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PREFACE

This volume contains a collection of papers presented at the Nankai Symposium
on “Lattice Statistics and Mathematical Physics,” which was organized to honor
the seventieth birthday of Professor Fa Yueh Wu (ffi#t ). This conference took
place at the Nankai Institute of Mathematics in Tianjin, China, hosted by its Vice
Director Professor Mo-Lin Ge, October 7-11, 2001, co-organized with APCTP and
Beijing Normal University.

We are grateful to the support of the K. C. Wong Education Foundation, the
APCTP and the NSF of China.

Jacques H. H. Perk
Mo-Lin Ge
May 2002
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1. Brief Biography

Fa-Yueh Wu (a.k.a. Fred Wu) was born January 1932. He moved with his parents
and the Chinese government throughout the Sino-Japanese war and the civil war
from 1938 to 1949. It may be noted that he graduated from Nankai Junior High
School in Chungking, making him an “alumnus of Nankai.” After graduating from
high school in 1949, he eventually moved with his parents to Taiwan.

There he entered the Chinese Naval College of Technology in 1949, obtaining a.
B.S. degree in Electrical Engineering in 1954, and receiving the commission as an
Ensign in the navy.

Wu was sent by the Chinese navy to the U.S. in 1955 to receive training at the
Naval School of Electronics in San Francisco and the Instructors’ School in San
Diego, returning to Taiwan in 1956 to teach Electronics at the Naval Academy. He
was a full-fledged expert on radar and sonar at that time, with a skill he has found
useful recently in resoldering and fixing his broken remote car key.

Fred Wu was (and probably still is) a good player of Chinese chess. He was a
regional champion in Taiwan in 1951, and later the 1956 champion of all armed
forces in Taiwan while a naval ensign. His favorite pastime in his graduate student
years was to play chess “blind” with classmates while working on his homework.
He has challenged the participants of the symposium to see if he is still as sharp as
he used to be. But nobody took up the challenge.

The very next year, in 1957, he entered the graduate school of the National
Tsing Hua University in Taiwan, obtaining an M.S. degree in physics two years
later.

In 1959 he entered Washington University in St. Louis as a physics graduate
student, where he studied under the late Professor Eugene Feenberg, working on
many-body problems and obtaining his Ph.D. in physics in 1963. He taught for four
years at Virginia Polytechnic Institute before coming to Northeastern University
in 1967, where he is presently the Matthews University Distinguished Professor of
Physics.

*Prepared by Jacques H.H. Perk, Department of Physics, Oklahoma State University, 145 PS,
Stillwater, OK 74078-3072, USA, email: perk@okstate.edu. Financial support by the conference
organization, by the K. C. Wong Educational Foundation, and by NSF Grant No. PHY 01-00041
is gratefully acknowledged.
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vi F.-Y. Wu

Wu has accumulated a publication list?* of over 200 papers and monographs. His
earliest paper is in Chinese and published by him in 1955 while an Ensign in the
Chinese navy. This paper! bears the title “On the discussions of ‘free waveforms’.”
While Wu is known mostly for his publications in statistical mechanics, his works on
many-body problems, especially those on liquid helium, have also been influential
for many years, see e.g. Ref. 3, which was part of his Ph.D. thesis research. He
has even published one experimental paper® with the title “Four slow neutron
converters.”

Wu came to Northeastern to work with Elliott Lieb in 1967, and in 1968 they
published a classic joint paper on the ground state of the Hubbard model.*! This
paper has become prominent in the theory of high-7, superconductors. Anderson
has attributed to it “predicting” the existence of quarks, in his Physics Today
article on the Centennial of the discovery of electrons. Lieb and Wu also wrote a
monograph on vertex models in 1970, which has become a principal reference in
the field for decades.3°

Since Wu came to the U.S. in 1959 as an ensign in the Chinese navy and was
not decommissioned then, he was promoted in rank while a graduate student and
a faculty member, eventually reaching the rank of Lieutenant in 1963. Therefore,
much of his early work including the monograph with Lieb was done by a Lieutenant
of the Chinese navy. Eventually, he could not be promoted further since for that he
had to take an exam and the Navy was not sure whether he could pass it. He was
later decommissioned from the rank of Navy Lieutenant in 1971. Thus the Chinese
Navy saved a bunch of retirement benefits paid to retirees depending on the length
of their service.

Wu has worked on a wide-range of topics in many-body theory and statistical
mechanics, including contributions in lattice statistics, graph theory, combinatorics,
number theory, knot theory, and the interrelation between these topics.

Wu’s 1982 review on the Potts model is also well-known.®® This paper has been
receiving over a hundred citations for many years ever since it was published.” In
1992 Wu published another well-received review on knot theory.1%® Fred Wu has
since been referred to as being “knotty” by Professor Lebowitz, which might be
said to be a little “naughty” of Joel.

2. Some other selected publications

Another classic is the paper on the Free Fermion Model.'® This was later extended
to its checkerboard version during one of Wu’'s many visits to Taiwan.49>51 Fred
Wu was a close friend of the late Professor Piet Kasteleyn, who was co-advising my
thesis work with Professor Hans Capel in Leiden at the time. Kasteleyn noted the

aThis list has been appended and a selection of this work has been cited in the following, reflecting
the taste of the present editor.

bTn 1982, the year the Potts review was published, it was the fifth most-cited paper among papers
published in all of physics according to E. Garfield, [Current Comments 48, 3 (1984)].
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similarity of my first major paper® on the alternating XY-chain and the preprints
of the above works. Both showed multiple phase transitions.

Well-known is also the Baxter—Wu Model, i.e. the Ising model with three-spin
interactions on a triangular lattice.44 48 Another classic paper, by Baxter, Kelland
and Wu, concerns the graphical construction of the equivalence of the partition
functions of the Potts model and a certain staggered six-vertex model.’¢ Many
people consider this construction easier than the algebraic method of Temperley
and Lieb. Both methods are widely used these days. This paper is also at the basis
of my first joint work with Fred Wu.!02 Here we generalized this equivalence to
include the nonintersecting string (NIS) model of Stroganov and Schultz, alias the
Close-Packed Loop Model.

The six-vertex model is boundary-condition dependent. However, Brascamp,
Kunz and Wu established for the first time that at sufficiently low temperatures or
sufficiently high fields the six-vertex models with either periodic or free boundary
conditions are equivalent.4?

Another remarkable result of Wu is that a very general staggered eight-vertex
model in the Ising language (introduced in 1971 by Kadanoff and Wegner and by
Wu?® in two back-to-back papers), but with the special magnetic field irkgT/2 of
Lee and Yang added, is equivalent to Baxter’s symmetric eight-vertex model and
hence solvable.1% The general eight-vertex model without this field is not known
to be solvable.

The dimer model on the honeycomb lattice was first solved by Kasteleyn. This
has recently been generalized by Huang, Wu, Kunz and Kim to the case where the
dimers have nearest-neighbor interaction.!”? This model relates to a degenerate case
of the six-vertex model, requiring a special Bethe Ansatz analysis. The resulting
phase diagram of this five-vertex model is quite complicated. This work has also
been used in papers by Huang, Popkov and Wu on the three-dimensional dimer
model.175 180 Tts phase diagram is also quite complex.

In 1999, Lu and Wu initiated work on dimer and Ising models on nonorientable
surfaces,!91:209,202 454 generalized a reciprocity theorem in dimer combinatorics
due to R. Stanley and J. Propp.2%2 There is now much activity in this area, inspired
by this work, as there is much interest in finite-size corrections and conformal field
theories on more complicated surfaces.

This is, of course, only a limited selection. A more precise understanding of
the impact of Wu's work can be obtained by going over the following publication
list and from the many papers in the volume. Therefore, I can speak on behalf of
the other editor Professor Ge and the many participants of the symposium: Happy
birthday and thank you, Professor Wu, for your many special insights and for being
a friend of us all and not just a colleague.

¢J.H.H. Perk, H-W. Capel, M.J. Zuilhof, and Th.J. Siskens, Physica A 81, 319-348 (1975).
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In this paper, we introduce the cyclic basic hypergeometric series p+1®p with ¢ — w
where w¥ = 1. This is a terminating series with N terms, whose summand has period
N. We show how the Fourier transform of the weights of the integrable chiral Potts
model are related to the o®;, which is summable. We show that 3®2 satisfies certain
transformation formulae. We then show that the Saalschiitzian 4®3 series is summable
at argument z = w. This then gives the simplest proof of the star-triangle relation in the
chiral Potts model. Finally, we let N — oo, where the star-triangle equation becomes a

two-sided identity for the hypergeometric series.

1. Introduction
1.1. Definitions

The generalized hypergeometric series is defined?? as

o
a,aper 1w (@) (Gpa)
p+1Fp[ by, by ’z]—;(bﬂl"'(bp)ll!z’

where
(@i =T(a+1)/T(a) =ala+1)---(a+1-1),

while the basic hypergeometric hypergeometric series is

& [al,---,apﬂ_ ]: = (o) {epr;Q)1
PHEPL Buenfp g(ﬁl;q)z---(ﬂp;q)z(q;q)zz’

in which

(z;q) ={(l_x)(l‘xq)---(l—wq"l), 1>0,
=10 - 2g (1~ 2g2) (1 - 24))], 1<0.

1)

@)

(4)

The hypergeometric series ,1F;, can be obtained from ,,1®, by taking the limit

g—1 with a=¢* (qi/(q— (a)-

(5)
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1.2. Known Identities

A hypergeometric series is summable if the series can be written in terms of ratios
of products of Gamma functions, while for the summable basic series it is written
in terms of the g-products defined in (4). The most well-known summation formula
is due to Gauss

a,b .1 T(c)l'(c—a—10)
21 [ ’ 1] - T(c—a)T(c—1b)’ (6)

which is a summation formula for oF; of unit argument. The other is Saalschiitz’s
theorem

+Fs [a’ b—n. 1] (= a)ale— b

ed | (e—a—=bplc)’

for a terminating Saalschiitzian 3F2 of unit argument. In general, a series is called
Saalschiitzian if it satisfies the Saalschiitz condition

for c+d=a+b-—n+1, (7

l+a1+---+apr1=bi+---+bp. @)

Most of the summation formulae for the usual p41F, hypergeometric series have
basic series analogues.»? The summability condition on the argument of z = 1 for
the hypergeometric series must be replaced by z = g for the basic series, while the
Saalschiitz condition is seen from (5) to become

go1 - apir = PPy, 9)

as a and b are the exponents of o and 3. As an example, Dougall’s theorem summing
a terminating 7Fg of unit argument generalizes to Jackson’s theorem for terminating
¢§P7 of argument z = q.

We shall now show that the basic hypergeometric series at root of unity are
intimately related to the integrable chiral Potts model. Indeed, many of the results
presented here are implicit in the earlier works.?>!3 Since the notations used in
several of these works®~!! are unconventional, making the connections obscure, we
present here the results in more standard notation.

2. The Cyclic Basic Hypergeometric Series
2.1. Definitions

Since most of the summation formulae are valid only for terminating series, it is
straightforward to analytically continue g to a root of unity without any convergence

problems. For ¢ — w = ?™/N | we find
(@whtn =1 -2")(@wh,  (Wwhn =0, (10)
(@3 w) 1 = wH D J[(—a) (wz T W, (11)
(@3 W)k = (T;w)k (Wrz; W)L (12)

2
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From (10), we see immediately that the basic series is ill-defined for q = w unless
Qpiy = w7 for some J < N. We shall here restrict ourselves to the case with

ap+1 = w NVt = w, so that there are N terms in the series.

Definition: A cyclic basic hypergeometric series is a terminating series of N terms

@ |:waa1,"'7ap.z] _Nz_:l CHOI (apvw)l (13)
pHR /Bla"'aﬂp ’ (ﬁla ) (/6177"-’)1

whose summand is periodic in N.

Using (10), we find that the requirement for periodic summand is satisfied if

N _ z 1_ﬁ§v
z ‘Hl—al"' (14)
7j=1 7

Unlike the ordinary basic hypergeometric series in (3), where the dependences on
the parameters a; and (§; are elementary, the periodicity requirement makes the
dependences on these parameters very complicated, with an extremely complex
N-sheeted Riemann sheet structure.

Because of this periodicity, we may change the indices of the summation I — —I
in (13) and then let I — [ + k while using (11), to find

-1 .. —
p+1(I)T’ [w,al,'“’apﬂ] :p+1(I)1” [ aen ,wﬂ o ﬂp (15)

-1 -1

ﬁla "ty /817 wal gttt Wap ’ 20y - Op
k
_ q) [w whay, -+, whay, ] (a1;w)k -+ - (op; W)k £ (16
s wkﬂla )wkIBp (/81) ) (/Bp, ) ( )
Since ap+1 = w, the series in (13) is called a Saalschiitzian if
w2a1a2 et Qp = 5152 o ';Bp’ Z=Ww. (17)

Clearly, if the left-hand side of (15) is a Saalschiitzian, so is the right-hand side,
and vice versa.

2.2. Cyclic basic series ;P

It has been found®1% that the Boltzmann weights of the integrable chiral Potts
model can be written in product form, i.e.

(a Wn B\ (W/Bw)-n N 1=-pY
114 =(=) e ew - . (18
W= G = \Ga) W), M =T (8
The Boltzmann weight of an edge connecting spin ¢ and spin b is chiral, namely,
W(a — b) # W(b— a), and arrows are introduced to indicate the direction from
spin a to b, as shown in Fig. 1. Here we have introduced W*(a — b) = W(b—a) to
indicate the operation of arrow-reversing.

3
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4

b

Wra(a—b) Wpa(a—b)

Fig. 1. Boltzmann Weights

Since the weights are periodic with period N, their Fourier transforms may be
written as

W (k) = Zw"kW(n —2<I>1[ Y w ] (19)

n=0

2.2.1. Recursion Formula

It has been found originally in Canberra® that

W (k) 2(1)1[ , k]QCI)l [w,a. ]‘1_(w/ﬁ)k(v;w)k (B/7050) k(95

w, X
W) ~ g B T wan/Biw) | ok (w/viw)s

The proof of this recursion relation has been given in our Taniguchi lectures.? This
was later extended to a more general case by Kashaev et al.”

B, [0 ] 1, [0 - (O il

w™f3 (ywk)r (o w)mlwery/B; Wm—n+k

2.2.2. Bazter Formula

Consider the determinant whose elements are the weights in (18), i.e

D= 1§(li,gthW(l — k), (22)
Baxter gave the following formula® without proof:
N-1 _1_3'B) J
D =) NN (@ —w 23
! (= (2)
where
Oy = e'iﬂ'(N—l)(N-—2)/12N- (24)

4
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A detailed proof was subsequently given by us in Ref. 14. Since this is a cyclic
determinant, we find

N-1

N-
D= T] W) = WO H [W(f)(o ] (25)

=0

Baxter’s formula (23) and the recursion formula (20) may now be used to prove the
following theorem.

Theorem 1: Every cyclic basic hypergeometric series o®; is summable, and is
given by

L(N-1)
& [w,a; ] — NS (g) 2 plwa/Bply) 26
@il p '\3)  Hwwdwwarrey
where ¢ takes N different integer values for the N different Riemann sheets, and
N-1
H J/N (27)
7j=1

Here summable mean that the series is expressible as products. It is worthwhile to
emphasize that the basic hypergeometric function 2@, is an N-valued function of
o and B with a complicated Riemann surface. The function p{e) has N — 1 branch
points at o = w? for j = 1,---, N — 1. Due to the appearance of the composite
functions—particularly, p(y) with « found from (18) to be an N-valued function
of o and J—we can see that it is non-trivial to describe the Riemann surface. It
is rather amazing even to us that Baxter and others (see Refs. 17,18 and citations
quoted there) have somehow found a way out without the detailed knowledge of
the Riemann surfaces.

2.3. Transformation formula for 3P,

We shall now derive a transformation formula for the cyclic basic series 3®5. Using
the convolution theorem, we may write

@ [“;f’ﬂ:“ |- % [ (R o)
o

o R e

=0

where
1— N N 1— N
uN = ﬂ’j'v, Ze= B}V. (29)
1—of U 1-o

Now we can use the recursion formula (20) to obtain

5
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w,al,ag_ _ _1 w,al_ w,ag_ E
3(1)2[ 51,ﬂ27z]_N 2(1)1[ ﬁ2’u]2q)l[ ﬂl,u]

w, 2/u, Ba/c1u wal]
X 3@2 y—=—1 - 30
w/u,wanz/fiu’ B (30)
Clearly, we may change (s to #; with © — 71, and obtain a different transformation
formula. If we let z = w in (30), then it is easily seen that the 3®5 on the right-
hand side of the equation becomes a »®;. As the three o ®; are summable, the cyclic
hypergeometric series 3@, is also summable for argument 2z = w. We conclude:

Theorem 2: Every cyclic basic hypergeometric series 3®; has a transformation
formula given by (30), and is summable for z = w.

2.4. The Saalschiitzian 4P3 and the Star-Triangle Relation
2.4.1. Summation Formula

Consider a Saalschiitzian 4®3 for argument 2z = w, and use the convolution theorem
to express it as

& [w, wlay, wlag, wos ]
4X3 Wi =
we B, wbPBa,wBs

N-1 | ) ,CLQ ’bO l l” ,Cj ;

b

1-k

] SCH

where
w_(oof) (=BMA-BY) .y
(1-58Y) (-1 -5Y)
The first part of this equation and the Saalschiitz condition w2aionoas = B1520s,
may be used to solve ag and also (3. This gives

(32)

14N wlajaea
N v 10203
oy = , Bz = —————. 33
L Y LA 7> %
Now we use the transformation formula (30) for 3®; thrice, i.e.
a b k b—a 3x
P, [wwtanwar | k] 2 | @ Y/, WG [u way
3=2 waﬂlvwbﬂQ it 8=2 w/uaw+k+b_aa§7/u’ ﬁl
A% k= b
A5 Wy, Y1, W2 W ,82
=AB ;P ;
o [w/vl,wkﬂ/a; waal]
b—azx ~* 1-k
- ABC D, [“”“’b_ i “’-—] . (34
w aﬁ27 1 Y

where the first line is identical to (30) in which

{ql :wa2/ﬂ37 {q2 :wal/ﬂ3’ {q3 :W/B:; :wal/ﬁ29 (35)
B = Ba2/as, B2 = P1/as, B3 =w/az = B/az,

6
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with superscript * denoting the arrow-reversing operation described in (18), and

a b k
- _ W, w1 W, w g Wy
A=nN"1 | @y [0 T
2(I>1[ wbﬁz’u]2 1[ w“ﬂl’ ” ] (36)
If we denote
a3 AN
71.\’:1_'8;\] AN = 5 _1-h (37)
7o 1-af T (ma)N o 1-af’
then by using (35) and (33), it is easy to verify that
1 = 72/73> Y2 = Y1/73, (38)
which in turn can be used to show
M2 = 7/737; = 103/was leading to 3 =w/v=NT. (39)
Using (29) in which z = ~, it is easy to verify that
1—(a5y/u)N 2\N _ _x 1= (/w)N Fsou\N N
——__.*_—— = - = ’Y s = = . 40
ey -G = Ty - () S0 @

From (18) and (35), it follows that 4197 = way /3. As a consequence, we may use
the transformation formula (30) again to obtain the second equality in (34) with

B=N"1,P, [“”“’kw“;ﬁ’;} . D, [ w W' ffu ] : (41)

wu wktb-oggy/u T
Furthermore, from (37), we find that
- /%)Y _w 1—-1/3)N N 49
J

while from (35) and (18) we obtain &; &% = (32/a;. Using the transformation formula
(30) for the third time, we arrive at (34) with

~ k=
A a1 w,V1 | - W, W2  pqg-»
G- | )| whrt /3 4
Denoting

and using recursion formula (20) for 2®; in these constants A, B and C, we find
o [w, wlar,wlay ] Wa(b— a)Wy(b—a)
3X2 a b w =
w®B1,w’ O Wi(a)Wa(b)
W Dag* (v;w)e [w,w"‘“&é, & wl“’“]
(vBs/wasz; w)k whaps, Bt v |’
where D = [ABC)o with a = b = ¢ = k = 0 in (36), (41) and (43). Next, the
recursion formula (20) is used to write
¢ 1—k Rw*(vB3 /waz; w) R w,ag | w
i) [W,wa:i;w ]_ YB3 /waz; w)k _.® {, 3‘.}_. 46
PEUL weBs o S R (46)

(45)

B DWs(c)az®(y;w)® D

7
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Substituting these two equations into the convolution formula (31) and using
W(n+a) (w ;W

W(a) (w“ﬂu )’ “n
we find
b
WaaWaWa () Da |, 20 0000
N-1N-1
N7'RWs(a—b) > Y ¥ IWa(a—b—)Wi(-1), (48)
k=0 I=0

where the summation over k& can be carried out resulting in the delta function
Ny c—p. This then proves the following theorem:

Theorem 3: Every cyclic Saalschiitzian basic hypergeometric series 4®P3 is summable
for z =w.

2.4.2. Star-Triangle Relation

Furthermore, (48) is also the star-triangle equation
N-1
Y Wila—d)Wa(b— d)Wa(c— d) = R Wa(a— B)Wala— c)Wi(b—c),  (49)
d=0
shown in Fig. 2. The weights W and W are defined in (44), in which the parameters
o, B; and @&, fB; are related by (35), while v; and 7; are related by (38) and (39).
These relations are very symmetric.

I
)
=

Fig. 2. Star-Triangle Relation, with v1 = 3273, v2 = 7173 and v3 = ¥{7%3-

2.4.3. The Constant R

The constant R was originally given in Ref. 3. A proof was published in Ref. 16
and their proof can also be used here. By defining the matrices

(A2)pa = Wa(b—d), (As)ea=Wslc—d), (A})aa =d4aWila—d),

8
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(A1), e=Wi(b—c), (A3)er =dcoWala—c), (Ao = b Wa(a—b), (50)
the star-triangle equation (49) may be expressed as
(A2 A2AD)y . = R(A§ALAS)p. o A AJAT = RASALAS. (51)
The determinants are also equal, i.e.

N-1

Wi (l ) det As det A3

N _
- g Wa()Ws(l)  det A

(52)

This gives the constant R in terms of determinants of matrices A defined in (50),
which can be evaluated by Baxter’s formula (23). Alternatively, R is seen from
(46) to be a product of seven 2®;. It can also be evaluated using (26), which is
much more tedious, and after many cancellations, this yields the same result. We
have thus avoided the complexity in the Riemann surface by relegating it to the
multiplicative constant R in the star-triangle equation.

2.4.4. Rapidity Lines

To form commuting transfer matrices, it is necessary to assign rapidity lines to the
weights. There are two possible weights shown in Fig. 1. There are two essentially
different choices for the directions of the arrows.

Original Choice

By assigning the rapidity lines as we originally did in Ref. 3, also shown in Fig. 3,
then it is easily seen from Figs. 1 and 3 that

Fig. 3. " Original choice of the rapidities.

{V_V_An) %(n)i {Wz(n)zwqr(n), {Ws(n)=W;q(n),

Wi(n) = Woe(n), | Waln) = War(n), | Wa(n) = Woa(n), )

9
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This means

a3 = Qpr, Qg = Ogr, ag = w/qu,
{ B1 = Bpr, B = Bq'ra B3 = w/dpqa
M = Yprs Y2 = Yars Y3 = Ypgs
a1 = (ZYpr, C—_VZ = Oygr, C__Y?: = Qipq,
Bl = ,Bp'r, /32 = ﬁqr; ﬂ.’i = /qu7 (54)
Y1 = Yprs Y2 = Yqrs Y3 = Ypq-
Consequently, we find from (35)
{ Qpr = QgrOpg; {aqr = OprQpg; { Oipq = Watpr [ Byr, (55)
Bpr = BqrBpq/w, Bqr = BprBpg/w, Bpq = Bpr [ Gigr-

From the relations for &y, and Bpr, we see that we would like to have the products
@qrOpq and BgrPpq independent of g. For this to happen, we must have @g» and ap,
containing the same g-dependent factor, say x4, one in the denominator, the other
in the numerator, such that the dependence on ¢ cancels out upon multiplication.
A similar reasoning holds for Bpq. In fact, we find the only choices are

Opq = Tq/Tp, qu = WYp/Yq- (56)
Using this in the second and third brackets of (55), we find
Opq = WTp/Yq, Ppg = WTe/Yp- (57)

It is easily verified that these choices satisfy the Saalschiitz condition in (17). The
periodicity requirement on the argument at z = w

3
1/N
w=mrer=[][(1-8})/1-a) (58)
j=1
can be satisfied, if
g +y) =k(1+z)y)), s=pqr (59)

Solving this equation for z, and substituting the solution into (37), we find

Toa = IoYa/Balp  Tpa = WhpTohe/Ye, Hs = (1—kaz')/k'. (60)

This reproduces exactly the integrable solution found earlier.3

Other Distinet Choice

Only by flipping the directions of the middle rapidity line ¢, do we find a distinct
arrangement of weights. This results in the equation

N-1
> Wer(a — d)Wrg(b — d)Wop(c — d) = R Wp(a — ))Wrg(c — a)Wpr(b — ). (61)
d=0

Flipping other lines merely gives permutations of these rapidity lines in the two
star-triangle equations, as can be seen from Fig. 1 and Fig. 4. To have the relation

10
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Fig. 4. Flipping the arrow of g.

