i. The lattice A is assumed to be bipartite 
and connected by these coupling constants. 

Since Hamiltonian (10) commutes with Sz = ^2iS-lz, Sz is a good quantum 
number. A natural basis of vectors in subspace V(SZ = M) is given by 

Xa(M) = | mi , m2 , •••, mNA) (11) 

where ra\ represents the eigenvalue of S-lz at site i and they are subject to the 
condition m\ + W2 H h TUNA = M. In terms of this basis, the ground state wave 
function ^o(M) of H\F can be written as 

*o(M) = ^ C Q X a ( M ) (12) 
a 

The sum is over all the possible configurations {xa{M)}. 
However, due to the positive sign of the coupling constants {Jy}, it is difficult to 

uncover directly the sign rule satisfied by {Ca}. To remedy this problem, one needs 

to introduce a unitary transformation U\ = exp [i^^Z^B S-lz 1, which rotates each 

spin in sublattice B by an angle 7r about its z-axis.19 Under this transformation, 

HAF is mapped onto 

HAF = utHxeUi - Yl ( - - V 2 ) (Si+Si- + 5,_5,+) + ] T J u S „ S J z (13) 

Notice that the coupling constants in the spin-flipping terms of HAF have negative 
signs. 

For HAF, we are able to show that the expansion coefficients {Ca} of its ground 
state ^o satisfy the Marshall's rule Ca > 0. First, by following the aforementioned 
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steps, we re-write the ground state energy EQ as an expectation value of HAF in its 
ground state ^o a n d observe that, for any pair of indices a and a', 

(x«(M) | ( s , + S j _ + 5 i_5 j + ) | Xa'{M)) > 0 (14) 

holds true. Consequently, the state |\l/o|, which is constructed by replacing each Ca 

with \Ca\ in Eq. (12), has a lower energy than \to- Therefore, it is also a ground 
state. 

Next, we consider the Schrodinger equation of |\Po|- By inequality (14), it can 
be shown that, if Ca = 0 for some index a, then any vector \a', which is related 
to Xa by a spin-flipping exchange, must have a zero coefficient in the expansion of 
l^o |- On the other hand, since the lattice is connected by the coupling constants 
{Jjj}, any vector X/3 c a n be reached from Xa by a finite number of spin-flipping 
exchanges. Therefore, by repeating the above process an appropriate number of 
times, we reach the conclusion that all the expansion coefficients are zero. That is 
impossible. 

As usual, the Marshall's rule satisfied by {Ca} implies that the ground state 
^o(M) of i?AF is nondegenerate in subspace V(M). On the other hand, since ETAF 

is unitarily equivalent to the original antiferromagnetic Heisenberg Hamiltonian, 
we conclude that the ground state ^o(M) of the antiferromagnetic Heisenberg 
Hamiltonian HAF hi V(M) is also nondegenerate. 

Finally, we consider the Hubbard model. As explained above, we first introduce 
a unitary transformation which maps the original positive-?/ Hubbard model into a 
negative-?/ Hamiltonian. This can be achieved by the so-called partial particle-hole 
transformation U2,4 which is defined by 

ulctxUi = e{\)c\v ^2
tcut>2 = c u . (15) 

Under this transformation, the positive-E/ Hubbard Hamiltonian at half-filling (with 
Lb = 0) is mapped to 

HH(-U) = -t £ £ (4,q* + i ^ ) - U £ (n,t - \) (nu - i) . (16) 
<t <U> ieA ^ ' ^ ' 

When N, the number of electrons in the system, equals an even integer 2M, the 
ground state wave function ^o(2M) of HH(—U) can be written as 

*o(2M) = X V a ^ ® ^ (17) 
a, /3 

where {i/^} are configurations of electrons of spin a defined by 

V£ = < A r •••<,* I °> (18) 
In Eq. (18), (ii, 12, • • •, \M) denotes the lattice sites occupied by fermions of spin 
a. I 0) is the vacuum state. The total number of these configurations is Cff . 

In the Hubbard model, electrons are itinerant. Therefore, we have the so-called 
fermion sign problem. Consequently, the coefficients {WQ;g} do not satisfy the simple 
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Marshall's rule. However, Lieb proved that, if one takes index a for row index 
and (3 for column index and writes the coefficients { W ^ } into a matrix W (with 
I rW^W = 1), then this matrix is, in fact, a positive-definite matrix. It is the 
generalized Marshall's rule for the ground states of the negative- U Hubbard model. 

To prove this fact, we follow the above procedure and rewrite EQ{—U) as the 
expectation of HH(-U) in ^0(2M). A little algebra yields 

Eo{-U) = 2Tr(TWW) - U ^ THV^MVWVi) (19) 
i€A 

where T is the matrix of the hopping term of HH(—U) and N\ is the matrix of 
operator h\ — 1/2. Since matrix W is Hermitian, we can find a unitary matrix V, 
which diagonalizes it. Let {wm} be the eigenvalues of W and {| m)} be the column 
vectors of the diagonalizing matrix V. Then, EQ{—U) can be further reduced to 

E0(-U) = 2^(m | f | m)w2
m - U ^ Y , w^n\{n \ N, \ m)\2 (20) 

m iGA m, n 

Obviously, if we replace {wm} with their absolute values, the summations on the 
right hand side of Eq. (20) becomes less. In other words, by replacing the coefficient 
matrix W of *0(2M) with | W |, we obtain a new wave function |* 0 | (2M), which 
has a lower energy than the ground state $o(2M). Therefore, it must be also a 
ground state of -fl#(—U). Furthermore, its coefficient matrix | W | is a semipositive 
definite matrix. 

By substituting |*0 |(2M) into the Schrodinger equation HH(-U)\^0\ = Uol^ol 
and noticing that the lattice A is connected by electron hopping, we can further show 
that, if one eigenvalue wm = 0, then all the eigenvalues of W are equal to zero. This 
is impossible. Therefore, W is actually a positive definite matrix and the ground 
state $o(2M) is nondegenerate. Since HH(-U) is unitarily equivalent to HH{U) 
at half-filling, the ground state of the latter Hamiltonian is also nondegenerate. 

With the positive definiteness of the coefficient matrix W of $o(2M), inequality 
(4) can be proven as a direct corollary. Similarly, other results listed above are also 
based on this fact, although their proofs require a little more effort. 

In summary, the spin-reflection-positivity method reveals that the ground states 
of some strongly correlated electron systems satisfy the Marshall's rule in a more 
sophisticated manner. In return, this rule enables us to establish several important 
qualitative properties on the spin and superconducting correlations as well as the 
excitation gaps in these systems. 
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An algebraic treatment of the eigenstates of the (Ajv-i-)Calogero model is presented, 
which provides an algebraic construction of the nonsymmetric orthogonal eigenvectors, 
symmetrization, antisymmetrization and calculation of square norms in a unified way. 

1. The Calogero Model 

In 1990's, one-dimensional quantum integrable systems with inverse-square long-
range interactions1-3 attracted renewed interests of mathematicians and physicists 
since their relationships with the theory of multivariable orthogonal polynomials4'5 

are recognized. The (A/v-i-)Calogero model1 with distinguishable particles6 

where (Kjkf){- • • ,xjt • • • ,xk, • • •) = / ( • • • ,xk, •• -,Xj,- • •), j,k G {1,2, • • •,JV}, is 

known to have the nonsymmetric multivariable Hermite polynomial as the poly­

nomial part of the joint eigenvector of the conserved operators.7~9 We introduce a 

transformed Hamiltonian whose eigenvectors are polynomials, 

%W := ( ^ ( a O r o 1 ^ - EW) O <t>W(x), (2) 

where the reference state and its eigenvalue are 

4A\x) = n \x, -xfcrexP(-^ f; xi), 
l<j<k<N m = l 

EM = ^uN(Na+(l-a)). 

We shall deal with the eigenvectors of the Hamiltonian (2) in C[x], the polynomial 
ring with N variables over C, while the eigenstates for the original Hamiltonian (1) 
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is in C[z]4A) := {f{x)<j>{^\x)\f G C[x]}. The Hamiltonian (2) is Hermitian with 
respect to the inner product on C[a;], 

/

oo N 

"[[Axi\4>(
k
A\x)\2f{x)g{x), f,geC[x], (3) 

where f(x) denotes the complex conjugate of f(x). The inner product is induced 
from the natural inner product on C[a;]0g '. The reference state corresponds to the 
weight function in the inner product (•, -}(A)-

The commutative conserved operators for the Hamiltonian are known to be the 
Cherednik operators.10 To show this, we have to introduce the Dunkl operators,11 

and the creation-like and annihilation-like operators, 

M)\ ._ _ J_V{A) (A) _ J_V (A) 
*' - X l 2u,V< ' ai ~ 2 u l 

in G End(C[a:]), where the superscript t on any operator denotes its Hermitian 
conjugate with respect to the inner product (3). Prom these operators, a set of 
Hermitian and commutative differential operators, dj ' G End(C[x]), [dj ,d\. '] = 
0, is constructed by 

N 

k=j+l 

which we call the Cherednik operators.10'12 The Hamiltonian (2) can be expressed 

HM=UJ:(4A)-\a(N-l)). 

Thus we conclude that the Cherednik operators {cf- '\j = 1,2, • • •, A''} give a set of 
commutative conserved operators of the Calogero model. 