(35) to hold, we must have

Gpr = Watrg/ Byp, Bpr = Brq/ tgp, (62)
for which to be satisfied, we must choose
Opr = pfpgr, /Bpr = gpfr- (63)

The Saalschiitz condition in (17) yields w?p® = 1. It is then easy to verify that it is
not possible to find p, fs and g, satisfying condition (58). Since the relation (61) is
more symmetric than (49) when comparing Fig. 3 with Fig. 4, the extra symmetry
requirement on the weights makes a solution impossible in the present case.

3. The N — oo Limits

3.1. Star-Triangle Equation as a Double-Sided Hypergeomelric
Identity

In the limit N — oo, with a; = w* and 3; = w, and allowing the spin n in (44)
and thus the summation index d in (49) to run through all integers, we find!% 13
that if the Saalschiitzian condition

a1 +az+az+2="by+by+ bs. (64)
and condition resulting from (58)
sin ra; sinwag sinwaz = sinwhy sinwby sin wbs, (65)

are satisfied, the star-triangle equation (49) becomes

i (@1)m; 10 (92)my 10 (98)mgam R (@) iy~ (82) my—mg (@3)m, —mq (66)
n=—o00 (bl)m1+n (b2)mz+n (b3)m3+n (bl)ml—mz (b2)m2_m3 (b3 mi—ma ’
where
{§1=1+a2—b3, {C:L2=1+a1—b3, {§3=1+a1—b2, (67)
b1 = by — ag, by = b1 — as, by = b1 —as.

11
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3.1.1. Double-Sided Hypergeometric Identity

The equation (66) may be rewritten as the double-sided summation identity'3

i ]-E‘[F(al +n) _ G(a170'27a'3|b1’b2ab3) (68)
n=—0o0 i=1 L(b: +n) H?:l H?:l L'(bi - a;)
where
x5

G(a1,a2,a3]b1, bz, b3) =

sin ag sin ras H?Zl sinm(b;—a1)
3

3
= [IT(@)r —ap) []T(b: = a1)T(1 = bs + ), (69)
j=2 i=1

provided the two conditions (64) and (65) are satisfied. If we let a; — a; +m and
b; — a; + m, then these two conditions are still satisfied. This shows that the
above two-sided identity holds for infinitely many different values of a; and b; and
is rather unusual.

3.2. Its Dual (Fourier Transform)

If, instead of demanding that the spin values n in (44) and d in (49) remain integers,
we let d,n, N — oo, while keeping the ratios y = 27n/N and z = 27d/N finite, we
find that the summation over N values in (49) becomes an integral over the interval
[0, 27]. More specifically, we find the weight (18) to become!®

W{a,b,z) = (sinwb)(% ~ L&D |sin lat:|a_b (70)
" \sinwa 2 '
in this limit. For a; and b; satisfying the two conditions (64) and (65), we let
W;(z) = W(as, b, x), Wz(:c) = W(a,, l_)f,', x), (71)
and the star-triangle relation (49) becomes'®
1 27
o dw Wi(z — w) Wa(y — w) Wi(z — w)
0 ey P —
= Roo Wiz —y) Wiy — 2) Wa(z — 2). (72)

Since the weights are chiral, namely, W(—z) # W {(z), it is not possible to have
both the weights and their Fourier transforms real. Thus the Fourier transform of
(72) is an identity similar to (66), but not identical, and vice versa.

3.3. Open Problems

Finally, the weights in Sections 3.1 and 3.2 define integrable models, which are
limiting cases of the original chiral Potts model, and are chiral extensions of the
models in the works of Fateev and Zamolodchikov.!?20 Since there are sets of
N functional relations for the chiral Potts models, we expect there may then be
infinitely many such functional relations for these models, and perhaps some more
physical quantities in these co-state models can be evaluated.

12
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We find raising and lowering operators distinguishing the degenerate states for the
Hamiltonian H = z(K + %)Sz 4+ K-S at z = +£1 for spin 1 that was given by Happer
et al.1:2 to interpret the curious degeneracies of the Zeeman effect for condensed vapor
of 87Rb. The operators obey Yangian commutation relations. We show that the curious
degeneracies seem to verify the Yangian algebraic structure for quantum tensor space
and are consistent with the representation theory of Y (si(2)).

1. Indecomposible Quantum Tensor Space

In Quantum Mechanics, a state is described in terms of wave function, i.e. ¢ > is
a vector in Hilbert space. If two particles described by [112 > are entangled, there
should be “overlapping effect” between V7 and V3, i.e., besides V3 and V; we should
deal with V; ® V3, the quantum tensor space. The simplest example is Breit-Rabi’s
Hamiltonian:

HBR ZK-S+$’C83, (11)

where s and K stand for the spins of electron and atomic nucleus, respectively.
K? = K(K + 1). On account of the conservation of K2 and m = K3 + s3 two
independent states are introduced:

1 11 1 1 1
~ — . —_ - = -— —_—, —— . .
ay >=|K,m 2>|2,2>, g > |K,m+2>|2, 2> (1.2)
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For a fixed m with the basis = oo > , we have
Iaz >
m 1 1
HE = —= + S{(zk + m)os + V2 — m?ay), (1.3)

4 2

where o7 = ((1) (1)) and o3 = ( (1) _01) are Pauli matrices. Eq. (1.3) can be

diagonalized through a rotation:!

U(em)HSPU (0m) ™" = HER (0m), 8™ (pm) = U(pm)@™,  (14)

where
R iy i N
E= —211— — W O3, (1.6)
and
COS P, = (_mk:_w—{—_m_), w2, = (1 + z2)k? 4 2zmk. (1.7)

Noting that the rotation angle ¢,, is m-dependent and m here cannot be replaced
by the operator K3 + s3. This is because of the nonlinearity in m, i.e., the rota-
tion should depend on the history. Observing Eq. (1.6) and Eq. (1.7) there is not
degeneracy for the energy E, because the vanishing w,, means a complex magnetic
field.

However, there appears degeneracies for spin-1 in the experiment.? Why the
Zeeman effect vanishes at the particular value of applied field? This is the main
subject concerned in this paper.

2. Introduction of the Curious Degeneracies

The curious degeneracies observed in the experiment for condensed vapor of 8"Rb
and 8°Rb! at 220° under pressure and applied magnetic field B ~ 1500 Gauss
are converted into “anti-level-crossing” for the triplet (S = 1).1:? To describe the
Hamiltonian of a triplet dimer neglecting the quadrapole interaction, Happer et al.
introduced!-2

H=K-S+a(K+3)S., @.1)
and pointed out that when £ = 1 there appear the curious degeneracies for S =1,
where K and S are angular momentum and spin, respectively, K? = K (K + 1) and
S? = S(S + 1) with S = 1. In Ref. 1, the eigenvectors corresponding to E = ~1
had been given and an elegant discussion was made. However, there remain the
following essential questions:

o Why the curious degeneracies occur only for § = 1?

16
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¢ How to distinguish the degenerate states?
We would like to present the answer in this paper.
For z = +1, the eigenequation

HY,, = E,¥,, (2.2)

has three types of solutions whose eigenstates are denoted by ar,ap and ap with
the corresponding energies Ep > Ep > Ep, respectively. For the D-set, Hap,, =
— ;a Dm, there appear the curious degeneracies called Happer degeneracies that has
been supported by the experiment.? The results of Happer can be summarized in
the Table 1 (G =K + S, G3 = m).

G= G= G=

D — set T — set B — set
K+1 K K-1
K+1 — AT m=K+1
K —= - - ap m=K QT m=K
K-1 —— —-— —— — ADm=K—-1 OT;m=K-1 OQBm=K—1
m - - - - XDm aTm aBm
-K+1 — —— —— - ODm=—K+1 OTm=—K+1 OBm=—K+1
-K —— —— — OT m=—K OB m=——K
-K-1 —-— - apm=—K—1

Table 1

We emphasize that the states withm =K +landm=-Kforz=1 (m =
—K—1and m = K for z = —1) in the D-set are excluded. For simplicity we discuss
the case for x = 1 henceforth. The eigenstates of H are linear combinations of the
states of G = K 4+ 1, K and K — 1. Since the shortage of states with m = K 4 1
and m = —K it is not surprise to appear the unusual thing to distinguish the
m-dependent states, for example in Eq. (1.6).

3. Yangian as the Raising and Lowering Operator for the
Degenerate States

Let us first recall how to establish the Lie algebraic structure in Quantum Mechan-
ics. For the given (2K + 1) states denoted by |K,Ks =K >, |[K,Kz3=K-1>,--,
and |K, K3 = —K >, the raising (or lowering) operator K (or K_) can be intro-
duced such that for any m = K,

Ki|K,m >~ |K,m+1>, (3.1)

and K £ |K,+K >= 0. Through checking the commutation relations for K1 and
K3, we say that the Lie algebraic structure is found if the commutation relations are
closed. It is emphasized that there is not m-dependence in the operators K. in Eq.
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(3.1), because the eigenvalues of K3 are uniform. However, suppose the eigenvalues
are not uniform, the raising and lowering operators should depend on m, i.e., it
should indicate on which state the operators act. Actually, such “starting state”
dependence occurs more often in nonlinear models.?

After calculations, we have found the raising operator for the D-set in the table
1 (at z = £1):

Jiy=(m+ K+ 1)G+ + j+(a,b), (3.2)
where
ﬁMMzw&+Mﬁ+%@ﬂ4m&&L (3.3)
and
a:—%,b—a:%(K+1),G+=K++S+. (3.4)
Noting that (b — a) is independent of m. Whereas
J_ = —(m+ K)G_ +j' (c,d), (3.5)
where
ﬁ@@szdKf%@K:ﬁJ@, (3.6)
and
cz%—l—%,d——c:——g,G_:K_%—S_. (3.7)

It can be checked that for x = 1, Jy|ap,m=kx >=0 and J4|opme—kx—-1 >=0.
Obviously the Ji shown in Eq. (3.2) and Eq. (3.5) are special form of the
Yangian operator:

I =G +j, (3.8)
where
j:uK+7S—%SxK, (3.9)

and A, p,y are arbitrary constants. A set formed by both J and j satisfy Y (sl(2))
defined by Drinfeld,* and is related to the Yang-Baxter equations.? ¢

4. Yangian Algebra

The commutation relations for J and the total angular momentum I = G =S+ K
form the so-called Yangian algebra associated with sl(2). The parameters p and ~
play the important role in the representation theory of Yangian given by Chari and
Pressley.” Many chain models possess the Yangian symmetry, for example, for 1-d
Hubbard model and Haldane-Shastry model.® The set {I, J} = Y'(sl(2)) obeys the
commutation relations of Y (sl(2)) (Ax = 4; £ v/~145):

(I3, I+] = 2Ly, [I4+, I-] =215, (sl(2)); (4.1)

18
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(I, Ji] = [Js, Lil=+Jy, [Iy, J-]= [Ty, -] =25, (4.2)
(i.e. [I;, J;] = v/—1eijiJx) and nonlinear relation

s, U, I = 31T = 1) (4.3)

that forms an infinitely dimensional algebra. All the other relations given in Ref. 4
can be obtained from Eq. (4.1)-Eq. (4.3) together with the Jacobian identities.% 10

The essential difference between the representations of Yangian algebras and
those of Lie algebras is the appearance of the free parameters y and v whose origi-
nally physical meaning is one-dimensional momentum. Their special choice specifies
a particular model. Applying the Yangian representation theory to Hydrogen atom,
it yields the correct spectrum (~ n~2) that is the simplest example of the appli-
cation of Yangian in Quantum Mechanics.!® Now the Happer's degeneracies can
be viewed as another example. Furthermore, we would like to make the following
remarks: :

(a) The elements of J, given by Eq. (3.2)

< Oépmr|J+|OéDm >~ aDm/|K+|aDm >7é 0,

because < apm/|S|opm >=< apm|S x K|apm >= 0, as pointed out in Ref. 1 (see
Eq. (2.23) in Ref. 1). This indicates that the role played by J, in the “D-direction”
is like that played by K. Why do we need a Yangian? The terms of S and (KxS)
should be added to guarantee < arm/|J+|@pm >=< apm/|J+|@pm >= 0, namely,
if only acting K| on ap,, it yields non-vanishing transitions to ar,s and agm
that no longer preserves the D-set. The part other than K, in the Yangian J,
given by Eq. (3.2) exactly cancel the nonvanishing contribution received from “I'-”
and “B-direction”.

(b) Observing the process determining parameters a and b in Eq. (3.3), the
reason for the existence of solution of @ and b is clear. For § = 1, the eigenvector
of H is formed by three base. Apart of an over-all normalization factor there are
two independent coefficients. In requiring J+opm ~ apm+1, we have to compare
the coefficients of the independent base in Jiapm and apm+1 to determine the
unknown parameters a and b. For spin § = 1, there are just two equations for a
and b. However, for spin S > 1, in general, one is unable to find solution for a
and b to fit more than two equations. Therefore, the Yangian description of the
curious degeneracies admits only S = 1 for arbitrary K. This is consistent with
experiment.!’2

(c) In fact, the parameters appearing in J4 and J_ exactly coincide with the
conditions of the existence of the subrepresentations of the Yangian.” Following
the theorem in Ref. 7, for a — b = —-122 - % the subspace spanned by vectors with
G = K + 1 is the unique irreducible subrepresentation of Y (sl(2)), that is, the
states with G = K + 1 are stable under the action of J. Note that the existence
and uniqueness of subrepresentation is only related to the difference of a and b.
Moreover, for the given @ and b in Eq. (3.4), the action of J; on the states with
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G = K +1is given by Jyag=r+1,m = (m + K + 1)G10¢=k+1,m and at the same
time, J; will make the states with G = K and G = K — 1 transit to G = K +1,
but not vice versa, called “directional transition”,? i.e. the transition given rise
by Yangian goes in one way. Thus, for the given a and b in Eq. (3.4), the set of
states with G = K + 1 and D-set are stable under the action of J,. simultaneously.
Forc—d = —12‘:, G = K — 1 is the unique irreducible subrepresentation and for
¢ and d given by Eq. (3.7), acting J_ on the states with G = K — 1, we have
J_ag=k-1m = —(m + K)G_0og=Kk—_1,m. Therefore the representation theory of
Y (s1(2)) tells that the relationship between a — b and ¢ — d given by Eq. (3.4) and
Eq. (3.7), respectively, should be held to preserve the states with G = K + 1 (or
G = K — 1) that possesses Lie algebraic behavior.

(d) We have seen that the J_ is not the conjugate of J;. Such a phenomenon
is reasonable because ap,, is neither the Lie-algebraic state nor symmetry of H.
In fact, if « is not an eigenstate of I? (I belongs to a Lie algebra) and I a ~ aj,
we cannot have I_a; ~ a. Now there is the similarity for Yangian. Moreover, the
D-set is not a subrepresentation of Y (sl(2)), i.e., D-set cannot be stable under all
the actions of J, but stable under J; and J_ with the different parameters which
just satisfy the condition for subrepresentation of Yangian.

(e) The third component of J takes the form J3 = a8, +bK, + S+ K_—-S_K,.
For any parameters, the action of Js will not keep the D-set. But, with the suitable
a — b =1, the operator J3 + 2(2K + 1)52 will keep the D-set.

(f) We emphasized that the m appearing in Eq. (3.2) and Eq. (3.5) cannot be re-
placed by the operator G3. It appears as a parameter in Yangian. The m-dependents
only indicates that the raising or lowering operation depends on “history” in dif-
ference from the Lie algebraic structure.

In conclusion we have read of a new type of algebra structure(Yangian) from
the Happer’s degeneracies and such an algebra had been ready by Drinfeld.* All
the analysis coincides with the representation theory of Y(sl(2))? for the special
choice of @, b in J and ¢, d in J-. It also leads to the fact that only S = 1 is allowed
to yield the curious degeneracies. If the Zeeman effect tells Lie algebra, then the
curious degeneracies possibly tell the existence of Yangian.
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Here we review a method for constructing exact eigenvalues and eigenfunctions of a
many-particle quantum system, which is obtained by adding some nonhermitian but PT
invariant (i.e., combined parity and time reversal invariant) interaction to the Calogero
model. It is shown that such extended Calogero model leads to a real spectrum obeying
generalised exclusion statistics. It is also found that the corresponding exchange statis-
tics parameter differs from the exclusion statistics parameter and exhibits a ‘reflection
symmetry’ provided the strength of the PT invariant interaction exceeds a critical value.

1. Introduction

It is well known that integrable dynamical models and spin chains with long range
interactions exhibit fractional statistics or generalised exclusion statistics (GES),!
which is believed to play an important role in many strongly correlated systems of
condensed matter physics. The An_1 Calogero model (related to Ay _; Lie algebra)
is the simplest example of such dynamical model, containing N particles on a line
and with Hamiltonian given by Refs. 2,3

_ L9
H=—3 8_a:§+2]z Z pa—— 1)

where g is the coupling constant associated with long-range interaction. One can
exactly solve this Calogero model and find out the complete set of energy eigenvalues
as

N
Nw
Enpnaein = =~ L+ (V=] +wd_ny. ()
j=1
Here n;s are non-negative integer valued quantum numbers with n; < nj;41 and v
is a real positive parameter which is related to g as

g=v>-v. (3)
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It may be noted that, apart from a constant shift for all energy levels, the spectrum
(2) coincides with that of N number of free bosonic oscillators. Furthermore, one can
easily remove the above mentioned constant shift for all energy levels and express
(2) exactly in the form of energy eigenvalues for free oscillators: Ep, ng..cony =
%“3 +w Z;\rzl 15, where 7i; = n; +v(j— 1) are quasi-excitation numbers. However it
is evident that these 72;s are no longer integers and they satisfy a modified selection
rule given by 7,41 — 7; > v, which restricts the difference between the quasi-
excitation numbers to be at least v apart. As a consequence, the Calogero model
(1) provides a microscopic realisation for fractional statistics with v representing
the corresponding GES parameter.*”

Recently, theoretical investigations on different nonhermitian Hamiltonians have
received a major boost because many such systems, whenever they are invariant
under combined parity and time reversal (PT) symmetry, lead to real energy eigen-
values.® 11 This seems to suggest that the condition of hermiticity on a Hamil-
tonian can be replaced by the weaker condition of PT symmetry to ensure that
the corresponding eigenvalues would be real ones. However, till now this is merely
a conjecture supported by several examples. Moreover, in almost all of these ex-
amples, the Hamiltonians of only one particle in one space dimension have been
considered. Therefore, it should be interesting to test this conjecture for the cases
of nonhermitian N-particle Hamiltonians in one dimension which remain invariant
under the PT transformation:!2

’i—>—i, .’L‘j—>—.’L‘j, Dy —)pj, (4)

where j € [1,2,---,N], and z; (p; = "ié‘%) denotes the coordinate (momentum)
operator of the j-th particle. In particular, one may construct an extension of
Calogero model by adding to it some nonhermitian but PT invariant interaction,
and enquire whether such extended model would lead to real spectrum.

The purpose of the present article is to review the progress” 2 on the above
mentioned problem for some special cases, where the PT invariant extension of
Calogero model can be solved exactly. In Sec.2 of this article we consider such a PT
invariant extension of Axy_; Calogero model and show that, within a certain range
of the related parameters, this extended Calogero model yields real eigenvalues.
Next, in Sec.3, we explore the connection of these real eigenvalues with fractional
statistics. Section 4 is the concluding section.

2. Exact solution of an extended Calogero model

Let us consider a Hamiltonian of the form?

where H is given by eqn.(1) and § is a real parameter. It may be observed that
though the Hamiltonian (5) violates hermiticity property due to the presence of
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momentum dependent term like 63, = e T 61: , it remains invariant under the
combined PT transformation (4). Next we recall that Apn_1 and By Calogero mod-
els as well as their distinguishable variants have been solved recently by mapping
them to a system of free oscillators.!31® With the aim of solving the PT invariant
extension (5) of Ay_1 Calogero model through a similar produce, we assume that
(justification for this assumption will be given later) the ground state wave function
for this extended model is given by

_w ZN 2
Ygr =€ 2 i=1 H(xj —zx)”, (6)
i<k
where v is a real positive number which is related to the coupling constants g and
d as

g=v*—v(1+25). (7)

Now if we use the expression (6) for a similarity transformation to the Hamiltonian
(5), it reduces to an ‘effective Hamiltonian’ of the form

H =1 Hipgr = S~ +wS® + By, (8)

where the Lassalle operator (S~) and Euler operator (S3) are given by

1L 9 ( 1
ST =—= — —(r—946 T; 9
2j=16x? );cac]—xkaw Z ]Ba:J ®)
and
Nw
By =22 14+ (N =~ 1)(v ~ 5)]. (10)

It is easy to see that the Lassalle operator and Euler operator, as defined in eqn.(9),
satisfy the simple commutation relation: [$3,5~] = —25~. Using therefore the well
known Baker-Hausdorff transformation we can remove the S~ part of the effective
Hamiltonian H’ and through some additional similarity transformations reduce it
finally to the free oscillator model”

1 w? & wN
Hfree =87 (H'"Eyr)sz_ﬁz_—"?Zw?_ (11)

— @ N 2
where S = 255 15V e? L% and V2 = Z;‘Ll '6%27.
3
Due to similarity transformations in (8) and (11), one may naively think that the

eigenfunctions of the extended Calogero model (5) can be obtained from those of free
oscillators as: Yn, ny,-ny = YgrS {H;J:l e‘%sz'Hnj (mj)}, where n;s are arbitrary
non-negative integers and Hy, (z;) denotes the Hermite polynomial of order n;.
However it is easy to check that, similar to the case of Ay_; Calogero model,!? the
action of & on free oscillator eigenfunctions leads to a singularity unless they are
symmetrised with respect to all coordinates. Therefore, nonsingular eigenfunctions

25



1878 B. Basu-Mallick

of the extended Calogero model (5) can be obtained from the eigenfunctions of free
oscillators as

N
_wa?
¢n17n2r"'»nN = '(pgT SA+ H e 2 JHﬂj (zJ) H (12)
j=1

where A, completely symmetrises all coordinates and thus projects the distin-
guishable many-particle wave functions to the bosonic part of the Hilbert space.
Evidently, the eigenfunctions (12) will be mutually independent if the excitation
numbers n;s obey the bosonic selection rule: nj,; > n;. Thus, in spite of the fact
that the interacting Hamiltonian (5) is convertible to the free oscillator model, the
need for symmetrization shows that the many-particle correlation is in fact inherent
in this model. The eigenvalues of the Hamiltonian (5) corresponding to the states
(12) will naturally be given by Ref. 7

N N
N
By aene = Bor + w0 _mj= == [1+ (N = D=8 +wY n;.  (13)
=1

i=1

Since d and v are real parameters, the energy eigenvalues (13) are also real ones.
Thus we interesting find that the nonhermitian PT invariant Hamiltonian (5)
yields a real spectrum. Furthermore, it is evident that for all n; = 0, the en-
ergy En, ny,ny attains its minimum value Eg,. At the same time, as can be easily
worked out from eqn.(12), the corresponding eigenfunction reduces to g, (6). This
proves that g, is indeed the ground state wave function for Hamiltonian (5) with
eigenvalue Eg,.

It may be observed that the eigenfunctions (12) pick up a phase factor (—1)* un-
der the exchange of any two particles. Therefore, v represents the exchange statistics
parameter for the extended Calogero model (5). By solving the quadratic eqn.(7),
one can explicitly write down v as a function of g and ¢ as

V=w+§iﬂg+®+5? (14)

For the purpose of obtaining real eigenvalues (13) as well as nonsingular eigenfunc-
tions (12) at the limit z; — z;, we have assumed at the beginning of this section
that v is a real positive parameter. This assumption leads to a restriction on the
allowed values of the coupling constants g and 4 in the following way. First of all,
for the case g < —(6 + 3)2, eqn.(14) yields two imaginary solutions. Secondly, for
the case § < —2, 0> g > —(6 + 3)? eqn.(14) yields two real but negative solu-
tions. Inequalities corresponding to these two cases represent two forbidden regions
of (4, g) plane which are excluded from our analysis.

For the case g > 0 with arbitrary value of §, one gets a real positive and a
real negative solution from eqn.(14). The real positive solution evidently leads to
physically acceptable set of eigenfunctions and corresponding eigenvalues within
this allowed region of (4, g) plane. Finally we consider the parameter range § >
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—%, 0>g>—(0+ %)2, for which eqn.(14) yields two real positive solutions.
It is easy to see that these two real positive solutions are related to each other
through a ‘reflection symmetry’ given by v — 1 + 24 — v. Consequently, for each
point on the (4,g) plane within this allowed parameter range, one obtains two
different values of the exchange statistics parameter leading to two distinct sets of
physically acceptable eigenfunctions and' eigenvalues. Thus we curiously find that
a kind of ‘phase transition’ occurs at the line § = —l on the (4, g) plane. For the
case § > — 2, exchange statistics parameter shows ’che reflection symmetry when g
is chosen within an interval —(3 + )2 < g < 0. On the other hand for the case
0 < —%, such reflection symmetry is lost for any possible value of g.

We have seen in this section that, similar to the case of Ay_; Calogero model,
the extended model (5) can also be solved by mapping it to a system of free harmonic
oscillators. So it is natural to enquire whether this extended model is directly related
to the Axy_1 Calogero model through some similarity transformation. Investigating
along this line,1? we find that

R ) H'—2Zp] -—w DI +gz(x]_xk (15)
J#k

where I' = [[; 4 (z; — xr)%, and H' denotes the Hamiltonian of Ay_; Calogero
model with ‘renormalised’ coupling constant given by g’ = g+ 6(1 +4). Due to the
existence of such similarity transformation, one may expect that the Hamiltonians
H and H' always lead to exactly same eigenvalues. However it should be noted that,
within a parameter range given by 6 > 0, g > —6&(1 + §), there exists a positive
solution of eqn.(7) satisfying the condition v — é < 0. Therefore, we can not get any
lower bound for the corresponding energy eigenvalues (13) at N — oo limit. On
the other hand, the energy eigenvalues (2) of Ay-1 Calogero model are certainly
bounded from below for all possible choice of N and g. So there exists a parameter
range within which the spectrum of extended Calogero model differs qualitatively
from the spectrum of the original Calogero model. To explain this rather unex-
pected result, we first observe that the renormalised coupling constant g’ would
be a positive quantity within the above mentioned parameter range. Consequently,
the corresponding exclusion statistics parameter v/, which is obtained by solving
eqn.(3), has one positive and one negative solution. One usually throws away this
negative solution of v/, since the corresponding eigenfunctions become singular at
the limit z; — xx. However, by using the relation (15), such singular eigenfunctions

(denoted by ¢'(x1,z2,--,zN)) may now be used to construct the eigenfunctions
of extended Calogero model (denoted by ¥(x1, 2, --TN)) 38
Pz, 22, -, 2N) = H(w] — zg)%Y (€1, 22, -, TN (16)
i<k

It can be easily checked that, due to the existence of the factor [, (z; - ), the
r.h.s. of the above equation becomes nonsingular at the limit 2; — 2 . Thus we cu-
riously find that singular eigenfunctions of H' can be used to generate nonsingular
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eigenfunctions of H# through the relation (16). This shows that the similarity trans-
formation (15) is a subtle one and, within a certain parameter range, eigenvalues of
extended Calogero model will match with those of Calogero model (having renor-
malised coupling constant) only if the corresponding unphysical eigenfunctions are
taken into account.

3. Connection with fractional statistics

We have mentioned in Sec.1 that GES can be realised microscopically in An_1
Calogero model with hermitian Hamiltonian. The GES parameter for this Calogero
model is a measure of ‘level repulsion’ of the quantum numbers generalising the
Pauli exclusion principle. Now for exploring GES in the case of PT invariant model
(5), we observe that eqn.(13) can be rewritten’ exactly in the form of energy spec-
trum for NV free oscillators as

Nw N
By nyenn = ~5- +wZﬁj, (17)
J=1
where
nj=n;+(¥-206)(y-1) (18)

are quasi-excitation numbers. However, from eqn.(18) it is evident that such quasi-
excitation numbers are no longer integers and satisfy a modified selection rule:
fj41 — fij > v — . Since the minimum difference between two consecutive fi;s is
given by '

p=v—-46 (19)

>

the spectrum of extended Ay_; Calogero model (5) satisfies GES with parameter
7.7 Several comments about this GES parameter are in order. It may be to noted
that for § # 0, the GES parameter & is different from the power index v, which is
responsible for the symmetry of the wave function. Therefore we may interestingly
conclude that unlike Calogero model, the exclusion statistics for model (5) differs
from its exchange statistics. Furthermore it is already noticed that, on a region of
(0, g) plane satisfying the inequalities § > 0, g > —d(1 + d), there exists a positive
solution of eqn.(7) which yields a negative value of ¥. For this case, however, one
does not get well defined thermodynamic relations at N — oo limit and, therefore,
can not interpret 7 as the GES parameter.
By using eqn.(7) and (19), we find the relation

7P —D=g+460+1), (20)

which clearly describes a parabolic curve in the coupling constant plane (9, g) for any
fixed value of U. As a consequence of this, the competing effect of the independent
coupling constants g and 6 can make the GES feature of (5) much richer in compar-
ison with the Calogero model. For example, while bosonic (fermionic) excitations in
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the Calogero model occur only in the absence of long-range interaction, the quasi-
excitations in (5) can behave as pure bosons (fermions) even in the presence of both
the long-range interactions satisfying the constraint #(d,g9) =0 (#(d,g) = 1). Both
of these constraints lead to the same parabolic curve g = —§(1 + §). A family of
such parabolas with shifted apex points are generated for other values of 7 and the
lowest apex point is attained at 7 = %, where the quasi-excitations would behave
as semions.

4. Conclusion

Here we construct a many-particle quantum system (5) by adding some nonhermi-
tian but combined parity and time reversal (PT) invariant interaction to the Ax_1
Calogero model. By using appropriate similarity transformations, we are able to
map this extended Calogero model to a set of free harmonic oscillators and solve
this model exactly. It turns out that this many-particle system with nonhermitian
Hamiltonian yields a real spectrum. This fact supports the conjecture that the con-
dition of hermiticity on a Hamiltonian can be replaced by the weaker condition of
PT symmetry to ensure that the corresponding eigenvalues would be real ones. It
is also found that the spectrum of extended Calogero model obeys a selection rule
which leads to generalised exclusion statistics (GES).

However, this extended Calogero model exhibits some remarkable properties
which are absent in the case of usual Calogero model. For example, we curiously
find that the GES parameter for this extended Calogero model differs from the cor-
responding exchange statistics parameter. Moreover a ‘reflection symmetry’ of the
exchange statistics parameter, which is known to exist for Axy_; Calogero model,
can be found in the case of extended model only if the strength of PT invariant
interaction exceeds a critical value.

Finally we note that, it is possible to obtain another exactly solvable many-
particle quantum system by adding some nonhermitian but PT invariant interac-
tions to the By Calogero model (associated with By Lie algebra).!? Such a PT
invariant model also leads to real spectrum with properties quite similar to the case
of extended Ax_1 Calogero model.
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We examine the groundstate wavefunction of the rotor model for different boundary
conditions. Three conjectures are made on the appearance of numbers enumerating
alternating sign matrices. In addition to those occurring in the O(n = 1) model we
find the number Avy(2m + 1;3), which 3-enumerates vertically symmetric alternating
sign matrices.

1. Introduction

The XXZ Heisenberg spin chain and the related six-vertex model stand as central
pillars in the study of exactly solved models in statistical mechanics.!»2 It has been
known for many years that, with appropriate boundary conditions, their ground-
state energy is trivial at the particular anisotropy value A = —1/2. Only recently
has it been realised that the corresponding groundstate wavefunction possesses some
rather remarkable properties.>® These observations extend to the related O(n) loop
model %7 at n = 1.48710
Consider first the periodic antiferromagnetic XXZ chain

N
1 A
H=_§Z( o1 + ool +Acfol,,), (1
=1

defined on an odd number N of sites. Here (0§, 0%, 07) are the Pauli spin matrices
acting at site j. Normalize the smallest component of the groundstate wavefunction

to be unity. Then at A = —1/2 the largest component is conjectured to be given
by 3

3 1)
H ((fniij)w (2)
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for size N = 2m+1. The remarkable point being that A(m) is the number of mxm
alternating sign matrices.!! The resulting sequence A(m) = 1,2,7,42,429,7436. ..
is also known to count other combinatorial objects.'?3 Moreover, these numbers
appear in the sum of all the groundstate wavefunction components. These observa-
tions remain to be proved.

An even number of sites and other boundary conditions have also been consid-
ered, both for the XXZ chain (twisted and closed® quantum symmetric be’s) and
the O(n = 1) loop model (periodic and closed bc’s). These see the appearance of
other well known numbers counting alternating sign matrices and related objects
in different symmetry classes. For example, with the smallest component of the
groundstate wavefunction again unity, the O(n = 1) loop model with closed bound-
ary conditions has largest component given by Ay(2m — 1) for N = 2m — 1 and
Ng(2m) for N = 2m. Here

2 + 1)(67 + 3)!
Av(@m+1) = H(s + )E4j.+2;!§4j.+3;! (3)

is the number of (2m +1) x (2m+ 1) vertically symmetric alternating sign matrices
and

m—1
wem) = T1 65+ )i 0

is the number of cyclically symmetric transpose complement plane partitions. The
number Ng(2m) is conjectured to be Ayy(4dm+1)/Av(2m+1), where Ayu(4m+1)
is the number of (4m + 1) x (4m + 1) vertically and horizontally symmetric alter-
nating sign matrices.!¥ ' Another quantity, which appears for periodic boundary
conditions, is

Avx(2m) = Am)? H =] ®)

the number of 2m x 2m half turn symmetrlc alternating sign matrices.

Further developments include the combinatorial interpretation of the elements
of the O(n = 1) loop model wavefunction in terms of link patterns®10 and the
relation to a one-dimensional stochastic process.!® There has been some progress
attempting to prove these conjectures using Bethe Ansatz techniques.!6:17

In this paper, we examine the groundstate wavefunction of the rotor model!®
discussed by Martins and Nienhuis. The rotor model is based on a variant of the
Temperley-Lieb algebra, which underpins the six-vertex model, the O(n) model and
the critical Q-state Potts model.}*?1? The rotor model is defined in Section 2, with
our results presented in Section 3.

8The standard nomenclature for these bc’s is open be, but since these bc’s are spin-conserving
in the XXZ chain or loop reflecting in the O(n = 1) model we find the term closed bc more
appropriate, here reserving open bc for non-conserving boundary conditions.
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Here we see the appearance of another number, Ay(2m + 1;3), which is the 3-
enumeration of (2m + 1) x (2m + 1) vertically symmetric alternating sign matrices,
or equivalently, the number of vertically symmetric 6-vertex configurations with

domain wall boundary conditions and A = —1/2. It is given by
gmim=3)/2 T (5 — 1)!(35)!
1: _ = e
Av(2m +1;3) o E O 1,5,126,16038, (6)

In general, the z-enumeration of alternating sign matrices in the terminology of
Kuperberg,® is equivalent to the enumeration of six-vertex configurations with
domain wall boundaries with A = 1—z/2 and at the symmetric point with respect
to the spectral parameter.

We give some concluding remarks in Section 4.

2. The rotor model

We suggest that the remarkable observations of this O(n = 1) model are related to
the combination of two key properties, namely solvability and the absence of finite
size corrections to the groundstate energy. Now the O(n = 1) model is not unique in
this combination. Recently Martins and Nienhuis '8 introduced a model that shares
the same two properties. In this so-called rotor model a set of loops covers all the
edges of the square lattice precisely twice. At the vertices all the loops make a turn
of /2 which permits four types of vertices as displayed in Figure 1.

+ 4+ +

Fig. 1. Vertices of the rotor model.

A natural interpretation is that the loops are trajectories of particles, and that
the two loop segments visiting the same edge are traversed in opposite directions.
Thus the four kinds of vertices shown in Figure 1 behave as scatterers: right (R)
and left (L) rotors, at which the particles always turn right and left respectively,
and ascending (A) and descending (D) diagonal mirrors at which the particles get
reflected. To clearly display the scatterers we propose that the particles always
follow the left hand side of the road, as is customary in Australia where this paper
was conceived.

In a different interpretation the two loop segments at the same edge are the
trajectories of different kinds of particles, traversed in either direction. Then the
scatterers can all be interpreted as double mirrors on each site, each reflecting one
kind of particle and transmitting the other. At the R and L sites these mirrors
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are placed crosswise, AD and DA respectively, while at the original ascending and
descending mirrors, the double mirrors are placed parallel, AA and DD respectively.
This alternate interpretation will not affect the distributions of trajectories in an
infinite system, but it will result in changes on some finite systems.

Martins and Nienhuis solved this model by means of the Yang-Baxter equation
when these scatterers occur with the respective weights

WwR = wL, = sinu cos(27/3 — u),
wa = sin(w/3 — u) cos(27/3 — u), (7
wp = —sinucos(w/3 — u).

independently at each vertex. In this paper we consider this model with periodic
boundary conditions (pbc) and with closed boundaries at which the trajectories are
reflected. We will be interested in the structure of the groundstate eigenvector. Since
the transfer matrix as a function of u forms a commuting family, the groundstate
is independent of u. Then it is convenient to consider the Hamiltonian, found (up
to a constant) as the logarithmic derivative of the transfer matrix with respect to
uatu=0:

H=Y 3—-R,—Li—E, (8)

For system size N the operators R, L and E are shown in terms of the loops in

Figure 2.
H VI J
AL M
L E

R

Fig. 2. Generators.

Martins and Nienhuis showed that the operators Lg; and Ro;—; generate a
Temperley-Lieb (TL) algebra, and so do the operators Lg;—1 and Ry;. In peri-
odic systems of even size, and in bounded systems these two TL algebras commute
with each other. What changes the physics is the presence in the Hamiltonian of
the term E; = R;L;. Also the E; by themselves generate a TL algebra. In odd,
periodic systems the odd and even sites cannot be distinguished. In this case the L
and the R together form a TL algebra of 2N sites.

When the system is odd and periodic, the interpretation of the R and L vertices
as rotors or alternatively as crossing mirrors, will naturally result in different pbec.
The rotor interpretation permits closed trajectories that wind the cylinder twice. In
the alternative interpretation no closed winding trajectories are possible, and the
odd system must have two unmatched terminals. In this paper we follow the latter
interpretation.
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The states of the model are the pairings of those terminals that are connected by
a trajectory in the ‘past’ half of the strip or cylinder. When the system is periodic,
one may distinguish the side of the cylinder along which the trajectory runs: a
connection between site 1 and site N may pass all sites 2,...N — 1, or it may
simply connect site N to site N + 1 which is identified to 1. These two states can
be distinguished, in which case we speak of pbc per se, or they may be identified,
for which we reserve the phrase pbc with identified connectivities.

3. Results for the groundstate wavefunction

The groundstate wavefunction of the Hamiltonian (8) satisfies the eigenvalue equa-
tion Heypg = 0. In this section we formulate three conjectures regarding v for the
different types of boundary conditions discussed in Section 2.

Conjecture 1: For closed boundary conditions, if the smallest element of the rotor
model groundstate wavefunction for N = 2m — 1 is normalized to Ay(2m — 1;3),
then all of its elements are integers and the sum of its elements is given by
S(@2m—1) = 3("“1)2Ng(2m). For N = 2m, normalize the groundstate wavefunction
to the smallest integer such that all elements are integers, the sum of the elements
is given by S(2m) = 3%= Ay (2m +1), where 6,, = 0,1,3,6,9 = | (m—1)(m+2)/3]
form=1,...,5.

This conjecture is based on the results presented in Table 1 and was checked up
to N =10.

Conjecture 2: For periodic boundary conditions, normalize the smallest element
of the rotor model groundstate wavefunction to the smallest integer such that all
elements are integer. The sum of its elements is then given by S(2m — 1) =
33m Ay (2m + 1;3)? for odd system sizes and by S(2m) = 3™* Apr(2m) for even

system sizes.

This conjecture is based on the results presented in Table 2 and was checked up

to N =0.

Conjecture 3: For periodic boundary conditions and identified connectivities, nor-
malize the smallest element of the rotor model groundstate wavefunction to the
smallest integer such that all elements are integer. The sum of its elements is then
given by S(2m) = 3%~ A(m), where 6,, = 0,1,3,6,9,13 = |(m — 1)(m + 2)/3| for
m=1,...,6.

This conjecture is based on the results presented in Table 3 and was checked up
to N =12,

4. Discussion

In this paper we have examined the groundstate wavefunction of the rotor model for
three different boundary conditions. As for the O(n = 1) model, numbers known to
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Table 1. Groundstate wavefunctions of the rotor model with closed boundaries. Note that by
o = (2, 1) with multiplicity (2, 2) we mean 90 = (2,2,1,1).

N m iy multiplicity SI(\})

1 1 (1) 1) 1

2 1 (1) 1

3 2 (2,1 (2,2) 6

4 2 (1454) (1,1,2) 27

5 3 (113,111, 55, 31, 25, 21, 19, 11, 5) (2,1,4,2,4,2,4,4,2) 891

6 3 (4760, 1440, 1192, 1028, 601, 565, 326, (1,2, 4,1,4,2, 2,2, 1, 18954
310, 126, 121, 86) 2, 4)

Table 2. Groundstate wavefunctions of the rotor model with periodic boundaries.

N m multiplicity s

T 1 ) 1

2 1 (21) (2,2) 6

3 2 (52 (3,6) 27

4 2 (118, 35,25, 22, 20, 5, 4) (2 2,8, 4,8, 8, 4) 810

5 3 (1036, 463, 208, 143, 127, 122, 65, 22, (5, 10, 10, 20, 5, 10, 20, 18225
10) 10, 10)

Table 3. Groundstate wavefunctions of the rotor model with periodic boundaries and identified
connectivities.

N m multiplicity s
2 1 (D ) 1
4 2 (21 (2,2) 6
6 3 (26,972 (2, 3, 14, 6) 189
8 4 (1798, 486, 410, 267, 234, 232, 165, 106, (2, 8, 16, 2, 16, 16, 8, 30618
90, 81, 76, 70, 56, 45, 20, 9, 4) 16, 4, 16, 8, 8, 16, 32,
16, 8, 4)

enumerate equally weighted alternating sign matrices appear in the normalization
of the wavefunction. For the rotor model we also see the number Ay (2m + 1;3),
enumerating alternating sign matrices in which the minus signs have weight 3.1%

We find it quite surprising that the conjectures in Section 3 can be formulated
at all. They are a result of the normalizations factoring into relatively small primes
and thus enabling their recognition. This property appears to be absent for other
boundary conditions, for example, pbc in the rotor interpretation for odd system
sizes. It is even more remarkable that these numbers have a well known combina-
torial meaning.
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We use Monte Carlo, transfer-matrix and finite-size scaling methods to investigate two-
dimensional O(n) models with n > 2, in particular the case n = 3 which includes
the classical Heisenberg model. Depending on the type of interaction and the lattice
structure, two different types of phase transitions are present. One type resembles the
hard-hexagon transition and occurs in the loop representation of the honeycomb O(n)
model. The other type is a first-order transition which occurs for spin-spin interactions
that are strongly nonlinear in the neighbor-spin products. When the nonlinearity is
decreased, the first-order line ends in a critical point. The existence of the first-order
line is in agreement with mean-field theory as well as with high- and low-temperature
approximations.

1. Introduction

The O(n) spin model represents a system of interacting n-dimensional vectors § =
($1,82,--,8n) on a lattice. The O(n) symmetry implies that the Hamiltonian is
invariant under rotations in the space of the spin vectors. We consider the case of
O(n) symmetric pair interactions

H/ksT = — ) h(35:-5)) 1)
<ig>

where the sum is on all pairs of nearest neighbors, and h is an arbitrary function
with implicit temperature dependence. The ‘linear’ case, i.e. h(z) = Kz where K
is the coupling constant, includes the classical XY model (n = 2) and the classical
Heisenberg model (n = 3). For reasonable choices of the function h, in particular
monotonically increasing functions, it is plausible that the model belongs to the
same universality class as the linear model.
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The question whether or not two-dimensional O(n) models with n > 2, and in
particular with n = 3, undergo a phase transition at a sufficiently low temperature
has received considerable attention;!™® see also references therein. These papers
contain conflicting answers. However, according to the prevailing interpretation,
ordering transitions are absent in the O(r) model with n > 2. The main argument
relies on the spin-wave result!*3 by Bloch that a spontaneously magnetized state
cannot exist at a nonzero temperature. This does not qualify as a proof for the
absence of a transition: the spin-wave argument applies as well to the XY (n = 2)
model where a phase transition” is known to occur (but not to a spontaneously
magnetized state). The latter transition is however linked to topological excitations
(vortices) which lack relevance for n = 3. This, together with an exact result of
Kunz and Wu* which excludes phase transitions in a part of the n > 2 parameter
space, forms the basis of the above-mentioned prevailing interpretation.

However, here we describe two sorts of transition for n > 2. The first type, which
occurs in the O(n) loop model on the honeycomb lattice, is described in section 2.
It is unphysical in the spin representation, because negative Boltzmann weights
occur. It is thus consistent with the hypothesis that phase transitions are absent
in two-dimensional spin models with n > 2. However, in section 3 we describe a
phase transition in a genuine Heisenberg-type O(3) model. The phase transition
does not lead to a long-range ordered state (in the sense of a nonzero spontaneous
magnetization) and is therefore consistent with the spin-wave theory.

2. Phase Transition in the Loop Model

The ‘loop’ version of the O(n) model is defined by the choice h(z) = log(1l + az),
where the parameter a is an inverse-temperature-like parameter, and the normal-
ization §;.5; = n. The model on the honeycomb lattice can be mapped® onto a
gas of nonintersecting loops running over the edges of the honeycomb lattice. Each
edge covered by a loop carries a Boltzmann weight a, and each loop a weight n. The
loop representation has enabled exact solutions along special lines in the n, a plane
for n < 2 &M and for n > 2.12 From these solutions we know that for n < 2 an
ordering transition occurs at finite values of z, and that for n > 2 the loop model
is in a long-range ordered state for £ = co. This state is not of the ‘ferromagnetic’
type, but chooses between 3 sublattices, and reminds of the hard-hexagon model.

In the absence of exact solutions in most of the n, z plane, we have applied Monte
Carlo and transfer-matrix techniques.!3 Surprisingly, a transition to the long-range
ordered state was found at finite values ¢ < oo. The hard-hexagon-like critical
line spans the range 2 < m < co. The resulting phase diagram is shown in fig. 1.
Also shown are the boundary of the ‘physical region’ of the spin model, where the
energy h(§;.5;) is real for all 5;.5; (curved line in the middle), and a region where a
transition is rigorously excluded (above the curved line on the far right). The latter
line is based on the work by Kunz and Wu;* see also an erratum.!?

We observe that the newly found critical line indeed avoids the excluded region.
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Fig. 1. Phase diagram of the O(n) model on the honeycomb lattice in the n-a plane. The hor-
izontal scale is chosen as 1 — 8/(n + 10) in order to show the whole range up to n = co. The
vertical scale displays W(n) = 1/[(n + 10)!/6a]. The data points show our results for the newly
found phase transition. The curve in the range —2 < n < 2 shows an exact solution. The region
on the right hand side of curve ending at n = W = 0 is unphysical in the spin representation.
Rigorous arguments exclude phase transitions in the region indicated at the upper right.

It is completely embedded in the unphysical region of the spin model, but it is
physical in the language of the O(n) loop model.

3. The Strongly Nonlinear O(3) Model
We use Eq. (1) for the Heisenberg case n = 3 with a spin-spin interaction
h(s; - ;) = 2K[(1 + 5 - §;)/2]° (2)

with spins normalized to length 1. The parameter p determines the degree of non-
linearity of the energy function h. This form is chosen as to avoid powers of negative
numbers, and to limit the energy range to 2K, as in the linear case.

3.1. Mean-field theory

Consider a spin §;, interacting with z neighbors. Denote the average magnetization
of the spin system as m, say along the z-axis. The local energy is

Eioe = —22K[(1+ 5 - ) /2P = —22K[(1+ zm)/2]P (3)

and the thermal average of the z-component of $; satisfies

(z) = /1 ze Flocdy/ /_11 e~ Broc gy (4)

-1

For large enough K, the self-consistency equation {z) = m has solutions at nonzero
m. While m is a decreasing function of K, this function depends qualitatively on
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p. For small enough values of p, m decreases continuously to 0 at the critical point
K = K.. We thus find K, by solving d{z)/0m = 1 which leads to

K, =2r"3%3/p (5)

For larger values p, (x) increases faster than linear with m for small m, but
still levels off at large m. The nozero solutions of (z) = m thus become duplicate,
i.e., the transition turns first order for large p. These two distinct ranges of p are
separated by the tricritical point, which can be determined by solving for K and p
in 8(z)/8m = 1 and 8%(z)/8m3 = 0 at m = 0. The second equation expresses the
absence of the lowest order of nonlinearity of (z) as a function of m. The tricritical
coordinates are py; = (—1 + v/33)/2 and Kiri = 2P+ 33 /psi.

For p > piri, the first-order transition point follows by equating the areas en-
closed by the (z) vs. m curve and the (z) = m line. Thus we have determined the
first order line numerically; the resulting phase diagram is shown in fig. 2.

T T T T T T T T
3l ]
25 H -
2 H i

x |

15+ 4
1F .
05 -

0 1 1 1 A 1 1 1
o + 2 3 4 5 & 7 8

Fig. 2. Mean-field phase diagram of the nonlinear O(3) model on the square lattice, in the K

versus p plane. The line of phase transitions consists of two parts: a continuous transition at small
p, and a first-order part. The two parts are separated by a tricritical point (asterisk).