2. The Nonsymmetric Multivariable Hermite Polynomial 

The Cherednik operators define inhomogeneous multivariable polynomials as their 
joint polynomial eigenvectors, which are nothing but the nonsymmetric multivari­
able Hermite polynomials that form an orthogonal basis of the polynomial ring 
C[:r].7-9'13 Let / := {1, 2, • • • ,N - 1} and I := {l ,2 ,--- , iV} be sets of indices 
and let V be an iV-dimensional real vector space with an inner product (•,•). We 
take an orthonormal basis of V {ej\j G / } such that (£j,£fc) = Sjk- The A^-i-
type root system R associated with the simple Lie algebra of type AN~I is re­
alized as R = {ej — Sk\j,k € I,j ^ k}(c V). A root basis of R is defined by 
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II := {otj = £j — £j+i\j G / } , whose elements are called simple roots. Let R+ 

be positive roots relative to LT and R- :— — i?+. The root lattice Q is denned by 
Q := 0 g/Zccj and positive root lattice Q+ is defined by replacing Z with Z>o-

A reflection on V with respect to the hyperplane that is orthogonal to a root 
a is expressed by sa(p) := p — {a.v,p)a, where av := i^x is a coroot corre­
sponding to a. The yl^-i-type Weyl group is generated by {SJ :— saj\aj G II} 
which is isomorphic to 6JV- For each w G W, we define Rw := R+ D w;-1i?_. We 
denote by £(w) the length of w G W defined by £{w) := \Rw\. When w G W is 
expressed as a product of simple reflections, w = Sjk •••Sj2Sj1, with k — £(w), 
we call it reduced. By use of the reduced expression, the set R^, is given by 

R>l> = \ a j l ' Sjl \0lJ2 ) > ' ' ' J Sjl SJ2 ' ' ' Sjl -1 \ajl ) J • 

We introduce lattices P := © j e / Z > 0 £ j and P+ := {p = YLjzi Mj£j e -^Vi > 
M2 > • " > Miv > 0}, whose elements are called a composition and a partition, 
respectively. The lattice P is ^ - s t ab le . The degree of the composition and partition 
is denoted by \p\ := X^e/£*j- Let W(p) := {w(/i)|io G W} be the VF-orbit of 
p G P. In a VF-orbit of W(/i), there exists a unique partition p+ G P+ such that 
p = w(p+) G P (W G W). We define p := § £ a £ f l + « = | E j e / ( ^ - 2j + l)£j and 
1N := J2jei £r We introduce the following operator SA^X := J2jei ^i^j > ^ e *̂> 
j G / , which relates the Cherednik operators with lattice P , so that we can deal 
with the eigenvalues of the Cherednik operators in terms of the lattice P . 

We identify the elements of the lattice P with those of the polynomial ring over 
C, x* := x^x^2 •••x%N G C[x}. We denote the shortest element of W such that 
w~'i-{p) G P+ by Wy, and define p(p) := w^p). We introduce an order X on P , 

v<p {y,pGP)^\v+<^ »?W(ii+) 
[ ( i - ^ e Q i Z/G W{p+), 

d 
where the symbol < denotes the dominance order among partitions, 

d ' ' 
v<p (ji,v G P+) <^>/i ^ A, \p\ = \v\ and J^ffe < ^Pk, 

k=i fe=i 

for all I G / . The definition of the nonsymmetric multivariable Hermite polynomial 
is summarized as follows. 

Definition 1: The (monic) nonsymmetric multivariable Hermite polynomial hp ' G 
<C[x], n G P , as the joint eigenvector for the commutative Cherednik operators 
{d^x\X G P } , is presented by 

h<£\x) = x» + £>#>(<*, - j - ) s " G C[x], 
2u>' 

u-su. or |i/ |<|f*| 

SA»hM = (A, p + ap{p) + L(N - l)lN)hW. (4) 
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Since SA^X is a Hermitian operator with respect to the inner product (3) 
and all the simultaneous eigenspaces of the Cherednik operators {d,(A^} are one-
dimensional in the sense that the eigenvalues of {d,(A^} are non-degenerate, it 
proves that the polynomials hfj, ' are orthogonal with respect to the inner prod­
uct, i.e., (hfj. ,h{> )(A) = ^.I /H^M ||2- Actually, the nonsymmetric multivariable 
Hermite polynomials form an orthogonal basis in C[x\. 

3. The Rodrigues Formula 

Here we show the Rodrigues formula that generates the monic nonsymmetric multi-
variable Hermite polynomial. We introduce the Knop-Sahi operators {e^A\ e^A^}7'14 

and the braid operators {Sj '\j G 1} defined by 

c ^ := a{A^KlK2 • • • Ks-u e™ = KN^ • • • K2Kxa^B)\ flf > := [Khdf\ 

where Kj := Kjj+i, j G / . The operators {SJ ', e^A^} intertwine the simultaneous 

eigenspaces of {d^x}. The raising operators {A^ ' \/j, G P+} are defined by 

AU» ; = ( S < ^ ) S ( J , B ) ...sM,fl)e(A,B)ty> j € L 

Let SW/X be defined by Sw^ := 5,-, • • • Sj2Sj1, where w^ = Sjl • • • Sj2Sj1 is one of the 
reduced expressions of w^. Then we can show the following relations, 

d(mA^ = A^(SA» + <A,M», [ 4 A ) t , 4 A ) t ] = 0, for M,!/ G P + , 

St£>d<A>A = d^J'-M (*)$<£, for /i G P, (5) 

which lead to the Rodrigues formula for the monic nonsymmetric Hermite polyno­
mial.9 

Theorem 2: The monic nonsymmetric multivariable Hermite polynomial njj, 
with a general composition fi G P in the W-orbit of the partition /x+ G P+ is 
algebraically obtained by applying the raising operator A + and the product of 

braid operators SwJ to h^ — 1, 

hiA) = {c^)^S^A^h[A\ h^ = ltfAS w ( / 1 + ) > „ + e P + > 

where the coefficient of the top term is expressed as 

$••= n l i fH-«(« v .p)) . <£?== n c^)-= TT r r r - 7 - ^ v ^ ^ . = TT («v^+ + qp) 

Proof: Using Eq. (5), we can confirm that /i}j given by the above formula satisfies 
definition 1. • 
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Using the square norm for h0 — 1, 

,, (A) , (A), (2?r)f j-rTjl+ja) 
^o ,fto ;CA) - ( 2 w ) i J V ( J V o + ( 1 _ 0 ) ) JLl r ( i + a ) ' 

which is proved by a certain limit of the Selberg integral,15 and the Rodrigues for­
mula, we can calculate the square norm of the nonsymmetric multivariable Hermite 
polynomial in an algebraic fashion.9 

Theorem 3: The square norms of the nonsymmetric multivariable Hermite poly­
nomial hi ' with a general composition fj, 6 W(fj,+), fi+ € P+ is given by9 

= ^ W i ^ d - ) H W 11 (/3V ) M + +a^-a2 l l rK++a^-^) + 1) 

j-r r ( (a v , n+ + ap) + 1 + a)r((a v , /x+ + ap) + 1 - a) 

Proof: The above formula can be verified by use of relations among raising and 
braid operators and evaluation of the eigenvalues of the Cherednik operators. • 

4. Symmetrization and Antisymmetrization 

The nonsymmetric multivariable Hermite polynomials with compositions fi in the 
same W-orbit of the partition /j,+ share the same eigenvalue of the Hamiltonian (2), 

tfA)hW=u>\vL+\hW, forMGW(M+), / i + S P + . 

More generally, the polynomial with compositions /j, € W(fi+) share the same 
eigenvalue of an arbitrary symmetric polynomial, e.g., any of the power sums, of 
the Cherednik operators. Thus any linear combinations of hjj, ', n G W(fi+), fi+ € 
P+ are joint eigenvectors of the Calogero Hamiltonian (2) and its higher-order 
conserved operators. 

Among all such linear combinations, we consider eigenvectors of the Calogero 
Hamiltonian (2) in VF-symmetric and PF-antisymmetric polynomial rings over C, 
C^]1*1^. In our formulation, we do not use symmetrizer or anti-symmetrizer7 which 
makes the coefficients of the top terms differ from unity. We introduce a sublattice of 
P+ by P+ +5 := {/J + <5|/Z e P+}, S := Y,J<EI(-^ ~J)£j t o describe the antisymmetric 
eigenvectors. 

Theorem 4: 9 Let #£+ ) + for /i+ € P+ and H^~ for n+ eP++6be the following 
linear combination of the nonsymmetric multivariable Hermite polynomials with 
compositions \i £ W(n+), 

*#* = £ *£W, (g) 
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whose coefficients are 

Then the polynomials are in symmetric or antisymmetric polynomial rings over C, 
i.e., H^J G C[x]±w. We call them the symmetric and antisymmetric multivariable 
Hermite polynomials, respectively. 

Proof: Requiring the linear combination of the nonsymmetric polynomial (6) to 
satisfy KjHfr ' = ±HJi , b( + + = 1, we obtain the coefficients b + as shown 
in Eq.(7). D 

The symmetric and antisymmetric multivariable Hermite polynomials are iden­
tified by the polynomial parts of the eigenstates for all the conserved operators 
of the (j4iv_i-)Calogero model with indistinguishable (bosonic or fermionic) parti­
cles,1' 17-18 

N f)2 i * _2 . 

^ M ^ E H S + ^ + J X : 
O ' ^ t t 

J=l 3 j,k=l 

which is obtained by restricting the operand of the Hamiltonian (1) to the space 
C [ * ] ± ^ ) > ^ ) | C M ± l i r ^ , = ^ ) ± ( a ) . 

Prom the square norms of the nonsymmetric polynomials (/ij, %/iJ, )(A) and 
the coefficients bu+u , we can evaluate the square norms of the (anti-)symmetric 
multivariable Hermite polynomials. To prove the formula of the square norms, we 
need the following lemma,16 

Lemma 5: For p. G P+, we have an identity, 

(av,p + ap) Ta j-r (av,p + ap) E -pr [IX ,Htaffifa = T-r 

1 1 /nv,, + nn\ + „. 1 1 
/ N ™ (aw,u + ap)±a *•*• (av,a + ap) ± a ' 

The lemma is proved by use of an expression of the Poincare polynomials.19 

Theorem 6: 9 Let H{^)+ for p+ G P+ and H(^]~ for p+ G P+ + S. The square 
norms of the (anti-)symmetric multivariable Hermite polynomials are given by 

T-r r ( ( a v , p + ap) + 1 T a ) r ( ( a v , / j + ap) ± a) 

J | T((a\p + ap) + l)T((a^p + ap)) 

Proof: The proof is straightforward from theorems 3 and 4, and lemma 5. • 
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5. C o n c l u d i n g Remarks 

We have presented the Rodrigues formula for the monic nonsymmetr ic multi-

variable Hermite polynomial which gives the nonsymmetr ic orthogonal eigenfunc-

tions of the (J4jv_i-)Calogero model with dist inguishable particles. Through (anti-

)symmetrization, we have constructed the (ant i - )symmetr ic Hermite polynomials 

that give the polynomial par ts of the eigenfunctions of the (^4jv-i-)Calogero model 

with distinguishable particles. The square no rms of the above three cases are calcu­

lated in an algebraic manner. Our formulation in this work is also applicable to the 

i?;v-Calogero models with distinguishable or indistinguishable particles and results 

in the Rodrigues formula for the monic nonsymmetr ic multivariable Laguerre poly­

nomial and square norms of the nonsymmetr ic and (anti-)symmetric multivariable 

Laguerre polynomials.9 
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The energy eigenvalues of the superintegrable chiral Potts model are determined by the 
zeros of special polynomials which define finite representations of Onsager's algebra. The 
polynomials determining the low-sector eigenvalues have been given by Baxter in 1988. 
In the Z3—case they satisfy 4-term recursion relations and so cannot form orthogonal 
sequences. However, we show that they are closely related to Jacobi polynomials and 
satisfy a special "partial orthogonality" with respect to a Jacobi weight function. 