3.2. High- and low-temperature approzrimations

Estimates of the location of a first-order transition(if any) can also be obtained
from intersections of high- and low-temperature approximations of the free energy.
Neglecting loop diagrams in the high-temperature expansion the lattice effectively
reduces to the Bethe lattice, for which we obtain the free energy via a transfer-

matrix-like approach. The partition function Zi, ‘per bond’ between spins & and ¢
equals

Zy = / d§ exp{2K|[(1 + 5.t)/2]"} (6)
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which is independent of £, Expansion of the exponential function yields

Zb—47rz l(f';k 7)

where the prefactor accounts for the spin degrees of freedom and the sum for the
spin-spin interaction. The partition function of a Bethe lattice with N spins, each
interacting with 2 neighbors, and 2/N/2 bonds follows as

o 2k zN/2
Zpy, = (4m)N (Z § +p)k ) (8)

For z = 4, the high-temperature approximation of the free energy is thus

Fur —  (2k)*
—log(47m) — 21 —_— 9
T = los(dm) — 2log (Icz:% 1 + pk)&! )
We use a low temperature approximation for spins almost aligned along the z axis:
3, = (sf,s%’, 122 - sf2> where the z and y components are small. Small
deviations between neighbors ¢ and j increase the energy per bond
1
Eij/kT + 2K = SpK([(s] — 55)" + (s} — 8§)°] (10)

i.e. the Gaussian model applies to this quadratic form. After a Fourier transforma-
tion it is straightforward to obtain the partition function; the free energy follows
as

NkT
1 1, 1,
—4K — log(4~) + log(8pK) + NZlog[(sm §kz) + (sin Eky) ] (11)
E

Fir 4K logZé _

For large N the sum satisfies 1 Y log[(sin 3kz)? + (sin 2k,)?%| ~ —0.2200507 - - -
The low- and high-temperature approximations of the free energy are found

to intersect, and thus predict the approximate location of a possible first-order

transition line. These intersections were found numerically, and shown in fig. 3.

3.3. Monte-Carlo results

The model defined by Egs. (1) and (2) was investigated by a conventional Monte
Carlo algorithm with local spin updates. Randomly chosen orientations for the spin
vectors were accepted or rejected with Metropolis-type probabilities. The autocor-
relation times are found to increase considerably at low temperatures, especially
for system sizes L exceeding about 100. The efliciency of the algorithm decreases
even further at high values of p where the acceptance ratio becomes small.
Nevertheless we could resolve the phase diagram. No signs of a phase transition
were found for p = 1, i.e. the linear Heisenberg model. But for larger p, pronounced
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Fig. 3. Monte Carlo results for the phase diagram of the two-dimensional O(n) spin model on the
square lattice, in the K versus p plane. Results from the intersections of low- and high-temperature
approximations of the free energy are included as well (full curve).

maxima in the heat capacity appear, and for p > 16, we find numerical evidence for
a divergence of the heat capacity. For p > 18, the simulations reveal a jump in the
energy as a function of K, and a clear hysteresis effect. The first-order character
becomes even stronger at larger p. The transition for p > 20 was found by Monte
Carlo runs starting from a spin configuration of which one half was fully aligned,
and the other half filled with randomly chosen spins. For p < 20 we determined the
location Kpnax(p, L) of the heat capacity maximum cmax(p, L) as a function of K
for system sizes up to L = 48, and extrapolated to L = co. The heat capacity does
not seem to diverge for p < 16. For p = 16 we observe a divergence approximately
as L7/4, which indicates the presence of an Isinglike critical point. For p > 16 the
divergence agrees with first-order behavior cmax(p, L) o« L?. The Monte Carlo data
are included in fig. 3.

4. Discussion

We have provided evidence for two types of phase transitions in O(n) models with
n > 2. The first type is unphysical in the spin language, and depends essentially
on the underlying lattice structure. The second type is, however, found in a pure
spin system, in a conspicuous disagreement with expectations formulated in the
literature. We review the evidence presented above.

In low-dimensional models, mean-field theory tends to predict continuous phase
transitions where they do not exist. The example found in section 3.1 should thus
not be taken too seriously. The predicted first-order transition is more credible,
because the strength of the predicted discontinuity increases at large p, and the
role of fluctuations may thus be reduced. Another defect of mean-field theory is
that it is based on an order parameter m that is actually zero.!'® However, the
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long-wavelength spin waves, which are responsible for the suppression of m, hardly
affect correlations at distances of a few lattice units. The mean-field result can thus
still be regarded as suggestive of a first-order transition at large p.

Likewise, the result of the high- and low-temperature approximations is less
than compelling. Nevertheless, here also the predicted energy jump increases with
p: the two free-energy branches are pushed far away, mimicking high- and low-
temperature configurations with only limited fluctuations. This lends some support
to our approximation. The resulting first-order line is in a reasonable qualitative
agreement with Monte Carlo results (fig. 3). It tends to become better at large p.
The Monte Carlo runs provided a clear first-order picture; the numerical errors are
very small in comparision to the differences with the two analytic approximations
for the first-order line. The Monte Carlo results are clearly superior. Finally we
mention that similar transitions may occur for larger values of n, and that Monte
Carlo results of Domany et al.'* for the analogous strongly nonlinear O(2) model
showed that the Kosterlitz-Thouless transition is preempted by a first order one.
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We review an algebraic method for constructing degenerate eigenvectors of the transfer
matrix of the eight-vertex Cyclic Solid-on-Solid lattice model (8V CSOS model), where
the degeneracy increases exponentially with respect to the system size. We consider the
elliptic quantum group Er 5(sl2) at the discrete coupling constants: 2Ny = my +imgr,
where N, m; and mg are integers. Then we show that degenerate eigenvectors of the
transfer matrix of the six-vertex model at roots of unity in the sector $Z = 0 (mod N)
are derived from those of the 8V CSOS model, through the trigonometric limit. They
are associated with the complete N strings. From the result we see that the dimension
of a given degenerate eigenspace in the sector $Z = 0 (mod N) of the six-vertex model

at Nth roots of unity is given by 225mas/N | where SZ .. is the maximal value of the
total spin operator SZ in the degenerate eigenspace.

1. Introduction

Recently, it has been explicitly discussed that the transfer matrix of the six-vertex
model at roots of unity has the symmetry of the sls loop algebra.'™ Let us consider
the XXZ spin chain under the periodic boundary conditions

L
Hxxz = —JZ (crj-(oi-il + GJYU;’H + Aajza]Z+1) . (1)
j=1

Here the parameter A is related to the ¢ variable of the quantum group U,(slz) as

A= %(q-l—q_l). (2)

When ¢?V = 1, it was shown! that the XXZ Hamiltonian commutes with the gener-
ators of the sly loop algebra, which is an infinite dimensional algebra. Furthermore,
it was shown! by the Jordan-Wigner method for N = 2 and numerically for general
N that the dimensions of the degenerate eigenvectors are given by some powers of
2, which increase exponentially with respect to the system size L.

*deguchi@phys.ocha.ac.jp
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The exponential degeneracy of the sls loop algebra should be important for the
problem of the “completeness of the Bethe ansatz eigenvectors”. In fact, the siy
loop algebra symmetry has not been considered in the standard arguments of the
string hypothesis.% 7 Thus, it seems that it is still open whether we can construct 2~
linearly independent eigenvectors of the XXZ spin chain at roots of unity for general
L. The question should be related to so called singular Bethe ansatz solutions.® In
fact, it is numerically confirmed that the standard solutions of the Bethe ansatz
equations determine only eigenvectors which have the highest weights of the sio
loop algebra.? Furthermore, some important properties of complete N strings have
been discussed in association with the sls loop algebra.?™

Interestingly, it was numerically suggested that the transfer matrix of the eight-
vertex model at the discrete coupling parameters should have the degenerate eigen-
vectors corresponding to the degeneracy of the sly loop algebra.! Furthermore, it
has been recently shown that some degenerate eigenspace of the eight-vertex model
has dimension of N2E/N if L/N is an even integer.® Let us consider the XYZ

Hamiltonian under the periodic boundary conditions® 10
L
Hxyz =-— Z (JXO'JXU;{{-I + Jya;/o}:q + Jzo']-ZO']'Z+1) R (3)
i=1

where the coupling constants Jx, Jy and Jz are given by
Jx = J(1+ksn®(2p)), Jy =J(1-ksn?(2p), Jz=Jcn(2n)dn(2y). (4)

Here sn(z), cn(z) and dn(z) denote the Jacobian elliptic functions with elliptic
modulus k. We have called 27 the coupling parameter of the model. The number N
has been related to 2 by 2Nn = 2m1 K + imo K '. The symbols K and K " denote
the complete elliptic integrals of the first and second kinds, respectively.

In this paper, we discuss an algebraic construction of degenerate eigenvectors
of the eight-vertex cyclic Solid-on-Solid model!?13 (8V CSOS model), which is a
variant of the eight-vertex Restricted Solid-on-Solid model (ABF model) Then, we
show that through some limit, they give the degenerate eigenvectors of the six-
vertex model in the sector S% =0 (mod N) consisting of the complete N strings.

2. The slz loop algebra symmetry of the XXZ spin chain

Let us consider representations of the generators of U,(slz) on the Lth tensor prod-
uct of spin 1/2 representations.

=g Rtk 5)
L L

S:t = ZS;*: = anz/2®...qaz/2 ®0-;h ®q__0_Z/2 R _‘.®q—g-z/2 (6)
j=1 j=1

Let us introduce some symbols: [n] = (¢" —¢7")/(q—¢~") for n > 0 and [0] = 1;
[n]! = [Tr_; [K]. Setting

SEWN) =limgan 1 ()N /[N]! (7)
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the operators SV} are non-vanishing and we have

zZ
Si(N): Z qlz!a ®.®q%az®g‘;§®q
1< <<jN<L

(N—-2) Z N-2) Z

4 ®---®q 2 4

N—-4

( ) N _N
®oE®q T ® 00k ®¢ T @ 0q T . ®)

The study of the symmetries of the XXZ Hamiltonian under periodic bound-
ary conditions at roots of unity was initiated in Ref.:?® S*() commute with the
Hamiltonian (1) when S%/N is an integer and ¢?V = 1 holds. However, there exists
a much larger symmetry algebra than that of S¥(™).1 We remark that the XXZ
Hamiltonian is associated with the affine quantum group Uy,(8l2). For instance, we
may consider the following:

L L
T*=3"TF=Y ¢ Pg...¢" Posf0¢ ?e - ®¢ 2, (9)
j=1 j=1

which is also obtained from S* by the replacement ¢ — ¢~1. When ¢?V = 1, we
define 7+ similarly as in eq. (7).

Let Tgy (v) denotes the (inhomogeneous) transfer matrix of the six-vertex model.
Then we can show the (anti) commutation relations when S% = 0 (mod N)!

SEM Tey (v) = ¢NTey (0)STM, TN Ty, (v) = N Toy (v) T (10)
and therefore in the sector S =0 (mod N) we have
[$EM) H] = [T+ H] = 0. (11)
Let us discuss the symmetry algebra. With the following identification!

eo = S+(N), fo= S_(N), e1 = T“(N),

=TT o= —t; = —(—q)VS§%/N, (12)

we can show that they satisfy the defining relations of the sly loop algebra:
[SHM) T+N)) = [§~(N) T-(N)] — ¢, (13)
[SEM) §%) = £NSEN) 72N §%] = LNTEN), (14)

SHWBP—(N) _ 3g+(N)2p=(N) g+(N) | 3G+HN)—(N) g+(N)2 _p=(N) g+(N)3 _
§=NRT+IN) _ 3g-N)2p+(N) g~(N) 4 3g—(N)+H(N) g=(N)2 _ 7+(N)g—(N)3 —
T+WNBg—(N) _ gp+(N)2g—(N)p+(N) 4 g7+(N) g=(N)+(N)2 _ g=(N)+(N)3 _ o
T-(NBGHN) _ gp-(N)2g+(N)p—(N) 4 37~(N) gHN)p—(N)2 _ g+(N)—(N}3 _ o
(15)
and in the sector S* = (0(mod N) we have
S+ G- (] () - (V)] _(_q)N%sZ. (16)
The loop algebras with higher ranks are also discussed for some vertex models.!®
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3. The algebraic Bethe ansatz of the elliptic guantum group
ET"’T (8l2)

The elliptic algebra E. ,(slz) is an algebra generated by meromorphic functions of
a variable h and the matrix elements of a matrix L({z, A) with non-commutative
entries,!7-18 which satisfy the Yang-Baxter relation with a dynamical shift

RUB (21, X — 20h )LD (21, YL@ (25, X — 29 ™M)
= L® (29, \) L@ (21, A — 2ph@)R1D (255, 1) . (17)
Here h is a generator of the Cartan subalgebra h of sls. Drinfeld’s quasi-Hopf
algebra gives a natural framework for the dynamical Yang-Baxter relation, which
can be derived from the standard quantum group U, (slz) through the twist.!%20
The R-matrix of (17) is essentially that of the ABF model** (the 8V RSOS
model). Let V be the two-dimensional complex vector space with the basis e[1] and
e[—1]. Here we denote e[—1] also as e[2|, and let E;; denote the matrix satisfying
E;jelk] = d;jxeli]. Then, the R-matrix R(z, ) € End(V) is given by

R(z,An,7) = E11 ® E11 + E @ Eay + a(2,A)E11 ® Eog

+8(2,A)E12 ® Eo1 +5(2, —A)E21 ® E12 + a(z,—\)Es2  Eq1, (18)
where h = E}; — Egs and a(z,A) and 3(z, \) are defined by
0(z)0

0z —2m)0(N)’
The theta function has been given by

0(z - 2m)0O(A)

o
0(z; 1) = 2p*/*sin7z H(l — ™)1 — p® exp(2niz))(1 — p*™ exp(—2miz)), (20)
n=1
where the nome p is related to the parameter 7 by p = exp(nir) withIm 7 >0 .
Let us now review the construction of the eigenvectors of the elliptic algebra
E;q(slz) at the discrete coupling parameter: 2Nn = mq + mg7 , where N, m;
and mgy are any given integers.® Here we note that 2Nn = m; 4+ maT corresponds
to 2Nn = 2m; K + imyK in (4). Hereafter we assume my = 0 for simplicity. Let
W = V(z1) ® --- ® V(zL) be the Lth tensor product of the evaluation modules
Vi, (2;)’s with A; =1 for all §.1718 The transfer matrix T(2) of E, ,(sl2) is given
by the trace of the L-operator acting on the module W

L
L(z,A) = RO (z —z;,A - 2p Y " h®)
j=2

L
x RO (z — 2, X — 2712 R@)... R(OL)(Z — 2L, A) (21)
=3

Let us consider the mth product of the creation operators b(t;)’s on the vac-
uum.'®2! Let us assume the number m satisfies the following condition

2m=L—-rN, for rcZ (22)
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Hereafter we also assume that rm; is even. We introduce a function g.()\) by g.(A) =
e H;';l (6(A — 217)/6(27)). Vector v, is defined by v, = g.(\)vo, where vp is the
highest weight vector of W: huy = Lwy. Then, making use of the fundamental
commutation relations'® associated with b(z;)’s, we can show that b(t;) - - - b(tm )ve
is an eigenvector of the transfer matrix T'(z) with the eigenvalue Cq(z)

—one T4 O(w —t; +2) 1 0(w —t; — 2n) w— 2,
C, _ 2nc J 2ne 06
o(w) =e J_I:Il Bw—1,) ¢ JI_II B(w—t Ha T
(23)
if rapidities %1,19,.. ., t;, satisfy the Bethe ansatz equations
L
- e+ 2
0_(t3___: —4ne H Ot; — te +2m) for j=1,....m. (24)
P 0(tj - qk Py 9 —tp — 277)
The vector b(ty) - - - b(tm)v. is explicitly given by the following:8
0(tpa — 28)
m c()\+2nm) Pa 8
(-1 D SR | H T C—

PeS, 151 < <jm <L a=1 B=j,+1

0(A+tpa —2j, —2n(rN —ja+a)) _  _
X fpap o; ---0; |0 25
ISal<—Jﬂ;Sm ’ H e(tp" ~ %o — 21) 5% 029

Here o, denotes the Pauli matrix o~ acting on the jth site, S the symmetric group,
|0) the vacuum vector and fjx = 0(t; — tx — 2n)/0(t; — tx).

4. The eigenvectors of the 8V CSOS model

Let us replace A with A + A¢ in the L-operator (21} on W. Here )y is indepen-
dent of A. Then, the R-matrix R{z, A+ A¢g) is related to the Boltzmann weights
w(a, b, ¢, d; z, Ag) of the 8V CSOS model through the following relation

R(z,—2nd+ Xo)e[c —d] @ e[b Zw(a b,c,d;z,Mo)elb — a] @ ela — d] (26)

Here a,b, ¢,d denote the spin variables of the IRF (the Interaction Round a Face)
model which take integer values.!® The spin variables have the constraint that the
difference between the values of two nearest-neighboring spins should be given by
+1. Furthermore, for the 8V CSOS model discussed in Refs.,1*713 the spin variables
take the restricted values such as 0, 1, ..., N — 1 where the values 0 and N —1 can
be assigned for adjacent spins.

Through the relation (26), we can show that the transfer matrix T'(z) of Er ,(sl2)
acting on the “path basis” corresponds to that of the 8V CSOS model.1%-® Here we
note that a “path” is given by a sequence of spin values satisfying the constraints
on adjacent spins. Explicitly we consider the following!®

la1,az, - -ap)(A) = (A + 2nay) ela; — az] @ elaz —a3] ® -~ ® elar, —a1]  (27)
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Here for the 8V CSOS model, we assume that az, — a; = +1 (mod N). Expressing
the eigenvector b(ty) - - - b(tm)v. of T(2) in terms of the path basis, we obtain that
of the transfer matrix of the 8V CSOS model.

5. The degenerate eigenvectors of the transfer matrix of the 8V
CSOS model

Let us now assume that out of m rapidities ¢1,...,¢n, the first R rapidities ¢; for
j=1,...,R are of standard ones satisfying the Bethe ansatz equations (24) with
m replaced by R, while the remaining N F rapidities are formal solutions given by

t(a,]-)=t(a)+n(2j—N—1)+er§-a), for j=1,...,N. (28)

We call the set of N rapidities ¢(4,1), - - - , {(a,n), the complete N-string with center

t(a)- Here the index a runs from 1 to F. Furthermore, we assume that the index

(o, j) corresponds to the number R+ N(aa—1)+jfor1<a<Fand1<j<N.

We note that the complete strings were suggested in Ref.1® in another context.
Using the fundamental commutation relations, we can show when € # 0

T(2)b(t1) - - b(treNF) ve = Co(2)b(t1) - - b(tR4NF) Ve

R R+NF
IS+ ST | Ciblta) - b(ti—1)b(2)b(ti41) - bltReNE) Ve (29)
j=1 j=R+1

We divide eq. (29) by ¢, and send € to zero. Then, we can show that each of the
terms of eq. (29) indeed converges, by making use of the following formula

H(P~'j—P k)

H fraps = H fap x H (M)
1<a<f<m 1<a<f<m 1<j<k<m 0(t; — te — 2n)
for P € S,,,. Here H(x) denotes the Heaviside step function: H(z) = 1 for z > 0,
H(z) = 0 otherwise. The symbol P € S,,, denotes an element P of the symmetric
group of m elements, where j is sent to Pj € {1,2,...,m} for j = 1,...m. The
formula (30) has been proven in Ref..22

Let us consider the following function of variable z°

,(30)

_ = —4nca a = g(z_tk +7](23—N+1))
o ; i j=111 o1 0 —te + (25 — N —3))
L 0(z — 25+ 7(2j — N - 3))
" ,,Izll 8(z — 25 +1(2 — N — 1)) (31)

Hereafter we assume exp(4N7c) = 1. Then, the centers t(4) s are determined by
Gz =t) =0, for a=1,...,F. (32)

We can show that the zeros of (32) also form complete N strings, and also that the
number of zeros of (32) is given by L — 2R, by using the Bethe ansatz equations
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(24).% Thus, the number of independent solutions to (32) is given by (L — 2R)/N,
which leads to the dimension 2(Z—28)/N through the binomial expansion. Thus, for
the transfer matrix of the 8V CSOS model, any standard Bethe ansatz eigenvector
with R rapidities has the degeneracy of 2(L—2R)/N

Let us now consider the connection of the CSOS model to the six-vertex model.
Taking the trigonometric limit: 7 — {00 and sending Ag to infinity with some gauge
transformations, the L-operator of the 8V CSOS model becomes that of the six-
vertex model. We may assume that the trigonometric limits of the R rapidities of
the Bethe ansatz equations (24) with exp(47c) = 1 satisfy the trigonometric Bethe
ansatz equations of the six-vertex model. Then, the degenerate eigenvectors with F
complete N strings for the 8V CSOS model become those of the six-vertex model
with F complete N strings. Thus, we have shown that the corresponding degenerate
eigenspace is spanned by the eigenvectors having complete N strings, and also that
the dimension is given by 2(F=2R)/N — 2257..2/N gince the highest weight SZ_, is

given by L/2 — R. The result should be consistent with the previous studies.'™
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By varying (z,y, z) within a manifold M, the positive (negative)-energy eigenvectors of
the 2 x 2 Hamiltonian H = zo; +yoy + 202 (where 04,y,. are the Pauli matrices) form
a U(1) fiber bundle. For certain M the bundle has non-trivial topology. For example
when M = S? the associated bundle has non-zero Chern number indicating that it is
topologically non-trivial at the highest level. In this paper we construct a simple 2 x 2
Hamiltonian whose eigen-vector bundle exhibits a more subtle topological non-triviality
when M is a closed three-manifold. This non-trivial topology is characterized by non-
zero Chern-Simons invariant.

Twenty years ago I was a graduate student at M.1.T.. Together with many friends
in the Boston area, I was often invited to Fred’s house for Chinese holidays. I
remember vividly that in one occasion Fred entertained us by balancing a women’s
slipper on his nose. Those parties meant a lot to a young men just arrived in a
foreign country.

Academically Fred introduced me to the field of statistical mechanics. At that
time my thesis work mainly dealt with the electronic structure of semiconductor
surfaces. To be frank, I was a little bored with that subject. In a lucky incident I
stumbled upon a problem concerning the magnetic properties of spin 1/2 antifer-
romagnet on a triangular lattice. (Until today this problem is still of considerable
interest.) I decided to attack the classical version of this problem, and before long
I further simplified the problem by assuming the spins only have two components.

It turns out that this problem (classical antiferromagnetic xy model on trian-
gular lattice) is not trivial at all. Fred advised me to do a mean-field calculation
first. I took the advice and soon discovered the ground state degeneracy is 2 x oo.
Here co comes from the global spin rotation symmetry and 2 comes from an in-
teresting chirality ordering in the ground state. Together with Fred (and another
fellow graduate student and my thesis adviser) we wrote a paper on the mean-field
phase diagram of this problem. This work initiated a series of further studies of the
critical behavior when the spins become disordered.

Recently Fred get interested in the knot theory in statistical mechanics. As to
myself, I have been working in the field of quantum statistical mechanics of strongly
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correlated systems. One day, while teaching the Berry phase to my quantum me-
chanics class, I encounter the following question. It is well known that the Berry
phase of a spin 1/2 in external magnetic field (Eq. (1)) is the integral of the vec-
tor potential due to a magnetic monopole. In mathematical language this vector
potential is the connection on a non-trivial fiber bundle. The monopole strength is
the Chern number. I want to know whether we can define a simple 2 x 2 Hamilto-
nian whose Berry connection shows zero Chern number but non-zero Chern-Simons
invariant.

Since Fred’s Festschrift takes place in the Nankai Institute which was founded
by professor Chern (to whom I have tremendous admiration) I thought this subject
is particularly appropriate.

Since it’s discovery in 1984,! the Berry phase has played an important role in
quantum mechanics. For a simple example of the Berry phase, consider the following
two by two Hamiltonian

H(r)=z0, +yoy +z20,=r-0, (1)

where o, . are the three components of the Pauli matrices and z,y, z are real
parameters. For a fixed r = (z,y, z) the Hamiltonian in Eq. (1) has two eigenvalues

Er =2/z? 4+ y? + 22 = 4r.
Let us focus on the eigenvector |¢(r) > associated with the positive eigenvalue

for the rest of the paper. The Berry phase induced by an adiabatic evolution of r
around a closed loop C is given by

y = }i da AL (v), @)
where
Ab(r) = % < P(r)|8,(r) > . (3)

It turns out that the AZ in Eq. (3) has a geometric interpretation as we shall explain
in the following.

At a fixed r if one is given a spinor (i.e. a 2-component column vector) satisfying
H(r)ly(r) >= [r][g(r) >
<P(r)lY(r >=1, (4)

one can generate a continuum of other spinors which satisfy Eq. (4) by the trans-
formation

[%(r) > e®|gp(r) > . (5)

This family of |¢(r) > spans an internal space that is invariant under a U(1) group
of transformations (Eg. (5)). As r varies through a manifold M (henceforth referred
as the base space) the internal space sweeps out a geometric object called “fiber
bundle”. Since U(1) leaves the internal space invariant this fiber bundle is a U(1)

56
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bundle. In the following we shall refer to such fiber bundle as the eigenbundle of
Eq. (1).

It turns out that Eq. (3) is precisely the geometric connection on the eigenbun-
dle.? The connection AZ defined above is not unique. Indeed, by performing the
transformation [¢(r) >— e®®(")|y)(r) > we induce a “gauge transformation” on AZ:

Al — AL +8,0. (6)

It is obvious that the Berry phase (Eq. (2)) is gauge invariant.