PACS: 02.30.1, 75.10.J, 68.35.R 
Keywords: Chiral Potts model, Integrable quantum chains, Onsager's algebra 

1. Introduction 

F.Y.Wu and Y.K.Wang1 were the first to consider the Potts model with chiral 
interaction terms. Their interest in this generalization arose from duality consid­
erations, but the idea proved to be very fruitful in many respects: Ostlund2 and 
Huse3 proposed the chiral Potts (CP) model for phenomenological applications: it 
allows to describe incommensurate phases using nearest neighbor interactions only. 
We give a few references4-7 from which the subsequent development can be traced, 
and turn directly to the superintegrable chiral ZN Potts quantum chain.8 This is a 
particularly interesting model, because it provides some of the rare representations 
known for Onsager's algebra9 and in this sense generalizes the Ising quantum chain 
(for N = 2 it is the Ising model). Integrability by Onsager's algebra entails that 
all eigenvalues of the hamiltonian are determined by the zeros of certain polynomi­
als, which for the chiral Potts model were first derived by Baxter.10 Although the 
definition of Baxter's polynomials looks very simple, the properties of these polyno­
mials turn out to be quite non-trivial and interesting.11 The main part of this note 
deals with the properties of these polynomials. They satisfy N + 1-term recursion 
relations, therefore for N > 2 they cannot form orthogonal sequences. However, 
as found recently,11 several properties which characterize orthogonal polynomials 

* e-mail: gehlen@th.physik. uni-bonn.de 
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are almost true for Baxter's polynomials (e.g. the zero separation property is true 
except for one extreme zero). 

We first recall the definitions of the superintegrable CP-hamiltonian and Onsager's 
algebra and then, following B.Davies,12 we sketch how the formula for the energy 
eigenvalues emerges. We consider Baxter's polynomials and their recursion rela­
tions. Equivalent polynomials with their zeros in (—1,-1-1) for N = 3 are written 
in terms of a determinant. Their expansion in terms of Jacobi polynomials gives 
the surprising result that many of the expansion coefficients vanish, leading to the 
notion of "partial orthogonality". 

The hamiltonian defining the Zjv-superintegrable chiral Potts quantum chain8'8 is: 

Here u — e 2 " ' ^ and Zj and Xj are Zjv-spin operators acting in the vector 
spaces C^ at the sites j = 1, 2 , . . . , L (L is the chain length). The operators obey 
ZiXj = Xj ZiUjSi<j; Zj* = X^ = 1 and we assume XL+I = X\ (periodic b.c). A 
convenient representation is (-Xj-)j,m = <Sz,m+i mod N and (Zj)iiTn — <Jjjmwm. For 
N > 3 the complex coefficients make the chain hamiltonian parity non-invariant. 
For TV = 2 we get the Ising quantum chain. For fixed JV there is only one parameter, 
the temperature variable k. Incommensurate phases arise due to ground state level 
crossings. H commutes with the Z^-charge Q = rjj=i Zj. We write the eigenvalues 
of Q as UJQ. Q = 0 , 1 , . . . , JV — 1 labels the charge sectors of %. 

We split H into two operators writing H^ = —^N(A0 + kAi). A remarkable 
property of H is that A0 and Ai satisfy8 the Dolan-Grady13 relations 

[i4o,[4>,[4),j4i]]] = 16 [AcAx]; [Au [Au [Au A0}}} = 16^, A0], 

which are the conditions14 for A0 and A\ to generate Onsager's algebra A, which 
is formed9 from elements Am, Gi, m € Z, / G N, l> m, satisfying 

[Ai,Am] = 4Gi-m; [GuAm] = 2Am+i-2Am-i; [GhGm]=0. (2) 

From (2), there is a set of commuting operators which includes %: 

Qm = | (Am + A-m + k(Am+1 + A-m+i)); [Qi,Qm] = 0; Qo = 'H-

To obtain finite dimensional representations of A we require the Am (and analo­
gously the G/)12 '15 to satisfy a finite difference equation: ^2^-_n cik Ak-i = 0. 
This is solved introducing the polynomial (the main object of the present paper): 

n 

T(z) = J2 a" zk+n (3) 
k=—n 
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(from A the ak are either even or odd in k). Now the Am and Gm can be expressed 
in terms of the zeros Zj of T(z) and the set of operators Ef, Hf. 

Am = 2 £ (<f 3f + *7m^); G - = E (*™ - *7m) Hi- (4) 

Prom A these operators obey sZ(2, C)-commutation rules: 

[Ef, E^\ = Sjk Hk; [H^ Ef] = ±2 Sjk Ef. 

So A is isomorphic to a subalgebra of the loop algebra of a sum of sl(2, C) algebras. 

Prom the first of eqs.(4) we can express "H in terms of the Zj and the operators Ef. 

Writing Ef = JXij ± iJyj, then in a representation Z(n,s) characterized by the 

polynomial zeros z\,... ,zn and a spin-s representation J^' of all the Jj, we get: 

(A0 + hA1)z{n,s) = 2 X {(2 + k (zj + z?))j$. + i(Zj - zj1) j W } 

= 4 ^ 1 + 2 f c c J + ^ t ! 

where J'xj is a rotated S'[/(2)-operator, and Cj = cosOj = \(ZJ + z~x). 

For the CP-hamiltonians (1) the spin representation turns out to be s = \. Accord­
ingly, all eigenvalues of (1) have the form 

# W = -N ( a + bk + 2 £™=1 mj v / l+2fccos% + A;2) , m, = ±\. (5) 

a and b are non-zero if the trace of Ao and A\ is non-zero. 

2. Baxter's polynomials 

No direct way is known to find the polynomials T(z) from the hamiltonian %. How­
ever, the invention of the two-dimensional integrable CP model,16'17 which contains 
W a s a special logarithmic derivative, and functional relations for its transfer ma­
trix have enabled Baxter10 to obtain the polynomials for the simplest sector of 
H, which at high-temperatures contains the ground state (the polynomials corre­
sponding to all other sectors have been obtained subsequently in1 8 - 2 0). Here we 
shall consider only the simplest case. Baxter10 finds that in terms of the variable t 
or s = tN = (c — l ) / (c + 1) (recall c = cos# of (5)) these polynomials take the 
form 

PQL)(*) = j? E ( i T - Q bJt)-**; aQ,L = (N- 1)(L + Q) mod N. (6) 

Here Q denotes the Zjy-charge sector. For Z3 eq.(6) is, written more explicitly: 

• i - \ -t~aQ,L 

P£\S) = ! _ {{f + t + 1)L + OjQ(? + UjH + W)h + U-Q(t2 + Ljt + U>2)L) . 
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Due to their Zjy-invariance t -> ut, the PQ' depend only on s = tN. The 
degree of the PQ '(S) in the variable s is fe^g = [((N — 1)L — Q)/N] where [a;] 
denotes the integer part of x. Considering sequences of these polynomials for fixed 
Q and L € N, we notice that the dimensions ft^Q do not always increase by one 
when increasing L by one: at every Nth step the dimension stays the same: e.g. the 
dimensions of the PQ-0 for L mod N — 0 and L mod N = 1 coincide, see Table 1. 

The polynomials (6) have their zeros all on the negative real s-axis: % is hermitian 
and so in (5) we must have — 1 < Cj < +1 which means negative sj. We will prefer 
to deal mostly with equivalent polynomials in the variable c, defining 

nW(c) = (c + i ) ^ p W ( s = f = i ) . (?) 

Our main concern in this paper is to learn about the properties of the I IQ ' (c) or 

Pk (S), e.g. whether these can be arranged into orthogonal sequences etc. We will 

find that the ITQ (C) are polynomials with quite remarkable properties. A number 

of special features of the UQ ' have been discussed recently.11 Here we give some 

more detailed results for the Z3-case. As the recursion relations for the UQ ' contain 

a lot of information, we now show how to obtain these. 

3. Recursion relations 

We start with the observation that the coefficients of the PQ \S) can be obtained 
from the expansion of (1 + 1 +12 +... + tN_1)L, simply by taking every N—th term 
of the expansion, starting with the coefficient of t(-N~1^L~Q. More precisely, we 
claim that we can define the PQ by the decomposition 

^+t + e + ,,.+tN^)Lj}^\L
 =

 N^t.L,QpQL){s) (g) 

V ^ J Q=0 

demanding the PQ to depend on s = tN only. Proof: Insert (6) into (8) to get: 

l - t N \ L ,. w , r 1 ^ ^ u ^ + O ) / 1 J.N \ n . n-i.n—1 

(1 - uji t)L' 
^ = o j=o y > 

Interchanging the Q- and j-summations we see that the Q-summation gives zero 
for j ̂  0, leaving only the j = 0 term, which is (8). 
Eq. (8) can now be used to obtain recursion relations: Write 

N-l N-l 

(l + t + t2 + ... + tN~1)YJ t°L'i PQ
L){s) = J2 t"L+^ PQ

L+1)(s). (9) 
Q=0 Q=0 
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Comparing powers of t, e.g. for L mod N = 0 this gives 

( i+i) 

:>(£+!) 

V -̂W 

/ 1 
1 
1 

V i 

1 
1 
S 

\ I P^ \ 
PI (L) 

>w (10) 

s J \ p(L) j 

For L mod N = k replace PQ —> PQ-k cyclically in both column vectors, keeping 
the same square matrix. Recursion relations not coupling Pk ' with different Q 
follow by the TV—fold application of these relations, leading to N + l-term recursion 
formulae. These can be transcribed into the corresponding formulae for the ITQ . 
For the Ising case Z2 these are of the Chebyshev type 

n(L+4) 4clX (i+2) 
Q + 4n! Q 0, (11) 

2 the ITQ form orthogonal sequences. However, for Z3 we have11 

(12) 

and so for N 
(valid for all L > 0 and all Q): 

n^L+9) - 3(9c2 - 5)n^L + 6 ) + 48 n^L + 3 ) - 64 n^L) = o 

These n^L) form 9 sequences, each labeled by (Lo, Q), where Q = 0,1,2 and L = 
3J+LQ where LQ = 0,1,2, j = 0,1,2, The degrees of the polynomials appearing 
in this relation increase by two from the right to the left, but since the recursion 
is four-term, not three-term, these are not orthogonal sequences21a. However, like 
(11) also (12) are of the most simple typeb: all coefficients are independent of L. 

4. Expansion in terms of Jacobi polynomials 

As the zeros of our IIQ are confined to and dense in the interval (—1,-1-1) we 
call this the basic interval like for orthogonal polynomials. Trying to determine 
(numerically) a weight function by the ansatz /_ 1 (1 + c ) a ( l — c)^ckU.Q (c) = 0 
for k < bQtL fitting a and (3, we find (in the following we concentrate on the 
Z3-case) that there is an approximate solution very close to a = —/3 = | , but a 
and (3 come out to be slightly L and fc-dependent, in contrast to what is needed 
for orthogonality. However, for L —> oo and small fixed k, the solutions converge 

1 (L) (- —-) 

towards a = —f3 = 3 . So the n ^ seem to be close to Jacobi polynomials P^3 ' , 
but can we formulate an exact relation valid for finite L? Is there an exact property 
of the U.Q ' which replaces orthogonality? 

Numerical calculations11 gave the surprising result that seemingly complicated HQ ' 

aIf we consider Q = L mod 3, then we have only polynomials in c2 , and the degrees 6jr,,Q are 
consecutive in powers of z = c2 ("simple sets of polynomials") with integer coefficients. 
bFor higher N we get similar N + l - term relations, e.g. for Z4: 

n (L+i6) _ 4 { 6 4 c 3 _ 5 6 c ) n < 4 ) n ^ + 1 2 ) - 128(14c2 - 1 7 ) n ^ + 8 ) - 2 0 4 8 c I I ^ + 4 ) + 4096 n ^ = 0. 
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Table 1. 

L 

Examples of Z3—polynomials rig '(c) and their Jacobi-components. 

Z 3 , Q = L + 1 mod 3, (a,/3) = ( § , - 1 ) 

n<f>(c) 2-["/3in^(c) 
3 

4 

5 

6 

7 

8 

9 

10 

9c + 3 

2 7 c 2 - 1 8 c - 5 

81 c3 + 2 7 c 2 - 5 7 c - l l 

3 5 c 3 + 8 1 c 2 - 1 3 5 c - 2 1 

3 6 c 4 - 2 - 3 5 c 3 - 540c2 + 2 7 0 c + 43 

3 7 c5 + 3 6 c4 - 2754 c3 - 702 c2 + 711 c + 85 

3 8 c5 + 3 7 c4 - 7290 c3 - 1782 c2 + 1593 c + 171 

3 9 c6 - 2 • 3 8 c5 - 25515 c4 + 14580 c3 

+7965 c2 - 3186 c - 3 4 1 

[0,|] 

[3,-f,fl 
[o--f-o,iJ 
[ 0 , 0 , 0 , ^ ] 
fo 27 171 729 7291 
l ° ! 4 ' 14 ' 40 ' 70 J 

[ 0 , 0 , 0 , - 2 , 0 , ^ ] 

[0 0 0 - 5 1 0 22̂ 1 
Lui u i " i 40 1 u> 56 J 
ro 27 135 243 9477 
L°> 4 i 14 > 20 ' 385 ' 

3 7 3 8 i 
56 ' 3081 

can be written as a combination of just very few Jacobi polynomials, e.g. 

n(!12) = 3 n c 7 + 3 1 0 c 6 - 5 - 3 1 0 c 5 - 80919c4 +140697c3+ 27459c2 -16839c -1365 = 

— ( l Pft~*] - P^~^\ . For polynomials TT(C) of degree n we usec: 

7T(C) = [TTo, TTi, . . . , 7Tn] = ^ 7 r f e P ^ . - ^ ) ( c ) ( 1 3 ) 

728 

fc=0 

and define a scalar product with Baxter's variable t = ((1 — c)/(l + c))1/3 (see 
(6)) as the weight function (here we will not need to specify the normalization): 

WW -£'*(££ 
1/3 

r(l)r 7rv^(c)7T (~'(cj r(2)f 
- / 

0 

— oo Vx 

6s 
;irW(c(s))irW(c(s)). 

The second part of this definition shows that it makes sense also if we prefer to use 
polynomials in the variable s, and that it preserves the original Z3—symmetry. 

Since the Ilk ' satisfy the recursion relations (12) they can be written as determi­
nants of band matrices with a bottom line specifying the initial conditions (which 
are the lowest L polynomials). Omitting the bottom line, we define j x j—band 
matrices and their determinants Rj = det | band( [64, 48, 3p, 1, 0], j)\ , e.g. 

Re 

3p 
48 
64 
0 
0 
0 

1 
3p 
48 
64 
0 
0 

0 
1 

3p 
48 
64 
0 

0 
0 
1 

3p 
48 
64 

0 
0 
0 
1 

3p 
48 

0 
0 
0 
0 
1 

3p 

where p = 9c — 5, so that the polynomials Rj depend only on c . Now we get the 

nine sequences of the I IQ ' as linear combinations of the Rj which satisfy appropriate 

cFor Jacobi series as a generalization of Taylor series, see Ch.7 of Carlson.23 We use the standard 
normalization of Jacobi polynomials, see e.g. Rainville.22 
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initial conditions. Abbreviating Qj = Rj + 8Rj-i these are found to be: 

l43,-) = 5 (Qj ~ 8 < 2 J - I + 16Qj-2); n ( 3 j ) = 9 c ^ _ i ± 3Q,-_i; 
2 

n |3i+l) = ± 1 8 c ^ . _ 1 + Q .̂ + 2 Q j l . n(3j+l) = ^ . _ A Q j i . ( M ) 

n l 3 j + 2 ) = 3c(Rj - 4R,-_i) ± (Q,- - 4Q j_i); n^3 j + 2 ) = 3Q,-. 

For j — 1,2 use i?o = 1; -ft-i = R-2 = 0. From (14) we see that only two of the 9 
sequences are independent. There are relations like e.g. IJ^j+1'—U.i:'+1' = 2E4 . 

To get the Jacobi-expansion of the Ilk , we only need to expand Rj and cRj. Us­
ing Jacobi-components denned in (13), from explicit calculation (for j < 36), we 
find that for k < j (only there) the j-dependence of the (Rj)k obeys the simple rule: 

(Rj)k = (-3)fc k\ (2k + 1) {(-8)1 ak + 4? rk} ; 

1 _ 2 ( - 3 ) m _ _ 2 ( - 3 ) m ~ 2 

3llJUo(3n + l) 3 n ' = m ( 2 n + l) n * = m ( 2 n ) 

It follows that the ak do not contribute to the A; < j-components of Qj, and, using 

the recursion relations for the Pk'
 3 (c), we conclude that for k < j we have 

\(Qj)k = -(cRj)k = \(c2Rj+1)k = V(-3)k k\ (2k + l)rk. It further follows that 

(ny+\ = (n?\ = (ui*+\ = (n^) =(n^+2>) =o for k<j. 
i k i k 

All k < j components of II^3 , II2 3 and U^^2' are proportional to (Qj)k-

We get zero overlap between a polynomial YLQ ' of degree bi,tQ with all polynomials 

ITQ, which have at least b/^Q vanishing low-fc components (these can only be 
polynomials which have &£/,Q' > 2bL:Q). One of many such relations is e.g. 

( n g j ) I n g / ' } ) = 0 for Q = Q' = 1 and 2j < f - 1. 

This property may be called "partial orthogonality". 
Further rules, this time valid for all k, regard the vanishing of many components 
for particular linear combinations: Defining 

Qf = n<3j'> =9cRi-1+3Qj-1 = U+\ a < + \ . . . , a g ^ ] ; 

Q{1] = Qj +9cRj-! - Qj-i = [oi-\ a{-\ ..., a{-] ], 

we have checked up to j = 30 that ak ' = 0 for k < j and that all even (odd) k 

Jacobi components of Q+ (Q_ ) vanish. So we conjecture for all j , j ' 

(Q{i)\Q{P) = 0. 
One can check some special cases of these results in Table 1. It has been found 
numerically11 that a similar partial orthogonality appears also for the Zjv-Baxter 
polynomials with N = 4, 5, 6. For even values of N further relations emerge, but 
these will not be discussed here. 
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5. Con c lu s ion 

The polynomials which play a central role for the calculation of the energy eigenval­

ues of the superintegrable Z3—chiral Po t t s model are found to be related to Jacobi 

polynomials in a very peculiar way. Many integrals giving the Jacobi-coefficients of 

Baxter 's polynomials a re found to vanish. These observations should have a deeper 

group-theoretical background, but the underlying symmetry is not yet clear to us. 

By reducing the formulation of the problem to some basic facts, the present analysis 

tries to prepare the g round for clarifying the symmet ry involved. 

A c k n o w l e d g e m e n t s 

The author is grateful t o Prof. Mo-Lin Ge for the very friendly hospitality during 

the A P C T P 2001 Nankai Symposium in Tianjin. This work has been supported by 

INTAS-OPEN-00-00055. 