Next we shall focus on two-dimensional base spaces M that are closed surfaces.
It turns out that if M encloses the origin (for example M = $? = {r; |r| = 1}),
it is impossible to choose a gauge in which AZ is non-singular everywhere. In order
to obtain locally non-singular AZ it is necessary to divide M into a number of
(overlapping) patches so that 1)AZ is non-singular in each patch, and 2) in the region
where two patches overlap the different AZ’s differ only by a gauge transformation.
Historically this problem was encountered by Dirac when he tried to write down
the vector potential in the neighborhood of a magnetic monopole.? It turns out that
under the framework of quantum mechanics, condition 2) requires the strength of
the monopole to be quantized.® 4

In geometry it is known that the non-existence of an everywhere-nonsingular
connection is the manifestation of non-trivial topology. In his seminal work S.S.
Chern discovered a set of invariants to characterize such non-triviality.> For the
simple case we are considering the invariants reduce to a single number, the Chern
number:

1

C=—
47 M

d*ze Fy,. (7
Here F' fj,, = (9“A,b, — 6,,A£’L is the curvature associated with AZ. For the eigenbundle
of Eq. (1) it is simple to show that C = 1/2 or 0 depending on whether M encloses
the origin. If we interpret F),, as magnetic field, the above result suggests that C is
the total magnetic flux (through M) produced by a magnetic monopole located at
r = 0. In a proof similar but more general than that given in Ref. 3, Chern showed
that C should be quantized to values n/2 where n = integer.5

Since C > 1/2 is allowed, it is interesting to ask what kind of Hamiltonian
will have ¢ = n/2 (n > 1) eigenbundles. One answer is given by the following
(n+1) x (n+ 1) matrix

H(r)=r-S, 8)

where 8 = (S, Sy, S:) are the matrices representing the three generators of SU(2)
in the spin § = n/2 representation. For example for n = 2 we have

L (010 L (0 0
So=—0[101],8=—">[i 0 —i
V210 1 o0 V2 o i o
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10 0
S,={00 0. 9)
00 -1

There is another way of modifying Eq. (1) which also leads to C = n/2 eigenbun-
dle. Interestingly this time we do not need to enlarge the dimension of H. Consider
the following 2 x 2 matrix

H(r) = h(r) - &, (10)

where h(r) is a suitably chosen unit vector field that defines a mapping from M (a
closed two-manifold) to S2. It is known that such mappings can be classified into
homotopy classes each labeled by an integer

P= / zet I, (11)
M
Here the Pontryagin form J,,,, is given by
1. ~ ~
Juw = Eh- (Ouh x O, h). (12)

We will later show that by choosing a k(r) with P = n the eigenbundle of Eq. (10)
exhibits C = n/2.

The Chern number records the highest level of topological non-triviality. When
the Chern number vanishes the eigenbundle can still be non-trivial at a more sub-
tle level. Let us consider closed three-manifold in which C = 0 for all closed sub
two-manifolds, which implies the absence of monopole. Without monopole the “fux
lines” associated with the vector field e#“*F,,» form closed loops. Under this con-
dition there is a topological interesting situation in which these flux lines link with
one another. It is clear that this class of eigenbundles are topologically distinct from
those without linking flux lines.

In 1974 Chern and Simons discovered an invariant, the Chern-Simons invariant,
that quantifies this more subtle level of topological non-triviality.® For a closed
three-manifold M the Chern-Simons invariant is given by

1
€S = /M d*ze> AL 9, AS. (13)

We note that when M is closed CS is gauge invariant. The topological information
recorded by CS is precisely the linking between the flux lines. The fact that linking is
only defined in three dimensions explains why the Chern-Simons invariant requires
three dimensional base space.

Since there is another level of topological non-triviality, it is natural to ask
whether one can modify Eq. (1) so that the eigenbundle exhibits such topology. We
shall prove that the Hamiltonian given by Eq. (10) also works so long as iz(r) is
chosen appropriately.

Now let us restrict ourselves to the case where the base space M is a simply
connected closed three-manifold and r labels the points in it. In such case ﬁ(r) isa

o8



The Chern-Simons Invariant in the Berry Phase 1911

mapping from a simply-connected closed three-manifold to S2. The work of Hopf
shows that such mapping can also be classified into homotopy classes by an integral
valued Hopf invariant . A Hopf map is a smooth configuration of ﬁ(r) Due to the
fact that there are only two linearly independent directions for BJL, it follows

e*29,J,) = 0. (14)

As the result the flow lines associated with e#**J,\ form closed loops. For a non-
trivial Hopf map any pair of J-loops link with each other. Because of Eq. (14) there
exists a AZ so that

1
Juw = E(E)“Af,‘ — 0, A%). (15)
The Hopf invariant is simply the Chern-Simons invariant for AZ,7’8 ie.,

1
H=1 y d*zet* AlD, A} (16)

In the rest of the paper we prove the following.

(¢) For closed two — manifold M the eigen bundle of

Eq. (10) has C = n/2 if h(r) has P = n.

(4¢) For closed three — manifold M the eigen bundle of

Eq. (10) has CS = n if h(r) has H = n. a7

The proof amounts to show the following identity
F}, =4nJ,,. (18)
The Berry curvature is given by
Fly = 2000 <94 1is > ~0, < 410,04 >]
= 2 [< 00y > — < D10y >). (19)

To compute < J,14|0,%+ > — < 094|014 > we insert a complete set of states
(I=3,_4|¥n ><1n|), and that gives

< 3u¢+|3u1/)+ >—-< au¢+\6uw+ >
= <Oubiltn ><Ynl0ths > —[n o> 1]
n==+
=< |- >< Y0y > —[p < V] (20)

In reaching the last line we have used the fact that < 9,9 |v; >< ¥ |0¥4 >
—[pev=0.

To compute < 9_|0,%+ > in Eq. (20) we express the eigenvector of H(r') =
H(r +6r) = H(r) + 6z*0\H in terms of those of H(r) via first order perturbation
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theory. Up to the first order in §z#, we obtain

A
e () > = [|w+ > SULE O 2, >]

N
_ ['¢+>+<¢_|(sx 8;}; e > >}‘

(21)
Eq. (21) implies that

< Y- |0k - Gy >

<Y_|Opy > = 5

(22)
As the result we have
< Oyl ><Y_ |0ty > —[p & V]

1 - s,
= <0410k FY ><g[Oh Flpy > a0 0]

1 1. = 1 —_
= 2 Y€ 0410uh - Glim >< Yuldh - Glibs > [ > ]
n==%

[< ¥4 |[Buh - &,0,h - Gy >]

-

'Eabc(apjla)(aui?zb)[< ¢+l0c'¢+ >]

= eabc(Buha)(Duho)he = %ﬁ. (B,h x 8,h). (23)

&N

Going from the second to the third line of Eq. (23) we have used the fact that
< Yy |Ouh - T4 >< Y4 |8h - G|y > —[u <> v] = 0. Substituting Eq. (20) and
Eq. (23) into Eq. (19) we obtain

F}, = %i} - 8uh x Byh = 4md,,. (24)

After establishing Eq. (18) it is simple to prove (i) and (ii) of (17). For (i) the
Chern number is given by

1

C=—
47 M

1
d*z e F?, = 5 /M d*z € J,, = P/2. (25)

Thus P = n implies C = n/2. Now let us prove (ii) of (17). Eq. (15) and Eq. (18)
iraply that

F, =4nd,, = Fh,. (26)
Thus A% and A? differ at most by a pure gauge
Ab = A} + 8,9 (27)
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Since Eq. (13) is gauge invariant when M is a closed manifold we conclude that

S = — / o ARl = = [ dee AR FR
87T M 8 S3
=H

(28)

Thus H = n implies CS = n.

In physics one often encounters the Berry phase when a system posses’s both
“fast” and “slow” dynamic degrees of freedom. When the fast degrees of freedom are
integrated it often produces, as part of the effective action of the slow variables, a
Berry phase term that is non-zero even when the slow variables change adiabatically
with time. Such term can fundamentally alter the behavior of the slow variables.

Here we present an example where the fast degrees of freedom generate an
effective action represented by the Hopf invariant of the slow variables. The model
is a field theory in 2+1 space-time dimensions. It consists of two fields: 1) a fermion
field ¥, (r,t), and 2) an unit vector field #(r, t). The Lagrangian density is given as

L = ﬁw + Ly, —gh- ’(/;aa"aﬁ’(/)g
— T (A _ L a o A 2
Ly =va (0t — w)va Zmd"a (V —iAg)*Ya
L, =i QA] + 52{—|Vﬁ|2. (29)

In the above m, g, c, i are parameters of the model, A.; is the vector potential
of an external magnetic field B, i.e., 0,4, — OyA; = B, and §Q/d = 71 x G4
Physically L, describes fermions moving in an external magnetic field, and £,
describes the dynamics of magnetic moments in a ferromagnet. The last term in
the first equation is the Zeeman coupling between the fermions and the magnetic
moments. By adjusting ¢ we can tune the density () of the fermions so that

B

p=k 0 (30)
where ¢¢ = 27 is the Dirac flux quantum and k is an integer. When Eq. (30) is
satisfied, the ground state of the fermions is an “integer-quantum Hall liquid”.?
Let us further assume that g is large so that locally the electron spins align with
the direction of 7. Under that condition integrating out the fermion field produces
a term £ [ d?zdter” ’\AZB,,AQ, which is proportional to the Hopf invariant of the
A(r,t). This term has the effect of changing the spins and statistics of solitons (the

skyrmions) in the A(r, t) field.”

Acknowledgements: DHL is in debt to Geoffrey Lee for helping him to visualize
the dual of the Pontryagin form of the non-trivial Hopf map. DHL is supported by
NSF grant DMR 99-71503.

References

1. M. Berry, Proc. R. Soc. London, A 392, 45 (1984).

61



1914 D.-H. Lee

© WO

We note that in order for AZ to be well defined, the reference eigenvector |y(r) >
must be differentiable with respect to r.

P.A.M. Dirac, Proc. Roy. Soc. A 133, 60 (1931).

C.N. Yang, Ann. of N.Y. Acad. of Sci. 294, 86 (1977).

S.S. Chern, Ann. of Math. 47, 85, (1946).

S.S. Chern and J. Simons Ann. Math. 99, 48 (1974).

F. Wilczek and A. Zee, Phys. Rev. Lett. 52, 2111 (1984).

Y-S Wu and A. Zee, Phys. Lett. 1478, 325 (1984).

For a review see, e.g., “The Quantum Hall Effect”, edited by R.E. Prange and S.M.
Girvin, (Springer-Verlag, New York 1986.)

62



International Journal of Modern Physics B, Vol. 16, Nos. 14 & 15 (2002) 1915-1924
(© World Scientific Publishing Company

MUTUALLY LOCAL FIELDS FROM FORM FACTORS*

ANDREAS FRING

Institut fir Theoretische Physik, Freie Universitdt Berlin,
Arnimallee 14, D-14195 Berlin, Germany
E-mail: fring@physik.fu-berlin.de

Received 21 October 2001

‘We compare two different methods of computing form factors. One is the well established
procedure of solving the form factor consistency equations and the other is to represent
the field content as well as the particle creation operators in terms of fermionic Fock
operators. We compute the corresponding matrix elements for the complex free fermion
and the Federbush model. The matrix elements only satisfy the form factor consistency
equations involving anyonic factors of local commutativity when the corresponding op-
erators are local. We carry out the ultraviolet limit, analyze the momentum space clus-
ter properties and demonstrate how the Federbush model can be obtained from the
SU(3)s-homogeneous sine-Gordon model. We propose a new class of Lagrangians which
constitute a generalization of the Federbush model in a Lie algebraic fashion. For these
models we evaluate the associated scattering matrices from first principles, which can
alternatively also be obtained in a certain limit of the homogeneous sine-Gordon models.

1. Introduction

One of the most central concepts in relativistic quantum field theory, like Einstein
causality and Poincaré covariance, are captured in local field equations and com-
mutation relations. In fact this principle is widely considered as so pivotal that
it constitutes the base of a whole subject, i.e. local quantum physics (algebraic
quantum field theory)? which takes the collection of all operators localized in a
particular region generating a von Neumann algebra, as its very starting point.
On the other hand, in the formulation of a quantum field theory, one may alter-
natively start from a particle picture and investigate the corresponding scattering
theories. In particular for 141 dimensional integrable quantum field theories this
latter approach has been proved to be impressively successful. As its most pow-
erful tool one exploits here first the bootstrap principle,3® which allows to write
down exact, i.e. non-perturbative, scattering matrices. Ignoring subtleties of non-
asymptotic states, it is essentially possible to obtain the particle picture from the
field formulation by means of the LSZ-reduction formalism.® However, the question

*based on reference 1
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of how to reconstruct the field content, or at least part of it, from the scattering
theory is in general still an outstanding issue.

This talk is also devoted to this question in the sense that we provide explicit
expressions for operators O(x) located at z in terms of fermionic Fock fields. Par-
ticular emphasis is put on the question whether these operators are really local in
the sense that they {anti)-commute for space-like separations with themselves,

[0@), 0] =0 for (z-y)*<0 1)

and how this property is reflected in the form factor consistency equations. It will
turn out that from possible matrix elements the form factor consistency equations
select out those which correspond to mutually local operators. We argue that the
presence of the factor of local commutativity in these equations is absolutely essen-
tial.

2. Determination of form factors

Let us assume that there is no backscattering in our model and that we have
explicitly determined its two-particle scattering matrix, which can be expressed as
a phase in this case. We further presume that the S-matrix results from braiding
two particle creation operators Z;Q (#) for stable particles of type u with rapidity 6,
which obey the Faddeev-Zamolodchikov algebra’

Z](0:)2](8;) = Si5(8:3) 2} (8;) 2] (8:) = expl2mii;(8:1)12](8;) 2} (6:) . (2)

As common we parameterize the two-momentum 7 by the rapidity variable 8 as
P = m(cosh8,sinh §) and abbreviate 8,; := 6; — 0;. In order to pass from scattering
theory to fields, we want to determine the form factors, i.e. the matrix element of a
local operator O(z) located at the origin between a multi-particle in-state and the
vacuum

FObn(gy . 0,) = <0(0) zi (61),..., 2, (9,,)>_n . (3)

1

We distinguish between the mere matrix element ﬁ‘,? and the particular ones which
also solve the consistency equations in 2.1, in which case we denote them as F,f’ .

2.1. Form factors from consistency equations

Various schemes have been suggested to compute the objects in equation (3). One
of them consists of solving a system of consistency equations which have to hold
for the n-particle form factors based on some natural physical assumptions, like
unitarity, crossing and bootstrap fusing properties®1!

B (05,05, = B MM 05,604, ) S, 03), (4)

FOUnbn(f) 4 2mi,. .. 0,) = 73} Fgmz-nunul (82, .. ,0n,01) , (5)
Fflul---un(gl X O+ A) = esAFS|u1-~un(gl, b)), (6)
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n

Res FOlb b (@ 4 i, 6,0, 0n) = (17 IHI Sy, (B0t)) FO11-1n (0, .. 0,).(7)
Here s is the Lorentz spin of the operator O and A is an arbitrary real number. We
omitted here the so-called bound state residue equation, which relates an (n + 1)-
to an n-particle form factor, since it will be of no importance to the explicit models
we consider. We stress the importance of the constant "yf, the factor of so-called
local commutativity defined through the equal time exchange relation of the local
operator O(x) and the field O, (y) associated to particle creation operators Z}

Ou(@)0(y) =7, O) Ou(z)  for ' >y', (®)

with z# = (29,z1). This factor carries properties of the operator and not just
of the Z’s. An immediate consequence of its presence is that a frequently made
statement has to be revised, namely, that (4)-(7) constitute operator independent
equations, which require as the only input the two-particle scattering matrix. Here
we demonstrate that apart from +1, which already occur in the literature, this factor
can be a non-trivial phase. Thus the form factor consistency equations contain also
explicitly non-trivial properties of the operators. To solve these equations at least
for the lowest n-particle form factors is a fairly well established procedure, but it
still remains a challenge to find closed analytic solutions for all n-particle form
factors.

2.2. Direct computation of matriz elements

The most direct way to compute the matrix elements in (3) is to find explicit
representations for the operators Z;Q(O) and O(z). To represent the former oper-
ator is known in complete generality for theories not involving backscattering. A

representation for these operators in the bosonic Fock space was first provided in
Ref. 12

o
Z1(6) = exp [—i / df’ 54(6 — 6')al (6")ay(0")| al(6) . (9)
0
where the a’s satisfy the usual fermionic anti-commutation relations
{ai(0),a;(0)} =0  and  {a;(8),al(¥")} = 276:;6(6 — ¢'). (10)

Having obtained a fairly simple realization for the Z-operators, we may now seek
to represent the operator content of the theory in the same Fock space. Hitherto, it
is not known how to do this in general and we have to resort to a study of explicit
models at this stage.

3. Complex free Fermions

Let us consider N complex (Dirac) free Fermions described as usual by the La-
grangian density

Loe =3 Balir"0 — ma), (1)
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We define a prototype auxiliary field

@)= [ B [50,0) (Ll @) + aa(@laa(@)e=+)7)

+12(8, 8 — i) (al(B)aa(6)'PP)= ~ aa(B)al(@)e P HIw)]  (12)

and intend to compute the matrix element of general operators composed out of
these fields

1
O3 (z) = X2 @), OXE (g) = - %(aa(p)e_’p“'$+a2(p)ei”“'z)exz(w):. (13)
22

Employing Wick’s first theorem, we compute!

FE e, 0) = [T [T (0, 05 det D, (19

i=1
- %% o dfy ... by 1
B ™™ (01, Oam1) = / L T (84, 03141) det D, (15)
) i=1

where D* is a rank £ matrix whose entries are given by
DY = cos?((i — j)m/206(6; — 6;),  1<i,j <L (16)

Note that OX=(z) and OX<(z) are in general non-local operators in the sense of
(1). At the same time F is just the matrix element as defined on the r.h.s. of
(3) and not yet a form factor of a local field, in the sense that it satisfies the
consistency equations (4)-(7), which imply locality of O. A rigorous proof of this
latter implication to hold in generality is still an open issue. Let us now specify the
function k. The free fermionic theory possesses some very distinct fields, namely
the disorder and order fields

o(T) = e (®); and oa(z) = :’(2)04(.%);/,&(:1:):, a=1,2, (17)
respectively. We introduced here the fields
e— 369"

, 7
wale) = X(@), 5 (0.6) = —r*(-6,~0) = 5
2

(18)

We compute! the integrals in (14) and (15) for this case and obtained a closed
expression for the n-particle form factors of the disorder and order operators

F 0y, 000) = (~1)" ™ P (=01, —62)
FAIM Y g 0y = (1) EE (g, 6a)
=i"2" 10, (Z1,%3,- .., F2n_1)Bnn, (19)
Fol @, Oan1) = (1B (=01, ~B3n11)
FZUJ-[{-Il(nXIl)(_le--,-02n+1) =(-1)" ;ffl(nxm)(el, vevsBonyt)
=i"2" Yo, (Z1,. .., Ton—1)Bnni1, (20)
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with

B H1gi<jgn(i’§i—1 —~ 73, 1) H1§i<j§m(w%i - z3;)

Bam = (21)
- Hi<icj<nim(ui +u5)

Associated with the particles and anti-particles we introduced here the quantities
z; = exp(6;) and Z; = exp(f;), respectively. The variable u; can be either of them.
We also employed the elementary symmetric polynomials ok(z1,...,%5). The re-
maining form factors are zero due to the U(1)-symmetry of the Lagrangian. One
may easily verify that the expressions (19) and (20) indeed satisfy the consistency
equations (4)-(7) with 75> = —1 and 7Z* = 1 for a = 1,2. We also compute’ the
form factors associated to the trace of the energy-momentum tensor

-0
2 b)

b
T, |a&

F;u“laa(e, 0) = F, (0,0) = —2nim? sinh

(22)

which plays a distinct role in the ultraviolet limit.

4. The Federbush Model

The Federbush model'® was proposed forty years ago as a prototype for an exactly
solvable quantum field theory which obeys the Wightman axioms.!4 It contains two
different massive particles ¥, and ¥s. A special feature of this model is that the
related vector currents J¥ = ¥,y ¥,, a € {1,2}, whose analogues occur squared
in the massive Thirring model, enter the Lagrangian density of the Federbush model

in a parity breaking manner
Lp = Za:l,Z U, (78, — mo)Wa — 2mAe,, JI TS (23)

due to the presence of the Levi-Civita pseudotensor €. The scattering matrix was
found to bel4 16

1 1 e—-27r'i)\ e?wi)\
SFB _ 1 1 eZ‘rri)\ e—27ri/\ 04
- e21ri)\ e—27r'i)\ 1 1 . ( )
e—-27r72)\ e27ri)\ 1 1

For the rows and columns we adopt here the ordering {1,1,2,2}. In close relation to
the free fermionic theory one may also introduce the analogue fields to the disorder
and order fields in the Federbush model

@) () = :exp[Q(z)]: = lexp|-2v/Tird, (2)]: (25)
1
PA@) =i 2 (aalp)e T ah )T B, (26)

where the s-function related to 2 is

. )\)e—x(o-—o')
21(0,0') = —R2(—0,—0') = zsin(m . 2
K ( H ) K ( ) 2cosh%(0 _0/) ( 7)
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The last equality in (25) was found by Lehmann and Stehr,'®> who showed the
remarkable fact that the operator ®)(z) can be viewed in two equivalent ways. On
one hand it can be defined through triple ordered free Bosons ¢, (z), defined as

:e"®: = e"¢/ ("?) for k being some constant, and on the other hand by means of a
conventional fermionic Wick ordered expression. We compute! the following equal
time exchange relations for o, 3 = 1,2

Ya(2)BY(y) = YY) o (@) 27D NasOl =) (28)
~tho(2)EX(y) = THU)Y4(z) 27D WO’y (29)

()23 (y) = BH(1) @2 (=) (30)
Th(x)SH(y) = THy)Dh(z) 2D Nar (31)

where ©(z) is the Heaviside step function. With the relevant exchange relations at
our disposal, we can, according to (8), read off the factors of local commutativity
for the operators under consideration

A

o5 B3 _ 2ni(-1)P2as  gnd ,Yga:_,yg;?:e—zm(—nﬁmaﬁ . (32)

Yo© = _"Yaﬁ =€

Proceeding again in the same way as in the previous section, we obtain as closed
expressions for the n-particle form factors

> B 22 -
F Inxn(m,xz...zzn_l,xzn) (- )an *|nx2 (ZF1,%2 ... Ton—1,Tan) =

_ _ 22 _
(Z1,%2...Ton—1,T2n) = (-1)”an2|n>< (1,22 ... T2n—-1,Ton) =
jronl sin"(ﬂ')\)an(:f:l . :1_)2n_1)'\+%(7n(:1,‘2 . iL’Qn)%—)‘Bn,n, (33)

~ M 1(nxi n nx2
FREI G anan) = (DB DGy, o) =
1(nx11 p) sin™ (7w
FEN M i) = (PR g ) = BT
. I (z - )
20)"0, (... 5n) 2 o j<l;j,l#k
Bl 2 ] G- a) Y R —— @
on(Z1 ... Tan+1) 1<i<i<n o (k)2 .gkl;[(xj + 1)
J
@) |nxaa

We may now convince ourselves, that the expressions for F, indeed satisfy

the consistency equations (4)-(7). However, the expressions of zn +|1 (nx3) 1]y sat-

isfy the consistency equations (4)-(7) for A = 1/2. This reflects the very important
fact that £2(z) is only a mutually local operator for this value of ), see equation
(31), unlike ®)(z) which is mutually local for all value of A. Thus, the equations
(4)-(7) select out solutions corresponding to operators which are mutually local.

The form factors related to the trace of the energy-momentum tensor turn out
to be the same as the ones for the complex free Fermion.
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5. Momentum space cluster properties

An interesting operator related property which the form factors satisfy is the mo-
mentum space cluster decomposition

Jim FO (01 Ok, k1 + A Ok s+ A) = FO (01 ... 04)FL" (Bks1 - - -Or41) 5(35)

Writing instead of the matrix elements only the operators, we obtained! formally
the following decomposition

B adxe) oo {leXl ol
together with the equations for ¢ & @&. This means the stated operator content
closes consistently under the action of the cluster decomposition operators. We
also observe that non-selfclustering, ie. O # @ % (0", is possible. Unlike the
self-clustering, which can be explained for the bosonic case with the help of Wein-
berg’s power counting argument, this property is not yet understood from general
principles.

6. Lie algebraically coupled Federbush models

The Federbush model as investigated in the previous section only contains two types
of particles. In this section we propose a new Lagrangian, which admits a much
larger particle content. The theories are not yet as complex as the homogeneous
sine-Gordon (HSG) models, but they can also be obtained from them in a certain
limit such that they will always constitute a benchmark for these class of theories.