References 

1. F.Y. Wu and Y.K. Wang, J. Math. Phys. 17, 439 (1976) 
2. S. Ostlund, Phys. Rev. B24, 398 (1981) 
3. D.A. Huse, Phys. Rev. B24, 5180 (1981) 
4. DA. Huse and M.E. Fisher, Phys. Rev. B29, 239 (1984) 
5. P. Centen, M. Marcu and V. Rittenberg, Nucl. Phys. B205, 585 (1982) 
6. S. Howes, L.P. Kadanoff, and M. den Nijs, Nucl. Phys. B215 [FS7], 169 (1983) 
7. H. Au-Yang and J.H.H. Perk, Int. J. of Mod. Phys. B l l , 11 (1997) 
8. G. von Gehlen and V. Rittenberg, Nucl. Phys. B257 [FS14], 351 (1985) 
9. L. Onsager, Phys. Rev. 65, 117 (1944) 

10. R.J. Baxter, Phys. Lett. 133A, 185 (1988). 
11. G. von Gehlen and S.-S. Roan, in "Integrable structures of exactly solvable two-

dimensional models etc.", NATO Science Series 7735, 155, Kluwer Acad. Publ.(2001) 
12. B. Davies, J. Phys. A: Math. Gen. 23, 2245 (1990) 
13. L. Dolan and G. Grady, Phys. Rev. D25, 1587 (1982) 
14. J.H.H. Perk, in Theta Functions Bowdoin 1987, Am. Math. Soc. (1989) 
15. E. Date and S.-S. Roan, J. Phys. A: Math. Gen. 33, 3275 (2000) 
16. H. Au-Yang, B.M. McCoy, J.H.H. Perk, S. Tang and M.L. Yan, Phys. Lett. 123A, 

219 (1987) 
17. R.J. Baxter, J.H.H. Perk and H. Au-Yang, Phys. Lett. 128A, 138 (1988) 
18. G. Albertini, B.M. McCoy and J.H.H. Perk, (1989) Adv. Stud. Pure Math. 19, 1 

(1989) 
19. S. Dasmahapatra, R. Kedem and B.M. McCoy, Nucl. Phys. B257 506 (1993) 
20. R.J. Baxter, J. Phys. A: Math. Gen. 27 1837 (1994) 
21. T.S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach (1978) 
22. E.D. Rainville, Special Functions, Chelsea Publ. Comp. (1971) 
23. B.C. Carlson, Special Functions of Applied Mathematics, Academic Press (1977) 

284 



International Journal of Modern Physics B, Vol. 16, Nos. 14 & 15 (2002) 2137-2143 
© World Scientific Publishing Company 

THERMODYNAMICS OF TWO C O M P O N E N T BOSONS 
IN ONE D I M E N S I O N 

SHI-JIAN GU 

Zhejiang Institute of Modern Physics, Zhejiang University, Hangzhou 310027, P.R. China 

YOU-QUAN LI 

Zhejiang Institute of Modern Physics, Zhejiang University, Hangzhou 310027, P.R. China 

ZU-JIAN YING 

Zhejiang Institute of Modern Physics, Zhejiang University, Hangzhou 310027, P.R. China 

XUE-AN ZHAO 

Zhejiang Institute of Modern Physics, Zhejiang University, Hangzhou 310027, P.R. China 

Received 3 December 2001 

On the basis of Bethe ansatz solution of two-component bosons with SU(2) symmetry 
and 5-function interaction in one dimension, we study the thermodynamics of the system 
at finite temperature by using the strategy of thermodynamic Bethe ansatz (TBA). It 
is shown that the ground state is an isospin "ferromagnetic" state by the method of 
TBA, and at high temperature the magnetic property is dominated by Curie's law. We 
obtain the exact result of specific heat and entropy in strong coupling limit which scales 
like T at low temperature. While in weak coupling limit, it is found there is still no 
Bose-Einstein Condensation (BEC) in such ID system. 

1. Introduction 

A two-component Bose gas has been produced in magnetically trapped 87Rb by 
rotating the two hypernne states into each other with the help of slightly detuned 
Rabi oscillation field.1 It was noticed2 that the properties of such Bose system can 
be different from the traditional scalar Bose system once it acquires internal degree 
of freedom. Bethe ansatz solution of SU(2) two-component bosons in one dimension 
was obtained.3 '4 It was pointed out that the ground state of such a system is an 
isospin "ferromagnetic" state4 which differs from that of spin-1/2 fermions in one 
dimension, such as SU(2) Hubbard model,5 etc. 

An interacting SU(2) boson field trapped in a one dimensional ring of length L 
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can be modeled by the following Hamiltonian 

H= dx 
/ • a a,b 

(i) 

e 

where a,b = 1,2 denotes the ^-component of isospin. The Bethe ansatz equations 
(BAE) of eq. (1) are obtained as follows 

ikjL _ _ TT *j — h+ic -I-T kj — \y — ic/2 
~ M kJ -h-ic 1 1 fc,- - Xv + ic/2 

l=\ ^~ki+ ic/2 1=1 A7 - \„ - ic U 

where M denotes the total number of down isospins. Eq. (2) differs from the BAE 
of scalar bosons with periodic condition.6 The second equation of eqs. (2) of isospin 
rapidity A arises from the application of quantum inverse method,7 which can be 
inferred from spin-1/2 fermions8 too. However, the symmetry of bosonic wave func­
tion gives the first term on the right side of first equation of eqs. (2), which does 
not appear in the BAE for fermions. 

2. Thermodynamics at Finite Temperature 

The strategy we use here is the thermodynamic Bethe ansatz (TBA) which was 
pioneered by C. N. Yang and C. P. Yang for the case of the delta-function Bose 
gas.10 It is used to derive a set of nonlinear integral equations called TBA equations, 
which describe the thermodynamics of the model at finite temperature. Moreover, 
the As can be complex roots which should form a "bound state" with other As11 

when T ^ O , which arises from the consistency of both sides of the BAE. For ideal 
A strings of length m the rapidities are A™J = A£ + (n + 1 - 2j)iu + 0(exp(-SN)). 
Here u = c/2, a enumerates the strings of the same length m, and j = 1 , . . . ,m 
counts the As involved in the ath A string of the length m, A™ is the real part of 
the string. 

Taking logarithm of the BAE (2) by using string hypothesis we arrive at the 
following discrete Bethe ansatz equations 

1-KIJ = kjL + 2^2e2(fc,- -ki)-J2Q"(ki ~ A") 
I an 

2nJ: = 2 £ On(A£ - *,) - 2 £ AnltQt(X
n
a - Xl

b) (3) 
l bl,tytO 

where 0n(,x) = tan 1(x/nu) and 

1, fori = n + 1,17i — /| 
Anit = { 2, for i = n +1 - 2, • • •, \n - l\ + 2 

0, otherwise. 
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Ij and J™ play the role of quantum numbers for charge rapidity and isospin rapidity 
respectively. In order to guarantee linear independence of wave function, all quan­
tum number within a given set of {7} as well as that in {J} should be different. An 
arbitrary quantum number may be either in the set or not in the set. The former is 
called a root, the later is called a hole. In thermodynamic limit, the distribution of 
charge rapidities becomes dense and it is useful to introduce the density function 
for charge roots and holes respectively. We denote with p(k) and ph(k) the density 
function of charge roots and holes, in a similar way, with <rn(A) and <r£ the density 
function of n-strings roots and holes on real axis. They are defined by 

p(k)+ph(k) = (l/L)dI{k)/dk 

<T„(A)+<T£(A)= (l/L)dJn(X)/d\. (4) 

Then from eqs. (3) we obtain a set of coupled integral equations. 

p + ph= ±+K2(k)*p(k)-J2Kn(k)*an(k) 
n 

on + oh
n= Kn(\) * p(X) - J2 AnitKt{\) * ai(X) (5) 

where Kn(x) — nu/ir(n2u2 + x2), and * denotes the integral convolution. 
In terms of the density functions of charge and isospin roots, the kinetic energy 

per length has the form Ef./L = j k2p(k)dk, the total number of down isospins 
is M/L = ^2nn Jan(X)dX and the particle density of the model is D = N/L = 
J p(k)dk. If we consider the energy arising from the external field 0 which is the 
Rabi field in two-component BEC experiments, the internal energy of the model is 

E/L = f{k2 - Q)p(k)dk + J ] 2 n 0 / andX. (6) 

And with the help of the approach first introduced by Yang and Yang,10 the entropy 
of the present model at finite temperature is 

S/L = f[(p + ph) ln(p + / ) - plnp -ph \nph}dk (7) 

+ J2 /[(CT« + *£) l n K + o£) - ov, In(7„ - oh
n In <%]d\. 

n J 

The Gibbs free energy of the model then is defined by F = E — TS — pN, where p, is 
the chemical potential. In order to obtain the thermal equilibrium, we minimize the 
free energy with respect to all the density functions subjects to the constraint (5). 
In addition, the total number of particles, the magnetization are kept to constant. 
For this purpose, the chemical potential p and external field O play the role of 
Lagrange multipliers. 

It is useful to define the energy potential for charge sector and isospin sector: 

K(jfe) = ee(fc) /T = ph{k)/p{k) 

Vn(X) =ah
n{X)/an{X). (8) 
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Applying the minimum condition SF = 0 gives rise to a revised version of Gaudin-
Takahashi equations 

TlnAv - e(k) = k2-fi-Q- TK2{k) * ln[l + KT1] 

-Tj2Kn(k)*H^-+V~1} 
n 

lnr/i = —sech(7rA/2u) * ln[(l + K _ 1 ) ( 1 + %)] 

ln77„= —sech(7rA/2u)*ln[(l+»fc,_i)(l + »M+i)]. (9) 
4u 

And these equations are completed by the asymptotic conditions 

lim [lnr]n/n} = 2x (10) 

where x — fi/T. Eqs. (9) can be solved by iteration. Note that eqs. (5) together 
with eqs. (9) completely determine the densities of charge roots and isospin roots 
in the state of thermal equilibrium. The Helmholtz free energy F = E — TS is given 

by 

F= nN-— f ln[l + e-elT\dk. (11) 

The above approach called TBA is universal for discussing the thermodynamics 
of one dimensional integrable model. Once eqs. (9) are solved, all thermodynamic 
quantities can be obtained from eq. (11) in principle. 

3. Magnetic Property: Zero and High Temperature Limit: 

The state at zero temperature is the ground state. The Fermi surface is determined 
by e{kp) = 0. Since there is no hole under Fermi surface, we can take the energy 
potential K = ph/p as zero. As a result, from eqs. (9), it is easy to see r]n —> oo, and 
M = 0, the "ferromagnetic" ground state. The first equation of eqs. (9) becomes 

e0(k) = k2 - ix - il + K2(k) * e0(k) (12) 

which gives the solution of dressed energy, and the ground-state energy may be 
given in terms of €o 

1 rhF 

E0/L = — / e0(k)dk. (13) 
27r J-kF 

Consequently, the ground state of ID SU(2) bosons is an isospin "ferromagnetic" 
state, which coincides with the analysis of Li et al.4 Then the property of the 
model at T = 0 is the same as that of scalar bosons in one dimension which has 
been discussed extensively by Lieb and Liniger.6 In the isospin space, however, the 
SU(2) symmetry of whole system around the ground state is broken. 

288 



Thermodynamics of Two Component Bosons 2141 

In the high temperature limit T —> oo (free isospins), however we can assume 
that all functions r]n(\) are independent of A. Then eqs. (9) can be written as 
follows, 

r)l = (1 + m) 
nl= (l + Tfe-xXl + Tfc+i) (14) 

where we have neglected the term (1 + K - 1 ) in the second equation of eqs. (9). The 
solution of j]n are then constants fixed by the field boundary condition (10) to be 

'sinh(n + l)x]2
 1 

Vn = sinhx 

After perform the Fourier transformation on eqs. (5), we get the solution of the 
densities of A n-strings, 

<t\ + &1 = — sech[7rA/2u] * [p + ak] 
Au 

an + a"= ^ s e c h [ 7 r A / 2 u ] * [ ^ 1 + « 7 t i ] . (16) 

If we assume that an and CT£ are independent of A or let c = 0, the total number of 
down isospins has the form, 

£ n a n = ^ - ^ . „ m e - ^ (17) 
n 

where nm is maximal length of A strings. In the absence of Rabi field, we have 
M/N = 1/2, the system at high temperature is a quasi "paramagnetic" state. If 
the external field 0 is small, expanding eq. (17) for small field x and integrating 
the equation over A space, we get the magnetization of the model. Let Mm be the 
total number of isospin rapidities in all nm-strings, 

where the first term in the parentheses arises from self-magnetization, while the 
others are contributed by Rabi field. Eq. (18) indicates that the magnetic property 
of the model in high temperature regime dominated by Curie's law x oc 1/T. 

4. Strong and Weak Coupling Limit: 

When 77 —>• 00, Kn(k) = 0, from eqs. (9) we have 

e = k2 - il - /i- (19) 

The free energy of the system (11) at low temperature now can be solved by 
integration by part, 

2 2^2 1,3/2 r v 
F,L = ,D--y-^ + WJ-2 (20) 
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where the external field is set to zero. 
We can not deduce the specific heat directly from the free energy obtained 

above because the chemical potential is a function of temperature. Prom eqs. (5), 
the density of charge rapidity has the form 

- 1 1 

Clearly, at zero temperature, the Fermi surface is just the square root of the chemical 
potential, so we have ^o = 7r2D2. At low temperature, however, it is determined 
by D = N/L = / p(k)dk. After integration, we have a temperature dependent 
chemical potential 

2^2-, - 2 
(22) 

Then the free energy becomes 

1 

7T 

24/x2. J 

2 2j>2 

Since by thermodynamics S = —OF/dT and Cv — TdS/dT, we find the specific 
heat at low temperature is Fermi-liquid like 

S = CV = ^ . (24) 

It is the same as the result of one-component case, since for the strong coupling limit 
the isospin and the charge are decoupled completely, the contribution of isospin to 
the free energy vanishes. 

In order to discuss the possibility of the existence of BEC, we consider the 
problem in weak coupling limit u —> 0. And isospin-isospin reaches its maximal 
correlation. At low temperature, however, we do not take string hypothesis for 
simplicity. Because \im.c^oKn(x) = 5(x), together with eqs. (5) and eqs. (9), we 
obtain 

_ 1 ( 3 e » - l ) ( e - + l ) 
P W ' 2 7 r ( 3 e ^ o + l ) ( l _ e - e o ) ^ 5 ) 

where so = (k2 — n)/T. The positive definition of p(k) requires that the chemical 
potential is negative. As we known the density of scalar boson is 2np = 1/(1 — e~e°) 
which prevents the BEC in ID and 2D system because of the infrared divergence. 
However, the density function (25) still does not resolve this problem. Consequently, 
BEC does not happen in this model yet. 

5. Conclusion and Acknowledgment 

To summarize, we discussed the general thermodynamics of one dimensional SU(2) 
bosons with J-function interaction by using the strategy of TBA. It was shown that 
the ground state is an isospin "ferromagnetic" state which differs from the ground 
state of ID fermions, while at high temperature, it is "paramagnetic" state and 
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the magnetic property is dominated by Curie 's law. In s t rong coupling limit, we 

obtain the exact expression of the dependence of chemical potent ial , entropy and 

specific heat on temperature which are Fermi-liquid like, while in weak coupling 

limit, we found the infrared divergence of charge roots density function prevents 

the existence of BEC. 

This work is supported by Trans-Century Training Program Foundat ion for the 

Talents and EYF98 of China Ministry of Educat ion. SJG thanks D.Yang for helpful 

discussions. 
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A systematic method for constructing trigonometric R-matrices corresponding to the 
(multiplicity-free) tensor product of any two affinizable representations of a quantum 
algebra or superalgebra has been developed by the Brisbane group and its collaborators. 
This method has been referred to as the Tensor Product Graph Method. Here we describe 
applications of this method to untwisted and twisted quantum affine superalgebras. 

1. Introduction 

The (graded) Yang-Baxter equation (YBE) plays a central role in the theory of 
(supersymmetric) quantum integrable systems. Solutions to the YBE are usually 
called R-matrices. The knowledge of R-matrices has many physical applications. 
In one-dimensional lattice models, R-matrices yield the Hamiltonians of quantum 
spin chains.1 In statistical mechanics, R-matrices define the Boltzmann weights 
of exactly soluble models2 and in integrable quantum field theory they give rise 
to exact factorizable scattering S-matrices.3 So the construction of R-matrices is 
fundamental in the study of integrable systems. 

Mathematical structures underlying the YBE and therefore R-matrices and in­
tegrable models are quantum affine (super)algebras. A systematic method for the 
construction of trigonometric R-matrices arising from untwisted and twisted quan­
tum affine (super)algebras has been developed in Refs. 4-9 (see also Ref. 10 for 
rational cases). This method is called the Tensor Product Graph (TPG) method. 
The method enables one to construct spectral dependent R-matrices corresponding 
to the (multiplicity-free) tensor product of any two affinizable representations of a 
quantum algebra or superalgebra. 

In this contribution, we describe the TPG method in the context of untwisted 
and twisted quantum affine superalgebras. Quantum superalgebras are interesting 
since the tensor product decomposition often has indecomposables and integrable 
models associated with them may in some instances be interpreted as describing 
strongly correlated fermion systems.11 '12 
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2. Quantum Affine Superalgebras and Jimbo Equation 

Let us first of all recall some facts about the affine superalgebra G^k\ k — 1,2. Let 
Go be the fixed point subalgebra under the diagram automorphism of Q of order k. 
In the case of k = 1, we have Go = G- For k = 2 we may decompose G as Go © Gi, 
where [<?o>£i] C G\- Let tp be the highest root of Go = G for k = 1 and 0 be the 
highest weight of the ^-representation G\ for A; = 2. 

Quantum affine superalgebras Uq[G^] are g-deformations of the universal en­
veloping algebras U[Q^] of 5 ^ • We shall not give the defining relations for UglG^}, 
but mention that the action of the coproduct on its generators {hi, e ,̂ fi, 0 < i < 
r} is given by 

A(/ii) = hi® 1 + 1® hi, 

A(ei) = ei®q^ + q~^ ® eu A(/i) = / j <g> q^ + q~^ ® f{. (1) 

Define an automorphism Dz of Uq[G^] by 

£»z(e,) = zk5<°ei, Dz(fi) = z-kSi°fi, Dz(hi) = K (2) 

Given any two minimal irreducible representations TT\ and 7r̂  of Uq[Go] and their 
affinizations to irreducible representations of Uq[G^], we obtain a one-parameter 
family of representations A? of Uq[G^] on V(X) ® V(fj,) defined by 

A ^ ( a ) = 7 r x ® 7 r ^ ( ( I ? z ® l ) A ( a ) ) , Va € CM0(fc)], (3) 

where 2 is the spectral parameter. Let Rx^(z) be the spectral dependent R-matrices 
associated with ir\ and 7rM, which satisfies the YBE. Moreover it obeys the inter­
twining properties: 

i ? ^ ) A y a ) = ( A r ) y a ) i ^ ( z ) (4) 

which, according to Jimbo,13 uniquely determine RXlJ,(z) up to a scalar function of 
z. We normalize Rxi*{z) such that Rx'1{z)R'iX{z-1) = I, where Rx»(z) = P Rxi*{z) 
with P : V(X) ® V(fj.) —> V(/J,) ® V(X) the usual graded permutation operator. 

In order for the equation (4) to hold for all a € Uq[G^] it is sufficient that it 
holds for all a G Uq(Lo) and in addition for the extra generator eo. The relation for 
eo reads explicitly 

Rx»(z) (z7rx(eo)®Trli(q
h°/2)+*x(q-h°/2)®^(eo)) 

= (^(e0)®irx(q
h°'2) + znfi(q-h°/2)®7rx(e0))R

x»(z). (5) 

Eq.(5) is the Jimbo equation for Uq[Q^]. 

3. Solutions to Jimbo Equation and Tensor Product Graph 
Method 

Let V(X) and V([i) denote any two minimal irreducible representations of Uq[G^\. 
Assume the tensor product module V(A) ® V(fi) is completely reducible into irre-
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ducible Uq[Go\-mo&\Aes as 

V{\)®V{ii) = ($V{v) (6) 

and there are no multiplicities in this decomposition. We denote by P^ the projec­
tion operator of V[X) ® V{y) onto V{v) and set P*M = R^(l) P^ = Ppx Rx»(l). 
We may thus write 

# " ( * ) = X > ( s ) P ^ , p„(l) = l. (7) 

Following our previous approach,5 the coefficients pu(z) may be determined accord­
ing to the recursion relation 

fWt + e^zqW* 
P"{Z) = zfM + wfVV*""^ (8) 

which holds for any v ^ v' for which 

P^ (^(eo) ® KMh°'2)) P? ± 0. (9) 

Here C(u) is the eigenvalue of the universal Casimir element of Go on V{v) and eu 

denotes the parity of V(u) C V"(A) <g> V(JJ,). 
We note that eo <E> qrh°/2 transforms under the adjoint action of Uq[Go] as the 

lowest weight of So-niodule V(tp) [resp. V(6)} for A; = 1 (resp. k = 2) (i.e. as the 
lowest component of a tensor operator). Throughout we adopt the notation 

l±zqa 

<<*>±= • 0 , (10) 

so that the relation (8) may be expressed as 

^./m^m) MJ, (11) 

To graphically encode the recursion relations between different pu we introduce 
the Extended TPG for Uq[G(1)] and Extended Twisted T P G for Uq[G

{2)}. 