Let us consider £ x £-real (Majorana) free Fermions Y,,;(T), now labeled by two
quantum numbers 1 < a < £, 1 < j < ¢ and described by the Dirac Lagrangian
density Lrr. We perturb this system with a bilinear term in the vector currents
Jf:’j = \T’a,j’)“u“lla,j

7
Lor = Z Z (170 —ma;)¥a 71'El“’ Z Z 378, kAf‘IZ (37

a,b=1 j,k=1

and denote the new fields in Lcr by ¥, ;. Furthermore, we introduced £2 x ¢2
dimensional coupling constant dependent matrix Ai’;, whose further properties we
leave unspecified at this stage. We computed! the related S-matrix to

Sk = _gimAL (38)
where due to the crossing and unitarity relations we have the constraints
AR =AM 97 and A =AM 427 (39)

on the constants A. Taking AZ¥ = 2avejr LK ', with K, I being the Cartan and
incidence matrix, respectively, provides the limit of the HSG-models.
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7. The ultraviolet limit

The ultraviolet Virasoro central charge of the theory itself can be computed from
the knowledge of the form factors of the trace of the energy-momentum tensor'?
by means of the expansion

doy ... doy |ET oy o
zzn.@ﬂ/ /1 ' 1

" " m,, cosh6;)"

(40)

In a similar way one may compute the scaling dimension of the operator O from
the knowledge of its n-particle form factors!®

Z Z / / ..dé’n

1y, n'(27r)” 1 My, cosh 6 )

cFn_oo
x F “‘“1"'“"(01,...,0n) (72 "‘""“"(91»---’9"))* ' (41)

In general the expressions (40) and (41) yield the difference between the corre-
sponding infrared and ultraviolet values, but we assumed here already that the
theory is purely massive such that the infrared contribution vanishes. Evaluating
these formulae, we obtain

1
Cuy = 2 and Nuav = ALua§/ = 1—6 . (42)
for the complex free Fermion and
3> A2
Cyv = 2 and Au.v = Auv = z . (43)

for the Federbush model Note, that A%, — A% = 1/16, which is the limit to the
complex free Fermion. Yet more support for the relation between the SU(3)3-HSG
model and the Federbush model comes from the analysis of A = 2/3, for which the
SU(3)3-HSG S-matrix is related to the one of the Federbush model. In that case we

obtain from (43) the values Aq:;:;v/ P = Aq:f{,/ = 1/9, which is a conformal dimension
occurring in the SU(3)3-HSG model. Thus precisely at the value of the coupling
constant of the Federbush model at which the SU(3)3-HSG S-matrix reduces to
the S¥B, the operator content of the two models overlaps.

8. Conclusions

We summarize our main results:

We computed explicitly closed formulae for the n-particle form factors of the
complex free Fermion and the Federbush model related to various operators.

We carried out this computations in two alternative ways: On the one hand, we
represent explicitly the field content (12) as well as the particle creation operators
(9) in terms of fermionic Fock operators (10) and computed thereafter directly the
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corresponding matrix elements. On the other hand we verified that these expres-
sions satisfy the form factor consistency equations only when the operators under
consideration are mutually local, i.e. satisfying (1). It is crucial that the consistency
equations contain the factor of local commutativity fyl‘? as defined in (8). Our analy-
sis strongly suggest that the form factor consistency equations select out operators,
which are mutually local in the sense of (1).

Our solutions turned out to decompose consistently under the momentum space
cluster property. This computations constitute next to the ones in Refs. 19,20 the
first concrete examples of non-selfclustering, i.e. @ — @' x 0" in the sense of (36).

Further support for the identification of the solutions of (4)-(7) with a specific
operator was given by an analysis of the ultraviolet limit.

We demonstrated how the scattering matrix of the Federbush model can be
obtained as a limit of the SU(3)3-HSG scattering matrix. This “correspondence”
also holds for the central charge, which equals 2 in both cases, and the scaling
dimension of the disorder operator at a certain value of the coupling constant.

We proposed a Lie algebraic generalization of the Federbush models, by suggest-
ing a new type of Lagrangian. We evaluate from first principles the related scattering
matrices, which can also be obtained in a certain limit from the HSG-models.

We expect that the construction of form factors by means of free fermionic Fock
fields can be extended to other models by characterizing further the function x.
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Deformation quantization (of a commutative algebra) is based on the introduction of a
new associative product, expressed as a formal series, f x g = fg + E;’;I R*Cn(f, 9)-
In the case of the algebra of functions on a symplectic space the first term in the
perturbation is often identified with the antisymmetric Poisson bracket. There is a wide-
spread belief that every associative s-product is equivalent to one for which C1(f, g)
is antisymmetric and that, in particular, every abelian deformation is trivial. This
paper shows that this is far from being the case and illustrates the existence of abelian
deformations by physical examples.

1. Introduction

First, a very brief review of quantization:

e H. Weyl looked at quantization as a one-to-one correspondence between
functions on phase space on the one hand, and operators in a Hilbert space
on the other:!

function on phasespace = f — W(f) = operator. (1)

e Taking over Weyl's correspondence, Moyal? proposed an autonomous for-
mulation of quantum mechanics, in terms of functions on phase space
endowed with a new, non-commutative product, called a x-product, namely

frg=WTW()W(g)). (2)

e Moyal’s idea was incorporated into the new, deformation theory approach
to quantization,3 where one studies more general associative *-products
viewed as formal series in a parameter

n=0
and usually
Ci(f,9) = 50} @

73



1926 C. Fronsdal

The bracket {, } is the Poisson bracket. Such deformations “in the direction
of the Poisson bracket” play a basic role in Drinfel’d’s approach to quantum
groups.* The existence and classification of *-products on an arbitrary sym-
plectic manifold were placed in a nice geometric context by the approach
of Fedosov;® see also Ref. 6.

¢ Recently, M. Kontsevich has shown” that *-products exist on arbitrary
Poisson manifolds. See also Ref. 8. This is a significant achievement that is
currently exciting much interest among mathematicians.

This summary suggests that the first order term, C1(f, g), is always antisym-
metric in its two arguments. But there is a footnote to the story, namely:

e Geometric, Souriau-Kostant quantization on co-adjoint orbits,% 1° and the
generalization of this method within the *-product-deformation approach
(see for example Ref. 11) is a parallel development. As we shall see, the most
interesting case, that of quantization on a singular orbit, is characterized
by a *-product for which C;(f, g) is not skew.

We also cite the program of quantization of Nambu mechanics that ran aground
on the belief that every abelian *-product is trivial.!? This is mistaken, and for
two independent reasons; first, because it is false on varieties with singularities and
second, because it holds only to first order in the deformation parameter.

2. Quantization on algebraic varieties

On the manifold R, with global coordinates 1, - - -, Zn, consider the algebra
A=Clzy, -+, g 5)

of polynomials in n variables. On this algebra, consider an associative deformation
of the ordinary product (the commutative product of functions) in the form

frg=) K'Cu(f,g), Colf,9) = fg. (6)

n=0

Associativity, to first order in A, is the statement that dC; = 0, where d is the
Hochschild differential,

Triviality of the *-product (see below) is also expressed in terms of the Hochschild
differential: The above *-product is trivial to first order if there is a one-cochain Fy
such that C1 = dE;, where

dE(f,9) := fE(g) — E(f9) + E(f)g- (8)

The following theorem tells us that, to first order in %, all abelian *-products on
RR", and indeed all abelian #-products on any smooth manifold, are trivial.
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Theorem: (Hochschild, Kostant, Rosenberg!?) If A is the generated algebra of
functions on a smooth manifold then the space H"(A) is the space of alternating
n-forms.

This implies that, to first order in 7, every *-product on a smooth manifold is
equivalent to one for which Cj is antisymmetric.

3. Escape route number one

Let us consider algebraic varieties with singularities, for example the following.
M=R/(z* -y*), A=Clz,y]/(«*-y*). 9)

Expand f € 4, f(z,y) = f1(z) + yfo(z) and define a deformed product by the
formula

fxg=fg+hfage (10)
It is associative to all orders, and not trivial. Proof of non-triviality:
An =Clz,y)/(z* —y* + h). (11)

If h is real and not zero, then this is the coordinate algebra on a smooth manifold,
clearly not isomorphic to the coordinate algebra of the cone 22 = 32,
A large class of examples is provided by algebraic varieties,

M =R"/R, R = a set of polynomial relations, (12)
A=Clzy, - ,zs]/R. (13)

The calculation of cohomology is often fairly simple and rests on the fact that

the Hochschild cohomology of A is equivalent to its restriction to linear, closed
chains. (See Ref. 14.)
In our example, the closed, linear chains are

zAy, and TR —y®yY, (14)
dzAhy)=zy—yr=0, dez—yQy)=1x2—y?=0. (15)

The 2-cochain C is closed if it is symmetric and it is exact if C(z @z —y®y) € A.
A representative of the unique non-trivial equivalence class of 2-forms is

Clzhy)=0, Clzez—yRy) =k ¢ C- {0} (16)

Besides Nambu mechanics, this has applications to the problem of quantization
on coadjoint orbits.
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Quantization on coadjoint orbits, an example

The algebra is the universal enveloping algebra of sl(2, R), basis z1,Z2,%¢. The
unique singular orbit is Q := 2% + z3 — 22 = 0. Invariant quantization is obtained
via the Weyl-type correspondence:

Ti * Tj — Tj * T; = N€ijpTh, (17)
Pi(a)=Pula), a= ) d'z;, (18)
i=1,2,0

where P,, are Legendre polynomials and P are the same symmetric *-polynomials,
and the assignment of a value to the Casimir operator

Q*:$1*51J1+£II2*£L'2—1:0*.1:0i—)hl(l+1). (19)
For n = 2, on the singular orbit @ =0,
1 1
5(.’12, *xT; + ’L,]) — §5ijQ* = Z;%j, (20)
and thus
1 1
T % Ty = L;T; + h(iei‘ikxk + gtswl(l -+ 1)) . (21)

This makes use of the cohomologically nontrivial symmmetric 2-cochain Co(z;, ;) o
d;; as well as the more familiar antisymmetric cochain.

4. Escape route number two

In the examples given, associativity is satisfied to all orders with C, =0, n > 1.
Non-triviality is verified to lowest order and of course cannot be changed in higher
orders.
In the example that follows we shall again have associativity to all orders, and
triviality in the lowest order, but this does not imply triviality in higher orders.
Triviality of a *-product is the statement that there is a map E : A — A, of the
form

B =1+ Y AE), @)
such that "
f*g9=E"(E(f)E(g)). (23)
To first order in A this says that
Ci(f,9) = Ei(f)g — Ex(fg) + fE1(g) = dE1(f, 9)- (24)

Here is an example of an abelian x-product that is trivial to first order but
nontrivial when taken to all orders.
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Let M = Minkowsky space, A = C[zy,---,z4]. Decompose f € A into even
and odd parts.: f = (f4, f-), and define:

frg=fg—paifog. = (f+g+ g (1= pa?), fego+ f.g+) (25)

Now, let M’ =3+2-dimensional anti-De Sitter space, more precisely the cone in R:
M'=R%/(pz® +y* - 1), (26)

and
A =Czy,- -, 24, y]°/ (o2 +y* - 1), (27)

where [...]° means polynomials of even order. Decompose f € A’ as follows, f =
f+(z) +yf-(z), then

fg=frgs + f-9-(1 = pz®) + y(frg— + f-9+). (28)

Therefore, the deformed, *-product algebra of functions on Minkowski space is
isomorphic to the ordinary algebra of even functions on AdS. But A and A’ are not
isomorphic and the #-product is therefore not trivial. (For more details see Ref. 14.)
It seems possible that this provides a new approach to physics in AdS that could
help to overcome some of the problems of interpretation.
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Recent studies of the topological properties of a general class of lattice Dirac operators
are reported. This is based on a specific algebraic realization of the Ginsparg-Wilson
relation in the form ys5(vs D) + (y5D)ys = 2(12’“+1('75D)2’c+2 where k stands for a non-
negative integer. The choice k = 0 corresponds to the commonly discussed Ginsparg-
Wilson relation and thus to the overlap operator. It is shown that local chiral anomaly
and the instanton-related index of all these operators are identical. The locality of all
these Dirac operators for vanishing gauge fields is proved on the basis of explicit con-
struction, but the locality with dynamical gauge fields has not been fully established
yet.

1. Introduction

Recent developments in the treatment of fermions in lattice gauge theory are based
on a hermitian lattice Dirac operator 45D which satisfies the Ginsparg-Wilson
relation!

¥sD + Dvys = 2aDvs D (1)

where the lattice spacing a is utilized to make a dimensional consideration transpar-
ent, and 75 is a hermitian chiral Dirac matrix. An explicit example of the operator
satisfying (1.1) and free of species doubling has been given by Neuberger.2 The
relation (1.1) led to an interesting analysis of the notion of index in lattice gauge
theory.? This index theorem in turn led to a new form of chiral symmetry, and
the chiral anomaly is obtained as a non-trivial Jacobian factor under this modified
chiral transformation.? This chiral Jacobian is regarded as a lattice generalization
of the continuum path integral.> The very detailed analyses of the lattice chiral
Jacobian have been performed.® It is also possible to formulate the lattice index
theorem in a manner analogous to the continuum index theorem.” An interesting
chirality sum rule, which relates the number of zero modes to that of the heaviest
states, has also been noticed.!? See Refs. 11 for reviews of these developments.
We have recently discussed the possible generalization of (1.1) and its implica-
tions.!? To be specific, we have discussed a generalization of the algebra (1.1) in
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the form

75(v5D) + (15 D)1s = 2a%+ (5 D)+ (2)

where k stands for a non-negative integer and k& = 0 corresponds to the ordinary
Ginsparg-Wilson relation. When one defines

H = vsaD (3)
(1.2) is rewritten as
ysH + Hvys = 2H2*+2 (4)
or equivalently
TsH + HT5 =0 (5)
where we defined
F5 =9 — H2k+1. (6)

Note that both of H and I's are hermitian operators.

It has been shown that all the good topological properties of the overlap oper-
ator? is retained in this generalization.1? 1% The practical applications of this gen-
eralization are not known at this moment. We however mention the characteristic
properties of this generalization: The spectrum near the continuum configuration is
closer to that of continuum theory and the chiral symmetry breaking terms become
more irrelevant in the continuum limit for ¥ > 1. The operator however spreads
over more lattice points for large k.

2. Representation of the general algebra

We first discuss a general representation of the algebraic relation (1.5). The relation
(1.5) suggests that if

H¢n = a/\n(ﬁ’m (an’ d’n) =1 (7)
with a real eigenvalue a), for the hermitian operator H, then
H(Ts5¢n) = —aAn(Tsén). (8)

Namely, the eigenvalues A, and — ), are always paired if A, # 0 and (Ts¢n, I'sén) #
0. We also note the relation, which is derived by sandwiching the relation (1.4) by

Pn,

(&n, 150n) = (@A) for An #0. (9)
Consequently
|(@Xa)* 1) = [(@n, v59n)| < |dnllllvsnll = 1. (10)
Namely, all the possible eigenvalues are bounded by
1
< -,
Anl <~ (11)
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We thus evaluate the norm of I's¢y,

(Cs¢n, Tsdn) = (¢n, (s — H*1) (s — H**)hy)
(¢n (1 _ H2k+l ’)’5H2k+1 + H2(2k+1))¢n)
= [1 = (ah,) 23]
= [1— (a\n)3[1 + (@dn)? + ... + (a)n)*] (12)

where we used (2.3). By remembering that all the eigenvalues are real, we find that
¢n is a “highest” state

1-‘5¢n =0 (13)
only if
[1—(ad)?} =1 -ad)(1+a)r,) =0 (14)

for the Euclidean positive definite inner product (¢n, ¢n) =3 ¢l (z)¢n(z).
We thus conclude that the states ¢, with A, = j:i— are not paired by the operation
T's¢, and

15D6n = +=6n, W5bn = %n (15)

respectively. These eigenvalues are in fact the maximum or minimum of the possible
eigenvalues of H/a due to (2.5).

As for the vanishing eigenvalues H¢, = 0, we find from (1.4) that Hys¢, = 0,
namely, H[(1 & v5)/2]¢n = 0. We can thus choose

YsDén =0, Y50n =0¢n or Ysbn = —n. (16)

To summarize the analyses so far, all the normalizable eigenstates ¢, of vsD =
H/aq are categorized into the following 3 classes:
(i) ny (“zero modes”),

AsDp =0, v5¢n = £, (17)

(ii) N1 (“highest states™),

1
Y5 Dén = ia¢m Y5¢n = £én, respectively, (18)
(iii) “paired states” with 0 < |\,| < 1/a,

Y5Don = Antbn, 15D([5¢n) = —An(Lsdn). (19)
Note that I's(I's¢r) o ¢y, for 0 < |A,| < 1/a.
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We thus obtain the index relation®4

TiTs = » (6n, Ustn)

n

Z (¢H1F5¢’n) + E (¢n,r5¢n) + Z (¢n’r5¢n)

An=0 0<|An|<1/a [Ani=1/a
=Y (#n,T50n)
An=0
= Z (fn, (15 — H2k+1)¢n)
An=0
= > (Jns15%n)
An=0
=ny —n_ =index (20)

where n4 stand for the number of normalizable zero modes with v5¢, = +¢, in
the classification (i) above. We here used the fact that I's¢,, = 0 for the “highest
states” and that ¢, and I's¢,, are orthogonal to each other for 0 < |A,| < 1/a since
they have eigenvalues with opposite signatures.

On the other hand, the relation Trys = 0, which is expected to be valid in
(finite) lattice theory, leads to ( by using (2.3))

Trys = Z(¢na75¢n)
=) (6 ¥50n) + D (D, Vs6m)

An=0 An#0
=np—n_+ Y (ad)* =0. (21)
An#0

In the last line of this relation, all the states except for the “highest states” with
An = £1/a cancel pairwise for A, # 0. We thus obtain a chirality sum rule!®

n++N+ =nNn_—- +N_ (22)

where N4 stand for the number of “highest states” with v5¢, = *¢, in the classi-
fication (ii) above. These relations show that the chirality asymmetry at vanishing
eigenvalues is balanced by the chirality asymmetry at the largest eigenvalues with
|An| = 1/a. It was argued in Ref. 4 that N1 states are the topological (instanton-
related) excitations of the would-be species doublers.

We have thus established that the representation of all the algebraic relations
(1.2) has a similar structure. In the next section, we show that the index ny —n_
is identical to all these algebraic relations if the operator ;D satisfies suitable
conditions.
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3. Chiral Jacobian and the index relation

The Euclidean path integral for a fermion is defined by

/ DDy exp / GDY] 23)
where
/ $Dy = 3 (2)D(z, y)(y) (24)

and the summation runs over all the points on the lattice. The relation (1.5) is
re-written as

v5T'svsD + Dls = 0 (25)

and thus the Euclidean action is invariant under the global “chiral” transformation*

V(@) = ¢ (2) = P(x) +1i zd_’(z)f’)’sfs(z, )75
P(y) = ' (y) =d(y) + 1Y _ Oy, wypp(w) (26)

w

with an infinitesimal constant parameter €. Under this transformation, one obtains
a Jacobian factor

DY/ DY = JDYDY (27)
with
J = exp[—~2iTrel's] = exp[—2ie(ny — n_)] (28)
where we used the index relation (2.14).
We now relate this index appearing in the Jacobian to the Pontryagin index of

the gauge field in a smooth continuum limit by following the procedure in Ref. 12.
We start with

(75D)

(B2} = e (B o, (29)

Namely, the index is not modlﬁed by any regulator f(z) with f(0) =1 and f(z)
rapidly going to zero for x — oo, as can be confirmed by using (2.14). This means
that you can use any suitable f(z) in the evaluation of the index by taking advantage
of this property.

We then consider a local version of the index

2
(Lo (200 ), 2) = er{ s — ) 1 wo)  (a0)

where trace stands for Dirac and Yang-Mills indices; Tr in (3.7) includes a sum
over the lattice points z. A local version of the index is not sensitive to the precise
boundary condition , and one may take an infinite volume limit of the lattice in the
above expression.
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We now examine the continuum limit @ — 0 of the above local expression (3.8)>.
We first observe that the term

tr {H2k+1f( (75D) )} (31)

goes to zero in this limit. The large elgenvalues of H = ays D are truncated at the
value ~ aM by the regulator f(z) which rapidly goes to zero for large z. In other
words, the global index of the operator TrH?%+! f (ﬁ%ﬁ) ~ O(aM)#+! - 0 for
a — 0 with fixed M.

We thus examine the small ¢ limit of

trfos (2L, (32)

The operator appearing in this expression is well regularized by the function f(z),
and we evaluate the above trace by using the plane wave basis to extract an explicit
gauge field dependence. We consider a square lattice where the momentum is defined
in the Brillouin zone

—;—a <k, < %% (33)
We assume that the operator D is free of species doubling, which is proved for
the explicit construction of D; in other words, the operator D blows up rapidly
(~ %) for small @ in the momentum region corresponding to species doublers.
The contributions of doublers are eliminated by the regulator f(z) in the above
expression, since

('VSD)

(o f (B0} ~ () () = 0 (34

for @ — 0 if one chooses f (x) = e~ %, for example.
We thus examine the above trace in the momentum range of the physical species
i T
—— <k < —. 35
2¢ = % T 2 (35)
We obtain the limiting a — 0 expression

2
tim tr{3s /(20 0,

, w dik D)2,
= e [ o e
2a

L 4 2
= lim lim tr/ d’k e_ik"”’ysf(bﬂ)eikw

L—00a—0 L (21r)4 M?
L 1
EZ
= tr{vsf(3)} (36)

2This continuum limit corresponds to the so-called “naive” continuum limit in the context of
lattice gauge theory.
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where we first take the limit a — 0 with fixed k, in ~L < k, < L, and then take
the limit L — oo. This procedure is justified if the integral is well convergent.'? We
also assumed that the operator D satisfies the following relation in the limit @ — 0

De™*h(z) — e**(—K+i @~ g A)h(x)
= i(P +ig A)(e**h(z)) =i P(e**h(x)) (37)

for any fired k,, (—9z < ku < Z-), and a sufficiently smooth function h(z). The
function h(x) corresponds to the gauge potential in our case, which in turn means
that the gauge potential A, (z) is assumed to vary very little over the distances of
the elementary lattice spacing.

Our final expression (3.14) in the limit M — oo reproduces the Pontryagin
number in the continuum formulation (with ¢!%34 = 1)5

d* I;4f”( k ky)

2
=353 =—tre"*PF,, Fop. (38)

When one combines (3.7) and (3.16), one reproduces the Atiyah-Singer index
theorem (in continuum R* spamce).pl’8 We note that a local version of the index
(anomaly) is valid for Abelian theory also. The global index (3.7) as well as a local
version of the index (3.8) are both independent of the regulator f(x) provided®

f0)=1, f(o0) =0, f(@)ale=0 = f'(z)2lo=co = 0. (39)

We have thus established that the lattice index in (3.7) for any algebraic relation
in (1.2) is related to the Pontryagin index in a smooth continuum limit as

hm tr75f(E2/M2) = tI"Y521,{ ;f['YM:'YV]Fuv}z/ (2

2
ny —n_ = /d4x3—g;r—2tre"”°BFm,Fag. (40)

This shows that the instanton-related topological property is identical for all the
algebraic relations in (1.2), and the Jacobian factor (3.6) in fact contains the correct
chiral anomaly. (We are implicitly assuming that the index (3.7) does not change
in the process of taking a continuum limit.)

A detailed perturbative analysis of chiral anomaly for the general operators
with k > 0 has been performed, and the above result has been confirmed.'? Also
a numerical study of the index relation has been performed: The numerical result
indicates the consistency of our analyses.!?

4. Explicit construction of the lattice Dirac operator for k£ > 1

We now comment on an explicit construction of the lattice Dirac operator which
satisfies the generalized algebraic relation (1.2) with £ > 0. We start with the
conventional Wilson fermion operator Dy, defined by

. 1
DW(Z': y) = Z'Y#Cp(m’y) + B('Z'a y) - amo&c,y,
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1
Cp,(:l,‘, y) = 2_a[5m+ﬁa,yUM(y) - 5w,y+ﬂaUZ(m)],
T
B(z,y) = 57 ) 200y — y+a2UL(®) — Syo4paUn(v)],
I3

Uu(y) = expliagA,(y)], (41)

where we added a constant mass term to Dy for later convenience. The parameter
r stands for the Wilson parameter. Our matrix convention is that v* are anti-
hermitian, (v#)" = —*, and thus ¢ = v*C,(n, m) is hermitian

7t =¢. (42)

The Dirac operator for a general value of k is constructed by rewriting (1.2) as
a set of relations

H2k+1’)’5 + ’)’5H2k+1 — 2H2(2k+1),

Hys — ysH? =0, (43)
with H = aysD. The second relation in (4.3) is shown by using the defining rela-
tion (1.4), and the first of these relations (4.3) becomes identical to the ordinary

Ginsparg-Wilson relation (1.1) if one defines Hpe1) = H?¥*1. One can thus con-
struct a solution to (4.3) by following the prescription used by Neuberger?

1 (2k+1) 1
Hiopi1y = s75[1 + Dy ] (44)
2 \ﬂ ngﬂ) ) Dg/kﬂ)
where
D$k+1) = i(¢)2k+1 4+ p2k+1 _ ("ZO )2k+1 (45)

The operator H itself is then finally defined by (in the representation where Hz1)
is diagonal)

H = (Hgpy1)) /2! (46)

in such a manner that the second relation of (4.3) is satisfied. This condition (4.3)
is shown to be satisfied in the representation where H(gg 1) is diagonal.'? Also the
conditions 0 < mg < 2r = 2 and

2m2kt+l -1 (47)

ensure the absence of species doublers and a proper normalization of the Dirac
operator H.