Definition 1: The Extended TPG associated to the tensor product V(X) <g> 
V(fi) is a graph whose vertices are the irreducible modules V(v) appearing in the 
decomposition (6) of V(X) <8> V{p). There is an edge between two vertices V(y) and 
V{v>) iff 

V(v')^Vadj®V{v) and e(i/)e(«/) = - 1 . (12) 

The condition (12) is a necessary condition for (9) corresponding to Uq[G^] to 
hold. 

Definition 2: The Extended Twisted T P G which has the same set of nodes as 
the twisted TPG but has an edge between two vertices v ^ v' whenever 

V(i/) C V(6) <g> V(i/) (13) 
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and 

_ J + 1 if V(v) and V(v') are in the same irreducible representation of Q 
\ — 1 if V(v) and V(i/) are in different irreducible representations of Q. 

(14) 

The conditions (13) and (14) are necessary conditions for (9) corresponding to 
Ug[gW] to hold. 

We will impose a relation (8) for every edge in the extended (twisted) TPG 
but we will be imposing too many relations in general. These relations may be 
inconsistent and we are therefore not guaranteed a solution. If however a solution 
to the recursion relations exists, then it must give the unique correct solution to 
the Jimbo's equation. 

4. Examples of R-matrices for Uq[gl(m\n)^] 

Throughout we introduce {ej}^=1 and {£j}?=i which satisfy (ej,ej) = 6ij, (6i,Sj) 
= —Sij and (u,Sj) = 0. As is well known, every irreducible representation of 
Uq[gl(m\n)] provides also an irreducible representation for Uq[gl(m\n)^]. Here, 
as examples, we will construct the R-matrices corresponding to the following ten­
sor product: rank a antisymmetric tensor with rank b antisymmetric tensor of the 
same type. Without loss of generality, we assume m>a>b and the antisymmetric 
tensors to be contravariant. The tensor product decomposition is 

V(\a)®V(\b) = ($V(Ac) (15) 
c 

where, when a + b < m, 

b a+c b—c 

Ab = ^ € i , Ac = ^ e i + ^ e i , c = 0, l , - -- ,6 (16) 
i = l i = l j= l 

and when a + b > m, 

a+c b—c 

A c = ^ e i + ^ e i , c = 0,1, • ••,m- a 
t= i »=i 
m b—c 

Ac = ^ C J + ^ e j + (a + c - m ) 5 i , c — m-a + l,---,b (17) 
t= i »=i 

The corresponding TPG is 

V(\a)®V(\b) (18) 
A0 Ai A6_i Afc 

which is consistent; such is always the case when a graph is a tree (i.e. contains no 
closed loops). From the graph we obtain 

b 

#«•**(x) = ^2Y[{2i + a-b)_ pfcXh (19) 
c=0 i = l 
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The a = b = 1 case had been worked out before, which is known to give rise to the 
Perk-Schultz model R-matrices.14,15 

5. Examples of R-matrices for C/9[gZ(n|n)^2)] 

To begin with, we introduce the concept of minimal representations. By minimal 
irreducible representations of Q, we mean those irreducible representations which 
are also irreducible under the fixed subalgebra QQ. We can determine R-matrices 
for any tensor product V(\a)®V{\b) of two minimal representations V(Xa), V(Xb) 
of Uq[gl(m\n)^], where V(Xa) is also irreducible model under Uq[osp(m\n)} with 
the corresponding Uq[osp(m\n)\ highest weight Aa = (6|a, 6). Recall that for our 
case QQ = osp(m\n) and 6 = 8i + 82. Below we shall illustrate the method for the 
interesting case of a — b, m = n > 2, where an indecomposable appears in the 
tensor product decomposition. 

The decomposition of the tensor product of two minimal irreducible represen­
tations of Uq[osp(m\n)]:9 

a c 

V(Xa)®V(Xb) = Q)(£)V(k,a + b-2cy, (20) 
c=0 k=0 

here and throughout V(a, b) denotes an irreducible Uq[osp(m\n)} module with high­
est weight Xat(, = (0|a + 6, a, 0). Note that one can only get an indecomposable in 
(20) when m = n > 2 and a + b - 2c = 0. Since a < b, c < a, this can only occur 
when a = b and c = a. In that case the C/q[osp(m|n)]-modules V(k,0), k — 0,1, 
will form an indecomposable. From now on we denote by V this indecomposable 
module, and write the Uq[osp(n\n)} module decomposition (20) as 

V{\a)®V{\a) = @V(v)®V, (21) 

where the sum on v is over the irreducible highest weights. Note that V contains 
a unique submodule V^#i + ^2) which is maximal, indecomposable and cyclically 
generated by a maximal vector of weight 81+82 such that V/V{8\+52) = V(0j0) (the 
trivial f/q[osp(n|n)]-module). Moreover V contains a unique irreducible submodule 
V(0|0) C V(8i +82)- The usual form of Schur's lemma applies to V{8\ +82) and so 
the space of Uq[osp(n\n)] invariants in End(V) has dimension 2. It is spanned by 
the identity operator I together with an invariant ./V (unique up to scalar multiples) 
satisfying 

NV = V{0\6)cV(81 + 82), NV(81 + 82) = (0). (22) 

It follows that TV is nilpotent, i.e. TV2 = 0. 
We can show9 that the minimal irreducible Uq[osp(n\n)} modules, V(Xa), with 

highest weight Aa, are affinizable to carry irreducible representations of Uq[gl(n\n)(2'] 
We now determine the extended twisted TPG for the decomposition given by (21). 
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We note that V can only be connected to two nodes corresponding to highest 
weights 

(opposite parity), (c, k) = (a - 1,0) , 
+ 62) (same parity), (c, k) — (a, 2). 

We thus arrive at the extended twisted TPG for (21), given by Figure 1. 

k = 0 

c = 0 

c = l 

c = 2 

k = a — 1 

c = a — 1 

c = a 

A; = a 

Fig. 1. The extended twisted TPG for Ug[gl(n\n)^] (n > 2) for the tensor product 
V(Xa) ® y(Aa). The vertex labelled by the pair (c, k) corresponds to the irreducible 
Uq[osp(n\n)] module V(k,2a — 2c) except for the vertex corresponding to c = a, k = 1, 
which has been circled to indicate that it is an indecomposable [79[osp(n|n)]-module. 

It can be shown that the extended twisted TPG is consistent, i.e. that the 
recursion relations (8) give the same result independent of the path along which 
one recurs. To prove this it suffices to show for each closed loop of four vertices in 
the graph, that the difference in Casimir eigenvalues for osp{n\n) along one edge 
equals the difference along the opposite edge. 

Let Py = PyaXa be the projection operator from V(An) <g) V^(Aa) onto V and 
Pv = P^°A° the projector onto V{v). Then the R-matrix R(z) = RXa'Xa(z) from 
the extended twisted TPG can be expanded in terms of the operators N, Py and 
Pv: 

R{z) = pN{z)N + Pv{z)Pv + J2 P»(z)p»- (24) 
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The coefficients pv{z) can be obtained recursively from the extended twisted T P G . 

However, t h e coefficients PN{Z) and pv{z) cannot be read off from the extended 

twisted T P G since the corresponding vertex refers to an indecomposable module. 

Ra ther they are determined by the approach 1 6 to Uq[gl(2\2)^]. The result is9 

a ' c ' c—fe 

R{z) = pN{z)N + pv(z)Pv + E E I 1 ^ - 2 a>+ 
c=0 fe=0 j = l 

c 

Yl(i-2a-l)-P{2a-2c+k)s1+kS2, (25) 

i = l 

where t h e pr imes in the sums signify tha t terms corresponding to c = a wi th k = 0,1 

are omi t t ed from the sums, and pv(z), PN(Z) are given by 

2 a—1 a—1 

q j = i t = i 

PN{z) = ( - l ) V a 2 \ ^ z Pv{z). (26) 
1 + 2 
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Free field and twisted parafermionic representations of twisted su(3), current algebra 
are obtained. The corresponding twisted Sugawara energy-momentum tensor is given in 
terms of three (/3,7) pairs and two scalar fields and also in terms of twisted parafermionic 
currents and one scalar field. Two screening currents of the first kind are presented in 
terms of the free fields. 

1. Introduction 

Infinite dimensional algebras, such as Virasoro algebra and affine algebras are alge­
braic structures in conformal field theories (CFT) in two dimensional spacetime.1-3 

They also play a central role in the study of string theory.4 

It is well-known the untwisted current algebra can be realized by at least two 
different ways: one is the free field representation,5 and the other is the parafermion 
representation.6 The free field realization is a common approach used in conformal 
field theories.5 The free field representations for untwisted affine algebra have been 
extensively studied. The simplest untwisted case su(2)^ was first treated in Ref. 5, 
and the generalization to su(n)^ was given in Refs. 7-17. The Zk parafermions are 
generalizations of the Majorana fermions, and the Z\. parafermion models are ex­
tensions of the Ising model, which corresponds to the case fc = 2.1 9 , 2 0 Parafermions 
are related to the exclusion statistics introduced by Haldane.21 

The recently study shows that twisted affine algebras are useful in the descrip­
tion of the entropy of Adsz black hole.18 However, little is known for free field 
and parafermionic representations of twisted affine algebras. So it is an interesting 
problem to investigate such realizations. 

In this contribution we consider the simplest twisted affine algebra sw(3)^.'. We 
construct two different realizations for this algebra: one is free field representation, 

'Permanent address: Institute of Applied Mathematics, Academy of Mathematics and System 
Sciences; Chinese Academy of Sciences, P.O.Box 2734, 100080, China. 
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which is another version of one given in Ref. 22, and another is twisted parafermionic 
representation by using the twisted parafermionic currents proposed in Ref. 23. 
Moreover we give the screening currents in terms of the free fields. 

2. Twisted current sw(3)^ ' algebra 

(2) We consider the simplest twisted affine Lie algebra SM(3))J. . We decompose su(3) 

as 

su(3) = go © ffi (1) 

where 50 = su(2) is the fixed point subalgebra under the automorphism and #1 is the 
five dimensional representation oi go; go and g\ satisfy [gi,gj] C g(i+j) mod 2- Using 
the notation in Ref. 22, we chose e, / and h to be the bases in go and e, / , E, F 
and h the bases of g\. Then the commutators of su(3)k can be expressed as 

(X\Y) 
>X,zn®Y] = z m+n , [X,Y] + 2kmSm+n,o- (2) 

Where m £ Z if X € go, and m € Z + \ if X € gi. 
Denote the currents corresponding to e, h, f by j+(z), j°(z), j~(z), and to 

e, h, / , respectively. Then (2) can be written in terms of the following OPE's: 

j+(z)j (w) 
Ak 

+ 
1 

r j » + - . , (z — w)2 (z — w)" 
Ak 1 

J+(z)J-(w) = ^ + T-±-J°(w) + ..., 
(z — w)z (z — w) 

J++(z)J-(w) = T-^L- + j-^—fiw) + ..., 
(z — w)2 (z — w) 

J°(z)J±(w) = 

±2 
(z-w] 

±6 

• j ± H + . . . , j°(z)j°(w) 
8k 

- j ± H + ... (z — w) 

J+(z)J—(w) = 7-l—j-(w) + . 
(z-w)' 

j+{z)J+{w) = J++(w) +. 
(z — w) 

j+{z)J-(v,) = j ^ J ° W + ... 

j+{z)J—{w) = j-=*—J-(w) + . 
(z — w) 

fiz^iw) = 

J°{z)J°{w) = 

±2 
(z — w) 

2Ak 

(z — w) 

J±(w) + ... 

r + . . . . 

J-{z)J++{ 

j (z)J (w) = 

J+(z)j-(w) = 

(z — w)2 

- ±6 

(z — w) 
J±(w) + ..., 

j+(w)+ ..... 
(z — w) 
-2 

(z — w) 
J—{w) + ..., 

(z — w) 

j-(z)J++{w) = 

fiz^iw) = 
±4 

J°(w) +. 

— J+(w) 

(z — w) 
j ± ± H + . . . : 
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All other OPE's contain trivial regular terms only. Here and throughout " . . ." stands 
for regular terms. 

3. Wakimoto free field realization of the twisted affine currents 

To obtain a free field realization of the twisted su(3yk' currents, we follow the 
procedure adopted in Ref. 22 but begin with a different Fock space. The Fock space 
is constructed by the repeated actions of / , / , F on the highest weight state v\ 
with highest weight A. The highest weight states are determined by 

evA = evA = EvA = 0, hvA = (A, ai)vA, hvA = (A, a2)vA (3) 

where a\ and a2 are roots associated with h and h. 
Set \n, m, I > = fnFmflVA- This choice is different from the one used in Ref. 22. 

As we shall see, this choice gives another free field realization of the twisted current 
algebra. Introduce three /3j pairs and two scalar fields (j>a, a = 1, 2. (/%; ji) pairs 
have conformal dimension (1; 0). 

ft(2)7; H = - T i W f t H = - - ^ - , *, j = 0,1,2 
z — w 

4>a{z)4>b{w) = -25a,b ln(z - w), a, b = 0,1 (4) 

Introduce the notation ei = | (1 ,1) ; e2 = - ^ (1 , -1 ) ; and l> = (4>o,4>±). Then we 
have 

e\ • $(z)ei • <fr(w) = - \n(z - w); e2 • §>{z)e2 • $(w) = - 3 ln(z — w); 

e*i • $(z)e2 • $>(w) = 0. 

We find the Wakimoto free field realization of su(3)jj.' in terms of the eight free 
fields: 

j+(z)= A>(z)+2ft(z)7i(*), 

j°(z) = 2p0(z)l0(z) + 2(31{z)ll{z)+Ap2{z)l2{z) + — (ei • id$(z)), 
a+ 

j~(z) = -Po(z) (7o2W + 37 l
2W) - 2fa{z) (370(2)71 W - 72(2)) 

-2/32(z) (37g(2)7i W + 7?(*)) - 4(fc + l)57o(«) 

(ei • id$(z))nf0(z) (e2 • id$(z))7i(;z), 

j\z) = 6/3o(2)7iW + 6/?i(2)70(2) + 6ft(z) (7o
2(2) + 7i2(2)) 

+ — (e2-id$(z)); (5) 
a+ 

J+(Z) = /3l(2), 

J - (z ) = -2A)(z) (70(2)71(2) +72(2)) - A(2) (37o
2(2) +7i2(2)) 

-4ft(z) (7o
3(2) +71(2)72(2)) -4fc97i(2), 

(ei • ia$(z))7!(2;) (e2 • id$(z))j0(z); 
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J—(z) = 20o(z) (7g(*)7i(*) +7i3(z) - 27o(zh2(z)) 

- 2 f t (z) (<yg(z) - 37o(z)7i2(z) + 27i(z)72(z)) 

- f t ( z ) (37
4(*) - 7i(*) - 67o2(^)7i2(^) + 47

2(z)) 
2 

H (ei • id$(z)) (70(2)71(2) - 72(2)) - 4fcd72(z) 
a+ 

- — (e2 • i0*(z)) (7
2(z) - 7l

2(z)) + 8(* + 1)71(^)570(2) 

Here a + = l/\/8k + 24, and normal ordering is implied in the expressions. It is 
straightforward to check that the above currents satisfy the OPE given in last 
section. We remark that the twisted currents have the following mode expansions: 

f{z) = T^zftz-"-1; Ja(z) = ZnzZ+1/2JZz-n-\ (6) 

4. Twisted parafermions and parafermionic realization 

In this section we use the twisted parafermionic currents proposed in Ref. 23 to 
give another realization of the twisted sw(3)J.' currents. First, we recall the twisted 
parafermion current algebra given in Ref. 23 reads, 

(z — wy z — w 

_„A"72fc =JML Wt>i.H(z-")""* = f r z ^ + P H w 
where I, I' — ±1 and I, I' — 6, ± 1 , ±2; sij', ej p and et p are structure constants. If 
we denote ipi or ip^ by V&a, then we can rewrite the above relations as: 

00 

*a(z)Vb(w)(z - w)ab'2k = £ (* - ™)n[*a^\-n, (8) 
n = - 2 

For consistency, ea,b must have the properties: ea,b = Sb,a = —£-a,-& = £-a,a+6 
and ea ~a = 0. As a CFT, we can set the structure constants as 

e l , - 2 — e l , l — e - l , 2 — rri 
_ 1 

\ 

3 
-1 , -1 - c o , I - - y ^fe- (9) 

Then we may obtain a representation of the twisted su(3)k current algebra 
with the help of the twisted parafermionic currents. The result is 

j+(z) = 2Vktl>i(z)e^Mz), J~(z) = 2 v / f c ^ _ 1 ( z ) e - ^ ' W z ) , 
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f(z) = 2V2Jfet0fo(z), J+(z) = 2Vk^i(z)e^Mz), 

J-(z) = 2Vki>_i(z)e-^Mz\ J++(z) = 2Vk^(z)ei^Mz), 

J—(z) = 2y/kip_i(z)e-i^^z\ J°(z) = 2v/6fcVo(2)-

where <f>o is an U(l) current obeying (J)Q{Z)(J)Q{W) = — ln(z — w). It can be checked 
that the above currents satisfy the OPEs of the twisted su(3)j. ' currents algebra. 

5. Twisted stress energy tensor 

It is well known that Virasoro algebras are related to currents algebras via the so 
called Sugawara construction. In the present case, the twisted Sugawara construc­
tion of the energy-momentum tensor is given by 

T(z) X 

8(fc + 3) 
\f{z)f{z) + \j°{z)J\z) + 2j-(z)j+(z) 

+2J-(z)J+(z) + 2J—(z)J++(z)} :, (10) 

where : : implies the normal ordering. The above expression can be rephrased 
through the ffy pairs and the scalar field 3>. We obtain 

T(z) = - : \p0(z)d7o(z) + (31(z)d11(z) + f32(z)dl2(z)j : 

+ - : (Si • id$(z)) : + - : (e 2 • id$(z)) : 

- 4 a + (gi • id2$(z)V (11) 

On the other hand, the energy-momentum tensor in the twisted parafermionic 
realization is given by 

T(z) = T+ - : d<h{z)d<h<,z) • • (12) 

where 

2fc + 6 E[*-*-Jo (13) 

is the energy-momentum tensor of the twisted parafermion currents obtained in 
Ref. 23. Following the standard practice, we get the OPE of the energy-momentum 
tensor, 

n , m « ) = ^ + * n = L + «W + ..., (14) 

{z — wp [z — wY z — w 

where c = 8k/(k + 3) is the central charge for the Virasoro algebra. 
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6. Twisted screening currents 

An important object in the free field approach is the screening current. Screening 
currents are a primary fields with conformal dimension 1, and their integration 
give the screening charges. They commute with the affine currents up to total 
derivatives. These properties ensure that screening charges may be inserted into 
correlators while the conformal or affine Ward identities remain intact. For the 
present case, we find the following screening currents 

S±(z) =: [2fo(z)7o(z)+Pi(z)±l3o(z)]S±(z) :, (15) 

where 

S±(z) = e - ^ + ^ i - ^ W i ^ W ) . (16) 

The OPE of the twisted screening currents with the twisted affine currents are 

T(z)S±(w) = dw (-^—S±(w) 

j+(z)S±(w) = ..., 

j°(z)S±{w) = ..., 

j-(z)S±(w) = dw (±^L--L-S±(w)^ + ..., 

J++(z)S±(w) = ..., 

J+(z)S±(w) = ..., 

J°(z)S±(w) = ..., 

J-(z)S±(w) = dw ^ _ 1 _ 5 ± H ) + . . . , (17) 

J—(z)S±(w) = dw (4"—^- [ 7 o H T 7i N ] S±(w)) +...; 
\ Oil Z IV J 

The screening currents obtained here are the twisted versions of the first kind 
screening currents.7 
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