5. Locality properties of general operators

We have explained that the general operators for any finite k£ give rise to correct
chiral anomaly and index relations in the (naive) continuum limit. This suggests
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that those operators are local for sufficiently smooth background gauge field con-
figurations. The locality of the standard overlap operator with & = 0 has been
established by Hernandez, Jansen and Liischer,'® and by Neuberger.'®

As for the direct proof of locality of the operator D for general k, one can show
it for the vanishing gauge field by using the explicit solution for the operator H in
momentum representation!?:13

o1 1

Hlon) = 10() %5 (7
w

5 (g + M) B ([, - e T

[
a

= () 5 (g R P 4 ) 35— () Ty — )75
(48)
where
Fyy = (32)2k+1 +]\7I,3,
Wi = [32(1 = )4 — gt (49)
and "

s, = sinap,

¢y == COSapy,

§/= " sinap,,. (50)
For k = 0, this operator is reduced to Neuberger’s overlap operator.? Here the
inner product is defined to be s2 > 0. This operator is shown to be free of species
doublers for the parameter mg within the range 0 < mg < 2 when we set r = 1,
and 2m(2,’g+1 = 1 gives a proper normalization of H, namely, for an infinitesimal p,,,
ie., for lap,| < 1,

H ~ —ysa (1 + O(ap)?) + vs(vsa p)**+* (51)
to be consistent with H = ysaD; the last term in the right-hand side is the leading
term of chiral symmetry breaking terms.

The locality of this explicit construction (5.1) is shown by studying the analytic
properties in the Brillouin zone.'? It is important to recognize that this operator is
not ultra-local but exponentially local;'? the operator H(z,y) decays exponentially
for large separation in coordinate representation

H(z,y) ~ exp[—|z — y|/(2.5ka)]. (52)

An explicit analysis of the locality of the operator H(zgi1) (not H itself)in
the presence of gauge field, in particular, the locality domain for the gauge field
strength ||F),, || has been performed. The locality domain for || F},, || becomes smaller
for larger k, but a definite non-zero domain has been established.!? The remaining
task is to show the locality domain of || Fy,, || for the operator H = (H(g 1))/ (25+D.
Due to the operation of taking the (2k+1)th root, an explicit analysis has not been
performed yet, though a supporting argument has been given.!?
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6. Conclusion

We have reported the recent investigation of topological properties of a general class
of lattice Dirac operators defined by the algebraic relation (1.2). All these operators
satisfy the index theorem and thus they are topologically proper. A precise proof
of the locality of these general Dirac operators with fully dynamical gauge fields
remains to be formulated. The operators with large k is expected to exhibit infrared
singularities in perturbative analyses as is suggested by the construction of Hay 1)
in (4.4), and thus the Wilsonian formulation of effective action, which is supposed
to be free of infrared singularities, would be essential.

Although we discussed only 4-dimensional theory, the recent developments in
the treatment of lattice fermions!! may have some implications on 2-dimensional
theory also, which is the main subject of this Symposium. In this respect, the fact
that the lattice Dirac operators are not ultra-local but exponentially local'® may be
of some interest. See Ref. 18 for a Ginsparg-Wilson construction on a 2-dimensional
fuzzy sphere.
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The spectral flows of the hermitian Wilson-Dirac operator for a continuous family of
abelian gauge fields connecting different topological sectors are shown to have a char-
acteristic structure leading to the lattice index theorem. The index of the overlap Dirac
operator is shown to coincide with the topological charge for a wide class of gauge field
configurations. It is also argued that in two dimensions the eigenvalue spectra for some
special but nontrivial background gauge fields can be described by a set of universal
polynomials and the index can be found exactly.

1. Introduction

For a long time it has been considered that chiral symmetries cannot be imple-
mented on the lattice due to the Nielsen-Ninomiya no-go theorem. The situation,
however, has completely changed after the discoveries of lattice Dirac operators
satisfying the Ginsparg-Wilson (GW) relation.'=32 It is now possible to define ex-
act chiral symmetry on the lattice.5 Furthermore, the index theorem on the lattice
relating the index of the GW Dirac operator to chiral anomaly has been obtained
by Hasenfratz, Laliena and Niedermayer (HLN).%7

In continuum theories the nontrivial topological structure of gauge fields are
considered to be responsible for nonperturbative phenomena such as the large n-n/
mass splitting in QCD and the fermion number violation in the standard model.
The Atiyah-Singer (AS) index theorem provides a key relation there.

The HLN index theorem is known to reproduces the AS index theorem in the
classical continuum limit.® However, it is not so clear what topological structure of
the space of lattice gauge fields is related to the index of the GW Dirac operator
on finite lattices. We expect that an extension of the index theorem relating the
index directly to the topological invariants of gauge fields can be established also
on finite lattices.

aFor reviews, see Niedermeyer? and Liischer.?
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In this talk we would like to propose the “index theorem” relating the index
of the GW Dirac operator directly to topological invariants of the lattice gauge
fields,® 2 mostly based on our recent results.'® Working with the overlap Dirac
operator® for compact U(1) theories on finite periodic lattices in two and four di-
mensions, we investigate the spectrum of the hermitian Wilson-Dirac operators
numerically for a family of link variables connecting constant magnetic field config-
urations with distinct topological charges. Such an analysis has already been carried
out by Narayanan and Neuberger'* within the overlap formalism. They found the
characteristic structure of the spectral flows leading to the index theorem. We will
extend their analysis to include strong and nonsmooth gauge fields and find that
the “index theorem” is kept intact for a wider class of gauge fields than those
expected from the locality bounds.!% 16 The index and the topological charge, how-
ever, behave completely differently for nonsmooth gauge fields and the coincidence
between the index and the topological charge breaks down. We also argue that the
characteristic structure of the spectrum of the hermitian Wilson-Dirac operator in
two dimensions can be understood exactly and the index can be computed for some
special gauge field configurations.

2. The index theorem on the lattice
Let us begin with the definition of the overlap Dirac operator. On a d = 2N

dimensional euclidean hypercubic regular lattice it is defined by

H
D=14+v11—= (1)

VHZ’

where H is the hermitian Wilson-Dirac operator given by

d
Hi(z) = ml{(d —m)y(e) - (1 SO @)z + )

p=1

- +27" Up(z — p)y(z — ﬂ)) } .2

We have chosen the lattice spacing ¢ = 1 and the Wilson parameter r = 1. The link
variables U, (x) and the fermion wave function 1 (z) are assumed to be periodic.
The ~-matrices are taken to be hermitian and v441 = (—i)%'yl -+ -4 is employed.
The m is chosen in the range 0 < m < 2 to avoid species doubling and is taken to
be m = 1 in our analysis.

Obviously, D is only well-defined for the gauge field configurations with det H #
0. It may exhibit discontinuities at the link variables for which H has zero-modes.
This can be seen by noting the relation between the index of D and the spectral
asymmetry'” of H

1 1 H —N_
indexD = Tryg41 (1 - §D> = —-Z—Tr = Dy ) 3)

VH? 2
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where N (N_) is the number of positive (negative) eigenvalues of H. Any two
gauge field configurations with distinct indices cannot be continuously deformed
into each other without crossing the configurations with det H = 0. By excising
such singular gauge field configurations the space of the link variables becomes
disconnected. The HLN index theorem associates indexD to each connected com-
ponent of the space of link variables.
Another way to give nontrivial topological structure to the space of link variables
is to impose the conditions®
sup |1 - Py (z)|| <7, (4)
TR
where P,, is the standard plaquette variable and 7 (< 2) is a positive constant.
The space of link variables becomes disconnected for sufficiently small 5 and it is
possible to assign topological charge to each connected component.
In abelian theories the explicit forms of the topological charge'?!8 is given by

1 N .
QN = m Z EP1V1"'#NVNF1L1V1 (x)Flizl'z (iL' + 41+ Vl)

XX Fypup(@+ i +o1+--+oan-1+0n-1), (5)

where Fj, = —iIln P, (Fj.(z)| < ) is the field strength and e,,...,, is the Levi-
Civita symbol in d = 2N dimensions. The @n is a smooth function of the link
variables within a connected component and takes an integer value given by!% 12

1
QN = s Cmaviunuen Mpivi Mpave *  Munvy (6)
2N N1

where 27m,,, is the magnetic flux through pr-plane. In fact it can be shown that the
space of link variables of abelian gauge theory is decomposed into a finite number
of connected components characterized by a set of integers {m,,}, and any two
configurations with the same set of magnetic fluxes can be continuously deformed
into each other without violating (4).

In general one can find gauge field configurations that satisfy (4) and det H =0
simultaneously. If it happens, the indexD may jump within a connected component
satisfying (4). However, if we choose 7 to satisfy

2-2
0<77<————d(d_1), (7
H cannot have zero-modes!® 16 and the indexD is a constant in each connected
components satisfying (4). It is very natural to expect that the index and the
topological charge coincide with each other. The precise form of the “index theorem”
for abelian gauge theories can be stated as :

For the link variables satisfying (4) and (7) the index of D and the topological
charge QN are related by

indexD = (-1)VQn . (8)
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Eigenvalues A

Parameter t

Fig. 1. Eigenvalue spectrum of H for L = 6 in two dimensions.

One way to find indexD is to count the net number of spectral flows of H as
m varies from 0 to 1 while keeping the link variables. This approach was adopted
by several authors.!*1%2® To see how the index of D behaves as one varies the
link variables continuously from one connected component to another it is more
convenient to investigate spectral flows of H for a continuous family of link vari-
ables connecting configurations with constant field strengths F,, (z) = 2xm,,, /L.
Concretely, we take the one-parameter family of link variables in two dimensions

0<z, <L)(9)

2 2
U:{t) (z) = exp l:—it%ngsmh[,_l} ) Uét)(x) = exp [itL—Z;pl

The field strength is a constant for any value of ¢ except for the corner point

z12 = L — 1. As a function of ¢, the topological charge @J; has discontinuities at

2j+ 1L 1 .
:(Q—(LT_)T)wwtg (j=0,£1,%2,.--).

3. Numerical results in two and four dimensions

We have numerically analyzed the eigenvalue spectrum of H over the range —L?/2 <
t < L?/2 for 2 < L < 15. 1t is helpful to note the following facts: (1) In two di-
mensions the eigenvalues A of H are bounded by |A < 3.1¢ (2) The eigenvalue
spectrum of H is L? periodic in ¢. (3) The eigenvalue spectrum of H is symmetric
with respect to the point ¢ = 0. Hence indexD is an L? periodic odd function of ¢
and vanishes at ¢t = 0, + L?/2, where the spectrum is symmetric.

In Figure 1 the whole spectrum of H is shown for L = 6. It is consistent with the
result obtained by Narayanan and neuberger.'* The characteristic structure of the
spectrum is not changed with L. We find that most of the eigenvalues lie within the
upper and the lower trapezoid regions symmetrically separated by the parallelogram
region and there are large gaps at integer ¢. As t increases by unity from an integer,
an eigenvalue belonging to the lower trapezoid crosses the parallelogram upward
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index D
o & b M o N »
—— —

-12

Parameter t

Fig. 2. The indexD and —Q; are plotted for 0 <t < L2/2 (L =5,d = 2).

and moves to the upper trapezoid. In particular on the interval of the horizontal
axis cut by the parallelogram eigenvalues change the sign for a sequence of the
values of ¢, where the index jumps by —1.

The indexD and —Q; are plotted over the region 0 < t < L? /2for L=51in
Figure 2. The correspondence between the index and the topological charge is very
excellent for 0 < ¢t < L?/4 except for the points around the discontinuities. This is
consistent with the numerical results given by Chiu.?!

For t > L%/4 the indexD and —Q, behaves completely differently. Such can
be considered as a kind of lattice specific phenomena. It is safer to avoid such
configurations in order to keep proper connection with continuum theories.

We have also carried out a similar analysis in four dimensions by taking the
link variables (9) in the presence of a constant magnetic flux through 34-plane.
The characteristic features of the spectral flows observed in two dimensions can be
seen also in four dimensions. In Figure 3 we indicate the spectrum of H for L = 4,
[A| €1, mas =1 and |t] < 8. A well-isolated eigenvalue crosses the horizontal axis,
where indexD increases by one unit. The characteristic feature of the spectrum is
not changed for mgs > 1. In general mg4 adjacent eigenvalues flow downward and
indexD increases by mg4 when they cross the t-axis. This is consistent with (6).

Though our analysis is restricted to rather small lattice sizes 2 < L < 4, we
anticipate that the parallelogram region expands rapidly enough as L increase and
the coincidence between the index and the topological charge occurs for a wide
class of gauge field configurations. Incidentally, for gauge fields satisfying (4) and
(7) nonvanishing topological charges can be realized only for L > 9.

4. Some exact results in two dimensions

Coming back to two dimensions, we now show that the characteristic structure of
the spectrum of H can be understood by noting that the eigenvalue equations for
constant field strength configurations can be converted to equivalent simple one-
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Eigenvalues A

.

; N7 N \ /AR TR S
-8 -6 -4 -2 0 2 4 6 8
Parameter t

Fig. 3. Eigenvalue spectrum of H for |A\| <1, s =1 and || <8 (L = 4 and d = 4).

dimensional systems. Here we will consider the cases of field configurations at £ = r
and t = L?/r = sL, where r and s are arbitrary positive integers satisfying L = rs.

At ¢ = sL the H is independent of x2 and r periodic in z;. This implies that
the system can be converted to a smaller one with degrees of freedom 2r by Fourier
transformations. It can be shown that the eigenvalues A of H at t = sL satisfy the

secular equation
B(p,g)-x  C(p,9) )
det =0, 10

° ( Clp,q)' —B(p,g) - (10)

where p and ¢ are the Fourier momenta
_ 27k _ 2rml
= q= R

and B(p,q), C(p,q) are r X r matrices defined by

O<k<L, 0<I<s) (11)

1 27k 1
(B(p, ) = *E(s;(:l)_,_l + [1 — CoS (p + —T—)}‘Sl(c?l) - 561(:21,1 )

1 . 2k 1
(Clp @) = —55:(;,’z)+1 +sin (P+ 7>6§Jﬁ’ + 551(521,1 - (0<kil<r) (12)
The 6,(:2 is the Kronecker’s d-symbol for 0 < k,1 < r — 1 and satisfies the twisted
boundary conditions 5,(53 = e "§,0 and 6&1,1 = €8 .

The secular equation (10) can be rewritten in the following form

-1 r—1 . T .
fr(A) = (Tr)—_zf_ sin? 7p sin? g , (13)

where f, = A" + ... is a polynomial of degree 2r and is independent of p and q.
For 1 <r <4it is explicitly given by

f1:A2—17
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fo=X—6X2 1,
f3:/\6—9)\4+%9)\2—3\/§)\—i-,
fa=A% —12X8 4 420 —8X3 — 442 + 240 3. (14)

In particular r» = 1 corresponds to the free spectrum since the link variables become
trivial. The eigenvalues A must satisfy the inequality

0< (-1 2r (N <1. (15)

This gives rise to 2r allowed narrow intervals for A. In each interval there appears
exactly L x s eigenvalues. As an example, we consider the case that L = 4s and take
r = 4. For any p, ¢ the eight roots of (13) are separately located in well-separated
eight narrow intervals. There are three negative eigenvalues and five positive eigen-
values for each p,q. Then the index is then given by —1 x L x s = —sL. This
coincides with —@;. In general f.()\) = 0 has r — 1 negative roots and r+ 1 positive
roots for r > 4 and, hence, indexD = —sL = —(Q; at t = sL. On the other hand it
is vanishing for 1 < r < 3 since the number of positive roots and that of negative
ones are always equal.

It is possible to extend the above arguments to integers t = r (< L). In particular
we arrive at the relation

det(H — A)lt=r = (fsr.(N))" - (16)

This gives at t = r the index —r = —Q; for sL > 4 and 0 for sL < 3. These are
completely consistent with the numerical results.

5. Summary

We have confirmed the equality (8) between the index and the topological charge
for abelian gauge theories on finite periodic lattices in two and four dimensions.
It holds true for a wider class of gauge field configurations than those satisfying
the locality bounds.® '® The condition (4) with (7) excludes uniformly the config-
urations for which the discrepancy between the index and the topological charge
appears, ensuring the index theorem (8).
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This paper reviews some recent progress on dimer and spanning tree enumerations. We
use the Kasteleyn formulation to enumerate close-packed dimers on a simple-quartic
net embedded on non-orientable surfaces, and obtain solutions in the form of double
products. For spanning trees the enumeration is carried out by evaluating the eigenvalues
of the Laplacian matrix associated with the lattice, a procedure which holds in any
spatial dimension. In two dimensions a bijection due to Temperley relates spanning tree
and dimer configurations on two related lattices. We use this bijection to enumerate
dimers on a net with a vacancy on the boundary. It is found that the occurrence of a
vacancy induces a vN correction to the enumeration, where N is the linear size of the
lattice, and changes the central charge from ¢ =1 to —2.

1. Introduction

Theoretical studies of the physics of real systems often lead to problems of far-
reaching interests in mathematics, and solutions to the mathematical problems in
turn yield new insights to the physical problems. One such example is the advent of
dimer statistics, a subject matter at the forefront of mathematical research, from the
evaluation of the adsorption entropy of diatomic molecules on a surface.! Another
example is the arising of the notion of spanning trees, again a subject matter of
immense interest in graph theory, from the theory of electric network currents.? In
two dimensions these two mathematical problems are further interrelated, a fact
recognized again through the consideration of the physics of the problems.? In this
paper we describe and review some recent progress on dimers and spanning trees
obtained by the author and co-workers.*?®

We first define the problems of dimer and spanning tree enumerations. The
dimer problem is treated in section 2 where the Kasteleyn formulation is outlined
and used to obtain the dimer generating function for two non-orientable surfaces,
the Mdbius strip and the Klein bottle. In section 3 an established result in graph
theory is used to enumerate spanning trees. In section 4 we describe a bijection
due to Temperley® which relates dimers and spanning trees on two related lattices,
and use it to establish the independence of the dimer generating function on the
location of a vacancy on the boundary of a simple-quartic net. The bijection also
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leads to an explicit evaluation of the dimer generating function for the defect lattice.
Results of finite-size analyses, which lead to corrections induced by the geometry
of a boundary vacancy, are presented in section 5.

2. Definitions

We shall consider a regular lattice £ having a vertex (site) set V and edge set E,
but much of our results are applicable more generally to £ being an arbitrary graph.
Number the sites from 1 to |V| and associate to the edge e;; connecting vertices 7
and j a weight x;;, with x;; = 0 if there is no edge connecting ¢ and j. A dimer
covering P (for |V| = even) is a pairing of the |V| vertices into |V|/2 pairs. We
say that the edge e;; is covered by a dimer if e;; appears in P. Then, the dimer
generating function is

Z(Li{z) = ] =i (1)
P €ij €P
where the summation is taken over all dimer coverings. The total number of dimer
coverings is obtained by setting z;; = 1, or

Ndimer(c) = Z(Ea 1) (2)

Specializing (1) to an M x N simple-quartic lattice of M rows and N columns
with edge weights z, and z, respectively in the horizontal and vertical directions,
the dimer generating function is

Zpmn(Ls 2y 20) = Y 22, @)
P

where ny, and n,, are, respectively, the numbers of horizontal and vertical dimers in
P.

Next we define spanning trees. A subset of edges T C E is a spanning tree if
it has |V] — 1 edges with at least one edge incident at each vertex. Thus T has
no cycles. The enumeration of spanning trees concerns with the evaluation of the
spanning tree generating function

T(Li{z)) =Y 1 2o 4)

TCE ei;€T

where the summation is taken over all spanning trees configurations 7. Particularly,
the total number of spanning trees on £ is obtained by setting z;; = 1, or

Nspr(£) = T(L;1). (5)

Specializing (5) to a simple-quartic net as in the above, the tree generating function
assumes the form

Tran (L 2ny20) = 3 Zp 20, (6)
T
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where ny, and n, are, respectively, the numbers of horizontal and vertical edges in
T.

The evaluation of (3) for £ with free and toroidal boundary conditions was
first accomplished by Kasteleyn® and Temperley and Fisher.1%1! Here we extend
the solution to non-orientable surfaces,® 12 and to the net £ having a boundary
vacancy.®

3. Dimer enumerations
3.1. Kasteleyn formulation

It is an elementary fact that the superposition of two dimer configurations decom-
poses a lattice £ into superposition polygons, namely, polygons formed by tracing
along dimers from vertex to vertex. Orient all edges of £ and define an |V] x |V|
antisymmetric matrix A(z;;) with elements

A;; = —Ajy = iy, if the edge 77 is directed from % to j. (7)
Then, Kasteleyn® has established the remarkable result that

Z(L;{@is}) = 1/ |A(mi5)]5 (8)

where |A| is the determinant of A, provided that lattice edges are oriented such
that the product of all edge weights around every possible superposition polygon is
negative. Namely,

TijTik - Xe <0 (the Kasteleyn criterion) (9)

for sites i, 4, k, ..., £ around a superposition polygon arranged in the order of, say, a
clockwise (cw) direction. Henceforth we shall refer to the sign of —x;;z k- - - z¢; as
the sign of the (superposition) polygon.

The Kasteleyn criterion (9) is remarkable since it says nothing about the di-
mensionality of the lattice. It is this flexibility which permits its application to
non-orientable surfaces. However, even if the Kasteleyn criterion is met, it still
remains to evaluate the determinant |A(z;;)| which can be a formidable task in
some cases.

3.2. Simple-quartic nets on non-orientable surfaces

We consider the enumeration of dimers on an M x N simple-quartic net embedded
on two non-orientable surfaces. The net forms a Mdbius strip if there is a twisted
(Mébius) boundary condition in the horizontal direction as shown in Fig. 1, and
a Klein bottle if, in addition to the twisted boundary condition, there is also a
periodic boundary condition in the vertical direction.

To satisfy the Kasteleyn criterion (9) we make use of a trick due to T. T. Wu!3
of associating a factor ¢ to dimer weights in one spatial direction. For a simple-
quartic net with free boundaries, one associates a factor i to dimer weights in the
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. . . . -~ A —» > > +—E
A v ” v >~ D A A A A
A A A A A
R R R R c B > > <«— D
BA' " "‘ 'A‘ A A A A
A A 3
C > > > <+— C
C > ——> »— B
A y A 4 A * 4 4 +
h A
DIr»——»1+»r+<—8B
DLy | p 1 pl pl A
A A A A
1 2 N
ElLyp L, L <« A
(a) (b)

Fig. 1. An M x N M&bius strip and the associated edge orientations. A, B, C, D, E are repeated
sites. (a) (M, ) = (5,4). (b) (M, N) = (4,5).

direction in which the number of lattice sites is odd. For {M,N} = {even,odd},
for example, one replaces zp by izp. If the number of lattice sites is even in both
directions, then the factor ¢ can be associated to dimers in either direction.

Next one orients all parallel lattice edges uniformly in the same direction. To see
that this orientation satisfies the Kasteleyn criterion for free boundary conditions,
the case considered by Wu, one superimposes any dimer covering C; with a standard
Co in which the lattice is covered only by parallel dimers with real weights. Then,
each superposition polygon formed by C; and Cy contains an even number of arrows
pointing in each (cw or ccw) direction as well as a factor 4"*2 = —1, where n is
a nonnegative integer. It follows that the criterion (9) holds and the sign of every
polygon is positive. Note that the construction of Cy requires either M or A to be
ever.

On non-orientable surfaces a superposition polygon can wrap around the lattice
in the horizontal direction, and this causes problems in realizing the Kasteleyn
criterion. Particularly, one needs to pay attention to whether M and NV are even or
odd. Starting from a net with free boundaries, there are M additional horizontal
“connecting” edges (shown in Fig. 1) and, in the case of the Klein bottle, A/
additional vertical connecting edges (not shown in Fig. 1). These edges need to
be oriented. It turns out that, except in the case that both M, N are even,? it is
not possible to orient the connecting edges so that the Kasteleyn criterion holds for
all polygons wrapping around the lattice. However, one can take advantage of the
regularity of the signs of the polygons to extract the desired solution.

Let the horizontal connecting edges carry a weight 2, and let A(z) denote the
resulting antisymmetric matrix (7). It is straightforward to show” that superposi-
tion polygons containing 4n and 4n + 1 connecting z edges in its perimeter, where
7 is an integer, have the same sign and those having 4n+ 2 and 4n + 3 connecting z
edges have the opposite sign. It follows that” the desired dimer generating function
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on a net (with uniform weights zp, and 2,,) is given by the linear combination

Zmn (L 2hy 20) = % {(1 — i)V A(izn)| + (1 +4) |A(_izh)|]

= Re [(1 — i)V IA(iZh)I] (10)

where Re denotes the real part. This formula applies to both the Mobius strip and
the Klein bottle.

The determinant |A(=+iz,)| can be evaluated by computing the eigenvalues of
the matrix A(Zizp), and the algebra is somewhat different for the two lattices
shown in Fig. 1. We refer to Ref. 7 for details and give here only the final result,

ZM,N(£7 Zhs Z’U)

[((M+1)/2] N ~ (4n 1)
= 2"V ?Re| (1 — i) H H(%( 1)F it sin e 42 X )]
-
where [z] is the integral part of z, and
Xm = <§i—> cos Mm—:l for the Moebius strip
om —
= (—i—%) sin(m—j\/tl—)E for the Klein bottle. (12)

For N = even, the product in (11) is real and (11) reduces to a simpler form
[(M+1)/21 N /2

ZmN(L; 2, 20) = z,letN/z H H <4sm Un—Ur +4X2) (13)

For the Mébius strip Tesler!? has also obtained the solution in terms of generalized
Fibonacci numbers. It can be shown that his solutions are the same as those given
by (11).

In all cases, one obtains in the thermodynamlc limit the per-site bulk free energy

fdimer(zh’ z’u) ljl\fn—lmo MN anM N(E Zh,Z—U)
1
=L [Mas [ dpm |4 28sin? 0+ 4 22sin”g].  (19)

471'2 0 0
This gives the per-site entropy of the adsorption of diatomic molecules on a simple-
quartic lattice as

G
fdimer(la 1) = ; (15)
where G is the Catalan constant given by
G=1-32452_7"24...=0.9159655%.... (16)
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4. Spanning tree enumerations
4.1. The Laplacian matriz

First we recall an established result in graph theory on spanning trees. Consider a
graph £ with edge weights z;;. In analogous to (7) we define a V| x [V| symmetric
matrix B with elements

B,; = Bj; = zij if 7 and j are adjacent
=0 otherwise. a7

Thus B is the adjacency matrix of £ if z;; = 1. Define further a diagonal matrix
A with elements

An’ = Z:L‘ij. (18)

i
Then, the matrix
Q=A-B (19)

is the Laplacian of the lattice £. The Laplacian matrix has the property that the
sum of each row or columu is zero, so it has a zero eigenvalue.

Let A1, Az, ..., Ajy|—1 be the [V| — 1 nonzero eigenvalues of £. Two fundamental
theorems in graph theory!'# 15 state that we have

T(L; {z:;}) = any cofactor of Q (20)
[Vi-1

:ﬁ 1;[1 Ai - (21)

A proof of (20) can be found in any book of graph theory (see, e.g., Ref. 14), and
an elementary proof of the equivalence of (20) and (21) has been given in Ref. 5.

4.2. Simple-quartic lattice

We have used the formulation (21) to derive spanning tree generating functions for
finite hypercubic lattices in d dimensions under various boundary conditions® as well
as for regular lattices in two dimensions.® Here we discuss only the simple-quartic
lattice with free boundary conditions which is relevant to our ensuing discussions.

For the simple-quartic lattice with free boundary conditions the Laplacian as-
sumes the form

Q=2(zn + 2) M ® IN — 2nHM ® In — 20 ® Hy (22)
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where Iy is an N x N identity matrix, and Hy is the N X N tri-diagonal matrix

1100---000

1010---000

0101---000
Hy=|..... R (23)

0000---101

0000---011

The eigenvalues of Hy are®

An=2cos%’-, n=0,1,...,N-1. (24)

Then, by diagonalizing Q in the two subspaces of dimensions M and N separately,
one obtains the its eigenvalues

Amn = 223, [1 — cos %] + 22y [1 — Cos nﬁﬂ'] )

m=0,1,....M—-1, n=0,1,... N -1 (25)

Using (21), one then obtains

1 MIINCL mnw nmw
. _ . 2 . 2
Tamn(L; 2hy 20) = NV ":!;[0 nl;[o [4 zp, sin M +4 z,sin W],
(m,n) # (0,0) (26)
and the per-site free energy
fspr(2h, 20) = Mhrg)oo MN InTrm,n (£ 20y 20)
= _2/ d6/ doln [4 Zpsin® 0 + 4 z, sin? ¢]. (27)
™ Jo 0
This leads to
4
fspr(1,1) = -TFG- (28)

5. Simple-quartic net with a vacancy

The similarity between (14) and (27) is striking, since it suggests a connection
between the dimer and spanning tree problems. Indeed, Temperley® has found a
bijection between dimer and spanning tree configurations on two related lattices.
The bijection has recently been extended to general planar graphs with weighted
and /or oriented edges.'® Here, we describe a version of the bijection relevant to out
discussions.®
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5.1. Temperley bijection

Starting from an M x N simple-quartic net £ with free boundaries, one constructs
a dimer lattice Lp by i) adding a new site at the midpoint of each edge of L, ii)
inserting in each internal face of £ a new site connected to the midpoints of the
4 edges of £ surrounding it, and iii) removing one of the original boundary sites
of £ together with its edges incident from the neighboring midpoints inserted in
i). Thus, £p has a total of (2M — 1)(2N — 1) — 1 sites consisting of the original
MAN —1 sites of £ and the remaining (2M —1)(2N —1) — MN new sites. Examples
of constructing £Lp for M = N = 3 are shown in Fig. 2. Then we have the following
Temperley bijection as contained in results reported in Ref. 16.

o——o——T

o0

L 2 4

19— O

}

(@) (b) ' (©

Fig. 2. (a) A spanning tree lattice £ . (b) A dimer lattice £Lp constructed from £ with one corner
site removed. (c) A dimer lattice £Lp constructed from £ with one boundary site removed. Open
circles denote removed sites.

Temperley bijection: There exists a one-one correspondence between spanning
tree configurations on L and dimer configurations on Lp.

To see that the bijection holds, one observes that to each spanning tree con-
figuration on £, one can construct a unique dimer configuration on Lp by first
laying a dimer along each tree edge, starting from the edge(s) covering the site of
Lp which has (have) been removed, and proceed along the spanning tree edges in
an obvious fashion. After laying dimers along all tree edges, the remaining sites
of Lp can then be covered by dimers in a unique way.? Conversely, starting from
each dimer configuration on Lp, one constructs a unique tree configuration on £
by drawing bonds (tree edges) along dimers originating from all odd sites. These
bonds cannot form close circuits, since otherwise they would have enclosed an odd
number of sites of Lp which is not permitted in close-packed dimer configurations.
This process leads to a unique tree configuration on £. This completes the proof.

Examples of the Temperley bijection are shown in Fig. 3.

5.2. Dimer enumeration on Lp

To enumerate dimers on Lp which is a simple-quartic lattice with a defect on its
boundary, one must start from M, N odd so that the net of (2M —1)(2N —-1) -1
sites admits dimer coverings. Let £p and L, be two dimer lattices derived from
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(a) (b) (c)

Fig. 3. Bijections between a spanning tree configuration on £ shown in (a) and dimer
configurations on two Lp lattices shown in (b) and (c).

L as described in the above. Let the dimer and spanning tree edge weights be the
same zp and z,. Then, the Temperley bijection implies a one-one correspondence
between dimer configurations on £Lp and L], via the mutual equivalence to spanning
trees. A moment’s reflection now shows that the two dimer configurations also have
identical weights.” It follows that we have the identity

Z(Lp; 2h, 20) = Z(Lp; 2hy 20)- (29)

Namely, the dimer generating function is independent of the location of the bound-
ary vacancy. This is a somewhat unexpected result which is difficult to see without
the use of the Temperley bijection.

For M, N odd, the aforementioned scheme of orienting lattice edges for the
realization of the Kasteleyn criterion no longer holds, since in constructing C; one
needs either M or A be even. However, using the Temperley bijection it can be
shown® that the dimer generating function for £p is given by

Z(Lp;2hs 2v) ZZ;j:A(N—l)Z{;V(M—l)T (ﬁ z—h 'E—Z) (30)

Particularly, for zp = 2, = 1, one has

Nimer(Lp) = Z(ED; 1,1) = Nspr(£)
M—1N—1

N H H |:4sm —— + 4sin? 2737\1-/], (m,n) # (0,0),
m=0 n=0
(31)

where the last line is obtained from (26) with z, = 2z, = 1. However, one must note
that Lp is a (2M — 1) x (2N — 1) lattice with a boundary defect.

6. Finite-size analyses

Finite-size expansions of physical quantities associated with two-dimensional lattice
models have been of interest both in physics*'7 and in mathematics.!8 Let Zy v
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denote the partition function of a lattice model on an M x N lattice. For large
M, N one has the expansion

In Zp,n = MN fouic + Ney + Mez + c3 + o(1), (32)

where fhuk is the bulk free energy as computed in (14) and (27), ¢1, c2 are constants
independent of M and N, and c3 is a constant which can depend on M and N. In
conformal field theory one further computes the limits

1 . InZp N Ay N

-]—M_ngbnoo N - fbu1k+ M + — M2 + (M )a (33)
1 . ll’lZMY

N Jm —= = = fouk + —= N ~z 2 +o(N72), (34)

using which the central charge ¢ can be computed from the values of A; and As.
These expansions hold for general M and N regardless whether they are even or
odd.

We have carried out finite-size analyses of our solutions for dimer? and spanning
tree® solutions. Here we give the results on the number of dimer configurations
(zn = 2, = 1) (see also Refs. 11,19,20 for equivalent results).

For an M x N dimer lattice with M N = even we use (13) for the number of
dimer configurations Ndimer = Zm,n(L;1,1) and obtain

G
fbulk:;‘,
G 1
012022? E (1+\/_)
G I M &
=24 —(2n—1)rM/N
c3=—+ 4 —In(1 +v?2) +24N+:L:‘lln(1+e )

(35)

Despite its apparent form, the expression of ¢z in (35) is actually symmetric in M
and N. The term wM/24N in c3 now yields the central charge ¢ = 1 upon taken
M = N. This agrees with the accepted value for dimer and Ising systems.

For an M x N dimer lattice with one vacant boundary site and both M, N =
odd, we use (31) for Ngimer(Lp) and the conversion of M = 2M —1,N =2N -1
to get the desired result. After some algebra, one obtains the same fyhui,c1,c2 as
in (35), and a new c3 given by

1 G 7
L= >IN+ +-In2-In(1 Iz 1( —2""M/N).
ch 510 —f—7r+4n n(—{-\/_ 12N+Zn —e
(36)
The expression of c§, which is again symmetric in M, N, leads to a new central
charge ¢ = —2. Furthermore, the term —% In N in ¢}, which is absent in c3, gives

a v N correction to the dimer enumeration. A concrete example exhibiting this
correction has been given in Ref. 8. We remark that Kenyon!® has found the
correction factor to be N3/% if the vacancy occurs in the interior of the lattice.
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We study the geometry of a knot invariant defined in terms of the quantum dilogarithm
function. We show that a hyperbolic structure naturally arises in the classical limit of
the invariant; the completeness conditions can also be identified with the saddle point
equations by studying a (1,1)-tangle.

1. Introduction

After the discovery of quantum groups, the interest in quantum invariants has
been renewed, and we have now infinitely many knot invariants. In contrast to the
fact that the Alexander invariant was defined from the homology of the universal
Abelian covering, the geometrical meaning of those quantum invariants remains
unclear. A key to solving these problems comes from Kashaev’s observation®>? that
the asymptotic behavior of Kashaev’s knot invariant, which was later shown® to
coincide with a specific value of the colored Jones polynomial, gives a hyperbolic
volume of the knot complement,

1 27
3 . .
IS\ K| = = Jim - log|In (K],

where || - || is the Gromov norm, v is the hyperbolic volume of the regular ideal
tetrahedron, and Jy(K) = Vi (K;e?™/N) is given in terms of the colored Jones
polynomial V(K t) for the knot K (/N-dimensional representation of s¢z).

This paper is a continuation of Ref. 4. Therein we showed that a hyperbolic
structure naturally arises from a knot invariant, which was defined by use of the
infinite-dimensional representation of the quantum dilogarithm function. In this
sense this invariant can be viewed as a non-compact analogue of Kashaev’s invari-
ant. We found that the saddle point equations which denote a critical point of
our invariant, coincide with the hyperbolicity consistency conditions in gluing ideal
polyhedra. One purpose of this paper is to prove that the completeness condition
is also given through a classical limit of our knot invariant 7;(K) together with
a suitable (1,1)-tangle. See Ref. 5 for a geometrical study of Kashaev’s original
invariant.
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This paper is organized as follows. We briefly review the construction of our knot
invariant in Sec. 2. The essential tool is the S-operator which solves the five-term
relation. In Sec. 3 we give a 3-dimensional picture* of our invariant by assigning an
oriented tetrahedron to the S-operator. In the classical limit the tetrahedron can be
regarded as an ideal hyperbolic tetrahedron. We clarify how completeness is given
from our invariant by studying a related (1,1)-tangle. In Sec. 4 we define a quantum
invariant of 3-manifold M based on the ideal triangulation of M. The last section
is devoted to concluding remarks. We discuss the relationship between the classical
limit of the quantum invariant and the hyperbolic volume. Throughout this paper
we use Euler’s dilogarithm Lis(2), Rogers’ dilogarithm L(z), and the Bloch-Wigner
function D(z), which are respectively defined by

Lia(a) = - [ s 1) = Lin(e) +  tog() log1 - 2),

D(z) = ImLiz(z) + arg(1 — 2) log |z|.

2. Knot Invariant

We introduce the S-operator, acting on two spaces V@ V,

Si2 = e8P B (b + 42 — fa). (1)
Here we have used the canonical operators, [p;,§x] = —2ivd; x, and
e~lee dz
i) = = 2
1) = exp ( /IR—HO 4sinh(vyz) sinh(nz) z ) ’ @

which can be regarded as a modular double of the g-exponential function.® The
S-operator satisfies the five-term relation,”®

S2,351,2 = 51,251,3592,3. (3)
By recursive use of this five-term relation, we see that the R-operator
Riz34 = (S1%,) 7" 81,3554 (S5%) ™! = PLaPaaRi2 34, 4)

where t, is the transposition on the a-th space and P, 3 is the permutation operator,
solves the Yang—Baxter equation (braid relation),

. . . . . . - -
Ri2.34 R34 56 12,34 = H34,5612 3434 565 Q) = (% (5)

We define a knot invariant from this R-matrix. For this purpose we give the ma-
trix elements and their classical limit (v — 0) in the case of V being the momentum
space, p|p) = p|p) with p € R;

(-2~ ot (P —p2))

. . 1
(p1,02181,2|p%, P5) = d(p1 + p2 — P}) @, (D — p2 + im + iy)eFv

1 ;
~ 8(p1 + pg — p) exp <—mV(P2 - pzapl)) s (6)
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1 1 n2492  am ,
“hpt ph) = —p — gl 77 (5 + 5 —Pi(p2—p}))
(p1,p2|S721P1, p2) = 6(p1 — Ph p2)<1>7(p2—p’2—i7r—iv)e 7 2 2
1
~ 0(p1 — py — pa) exp (EV(pz —pém'l)) : (7)
Here we have set
2 .
Viz,y) = i Liz(e®) — zy, 8)
which satisfies
1/ V(z,y) OV(z,y)
— _ T -
Vi) =20 - ) + 3 (o gt 4y 20, ©)
ImV(z,y) = D(1 — %) + log |¢%| - Im (9‘5%?/—)) + loge¥] - Im (%{%ﬂ) -

Recalling the fact that the volume of an ideal tetrahedron in 3-dimensional
hyperbolic space H?® is written in terms of the Bloch-Wigner function,'®! and
that the Rogers dilogarithm function is a natural complexification of the hyper-
bolic volume,'? 13 we can expect that the S-operator at the critical point is closely
connected with an ideal tetrahedron in H?.

We can define the knot invariant from the enhanced Yang-Baxter operator!*

(R, 0, B),
(L) =08 Iy, (b(€) (1 @ u®C)). (10)

Here £ denotes the braid group representation with 7 strands of link L, and by (€) is
to substitute the operator R (4) as a braid generator. We have used w(€) as writhe,
and

w242
. 22442 =t
N:e%”@e—%pt, a:e—‘%, 8= e “°

(1 _ e2i’y)(1 _ 62i7r2/'y) .

Note that 71(K) is an invariant for (1,1)-tangles, and that we do not take trace
over the first space.

3. Hyperbolicity and Completeness

We have clarified in Ref. 4 how the hyperbolic structure naturally arises from the
knot invariant 71 (K) in the classical limit v — 0. Therein, motivated by the fact
that the S-operator solves the five-term relation (3), the S-operator is identified in
the classical limit with an ideal tetrahedron in H?3,

z

(1, p2|S|P}, Ph) = {p1,p2|S7 P}, ph) =
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Here momenta p, and p/, are assigned to every face. Both oriented ideal tetrahedra
have modulus z = e?>~P2, and every dihedral angle is fixed as a function of the
modulus, 21(z) = z, z2(2) = 1 — 271, and 23(2) = (1 — z)~1, opposite edges having
the same angles. The integral with respect to momentum p,, is interpreted as gluing
two faces having the same momentum to match the orientation of every edge. One
sees that the five-term relation (3) is simply realized as the 2 <+ 3 Pachner move.
Correspondingly, the R-matrix (4) can be depicted as an oriented ideal octahedron,

D3
(p3, w|S™ ez, p2) /P4
S

3
=

@ |

1S|pa,

(12)

d|s|td )

~
ip
as
- <

’

Y, Dy

a2

' A
=
p 1 <172»7'IS |y1P3
Y2

Here we have p; + ps = p} + p2 and p) + py = p4 + ps. The picture on the right
denotes the projection of the octahedron viewed from the top of the octahedron, and
a; is the dihedral angle around a central axis “®,” a1 = z3(e*™?1), ag = z2(eP'3_Z),
az = 23 (e""p:t), and a4 = 22(eP2~"v), satisfying the consistency condition,

6T,
l

z

(
(

1 — ePr—Py+pPa—p; 1 — ePr—P1+Pa—p;

4

ai=1 e¥= e = . (13
'1_[1 * ’ e~ Py — eP1—P,+pa—py—p2’ e~ Ps — eP1—Pi+Pa—Di—P1 (13)
i=

Note that we have symmetry of the R-matrix, and that the inverse braiding gener-
ator B! is also given by an oriented ideal octahedron,

(plsp2ap3ap4|R|pllap127pé’p:1> = (p:lap:I37p,2ap,l|Rlp4’p3ap25p1>,

(1, P2, P3, pa|R™1|D}, Py, P Py) = (Db, P}, P1, P2| R|pS, Dy, Pa D3).-

Qur main claim in Ref. 4 is that the saddle point conditions which are derived
from the classical limit of 71 (K), exactly coincide with the hyperbolicity consistency
conditions in gluing ideal tetrahedra. Generally, to endow the hyperbolic structure
in a 3-manifold M which is constructed by gluing together a finite collection of ideal
tetrahedra, we should check the completeness condition besides the hyperbolicity
consistency conditions.!? We shall show that this completeness condition is fulfilled
by considering the knot invariant as coming from a constituent (1,1)-tangle.

In computing 7;(L) from a (1,1)-tangle, we cut the link L at a point which is
located on an alternating segment of L (left figure below),

D1 psiT
"N 1
! ~le
Nops 7 be/ e Sz i
& 3 4 @ Na AN g\
4 4> 7) @, [}
7 A %, G
b2 Ps

114



Hyperbolic Structure Arising from a Knot Invariant II 1967

We glue together faces, ps and py, and part of the developing map is written as the
right figure above (see Ref. 5 for some discussion). The completeness condition can
be read from this picture as

— gbs—w — eP2—%
€ e

I_epsv 1_eno (14)

On the other hand, the contribution from this segment to the invariant is given by

/dxdu (p3,z|S 'y, p1) (p5,v|S ™ |u, p3) (z, p2|S|ps, ) (1, 4| S|ps, w)|

p3=pa=P "’

Here we have assumed ps = ps = P as we are studying the (1,1)-tangle. Substituting
Egs. (6)—(7) as the limit v — 0, we obtain the saddle point condition as

_ ebr—x
1= (15)

1 —epP2—=

When we set p3 = py = P = $00, we find that the saddle point equation (15)
coincides with the completeness condition (14). We can see that other completeness
conditions can be deduced from Eq. (14) with the help of the hyperbolic consis-
tency conditions (13) in constructing the R-matrix. As a result, by constructing
the invariant of link L from a constituent (1,1)-tangle and substituting a specific
value therein, we can see a correspondence between the completeness conditions and
saddle point equations. Combining our previous result* that the hyperbolicity con-
sistency conditions coincide with the saddle point equations, we can conclude that
the invariant 7 (L) with the 3-dimensional picture (11) gives an ideal triangulation
of the knot complement, and that Eq.(9) will indicate a coincidence between the
asymptotic value of our invariant at the critical point and the hyperbolic volume
of the knot complement.

4. Quantum Invariant of Manifold

We define a quantum invariant of manifold M in terms of the S-operator (1). When
3-manifold M admits a hyperbolic structure of finite volume, the 3-manifold M is
constructed by gluing a finite collection of oriented ideal tetrahedra. We assign an
S-operator to each oriented ideal tetrahedron, and we define the partition function
of M by!®

2(M) = //dp T, p515% 1o, ). (16)

Here we need to assume a constraint for p which corresponds to the completeness
condition of M. As was studied in the previous section for the case of the knot in-
variant 71 (L), the hyperbolicity consistency conditions are given as the saddle point
equations in the integral over p, while the completeness conditions are controlled
by considering a (1,1)-tangle of link L.

It should be noted that the idea of assigning a solution of the five-term relation

to a tetrahedron,'® 17 where the Regge action is derived from the asymptotic value
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of the classical 6j-symbol for large j, is well known. We have rather clarified that
the S-operator (1) denotes a quantization of the hyperbolic ideal tetrahedron.

4.1. Ezamples
We consider knots K = 4, and 5g,

@ C\>>
As is well-known, these knots are hyperbolic, and the complements of the knots can
be constructed by gluing ideal tetrahedra (see, e.g. Refs. 18,19). Indeed the ideal

triangulation can be done following Ref. 4, and we get the quantum invariant by
assigning S-operators to each oriented ideal tetrahedron,

Z(Ss \ 41) = /dp5P4-P2=p1-p3 (Pl,P2|S|P3,P4) (P4,P3[S_1|P2,P1>,

Z(S3 \ 52) = /dp5P5—1M=P2—P6 <P17P5|S—1|P4,P3)

X (P2,P4|S_llp67ps> (p37p6|S_1|plap2>'

The constraint 4... represents the completeness condition. In the small-y limit, these
integrals respectively reduce to

Z(S3\ 41) ~ /dx exp 2—}—’; (Lig(e™™) — Lig(e™)),

1 /m?
3 ~ — (L _TLiy(e¥ %) —2Lig(e”Y) — —
Z(8°\ 52) //d:cdyexp 217( 5 Lig(e¥™®) — 2Lig(e7Y) — y(y z))
After applying the saddle point method whose conditions exactly coincide with the

hyperbolicity gluing conditions and completeness conditions, we see

2.029883212819307, for K = 4,

3
2ylog 2(57\ K) { 2.828122088330783 + 3.024128376509301 i, for K = 59

Comparing with a table in Ref. 20 (it is necessary to multiply the Chern-Simons
terms there by 2n?), this result suggests the “VCS conjecture” 35 15,21
2vlog Z(M) ~ Vol(M) +i1CS(M) = VCS(M), (17)

where Vol and CS respectively denote the hyperbolic volume and the Chern—Simons
invariant of M.

5. Concluding Remarks

We have studied how the knot invariant 7;(L) is related with the hyperbolic ge-
ometry H® in the limit 4+ — 0. We have shown that not only the hyperbolicity
consistency conditions but also the completeness conditions can be derived from
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the saddle point equations when we consider the invariant of a link L as resulting
from the invariant of a (1,1)-tangle.

Based on the S-operator (1), we have defined the partition function (16) of
3-manifold M. Once M is triangulated into a finite collection of ideal tetrahedra,
the volume Vol(M) is given by a summation, ", D(z;), where modulus z; satisfies
a set of hyperbolicity and complete conditions. Recalling that the S-operator and
its imaginary part respectively reduce to the Rogers dilogarithm function L(z) and
the Bloch-Wigner function D(z) at the critical point (9), the conjecture (17) seems
to be reasonable. However, the Rogers dilogarithm function L(z) is a multi-valued
function of z, with singularities at 0 and 1, and the value on the universal abelian
cover of C\ {0, 1} is given with an integer pair (c1, c2) as'® L(2) + i (c; log(1—2) +
c2 log(z)). In computations such as for K = 6;, we need such terms to get “correct”
answers. It remains for future studies to discover how to specify the branch of L(z)
in the small-y limit.

From a physical point of view, the hyperbolic geometry or the Euclidean AdS
receives much attention based on the AdS/CFT correspondence. As it is well known
that the Einstein-Hilbert action can be rewritten in terms of the CS action,?%23 our
result which relates the partition function Z(M) with H? and CS will be promising
in further studies of quantum gravity.
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The “Laughlin” picture of the Fractional Quantum Hall effect can be derived using the
“exotic” model based on the two-fold centrally-extended planar Galilei group. When
coupled to a planar magnetic field of critical strength determined by the extension
parameters, the system becomes singular, and “Faddeev-Jackiw” reduction yields the
“Chern-Simons” mechanics of Dunne, Jackiw, and Trugenberger. The reduced system
moves according to the Hall law.

1. Introduction

In his seminal paper! Laughlin argued that the Fractional Quantum Hall Effect?
could be explained as condensation into a collective ground state, represented by
the lowest-Landau-level wave functions

f(z)e 12/, 1)

where the complex N-vector z denotes the positions of N polarized electrons in the
plane; f(z) is analytic. The fundamental operators are 2f = zf, and Zf = 20, f
satisfy [5, Z] = 2. The quantum Hamiltonian only involves the potential V(z, z)
suitably quantized with the choice of an ordering for the non-commuting operators
Z and Z.

Our results® presented here say that the Laughlin picture can actually be ob-
tained from first principles, namely using the two-fold central extension of the
planar Galilei group. This latter has been known for some time,*5 but has long
remained a kind of curiosity, since it had no obvious physical use: for a free parti-
cle of mass m, the extra structure related to the new invariant k leaves the usual
motions unchanged, and only contributes to the conserved quantities.? 6 Let us

*Talk given by P. A. Horvathy at the Joint APCTP- Nankai Symposium. Tianjin (China),
Oct.2001
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mention that our “exotic” theory is in fact equivalent to Quantum Mechanics in
the non-commutative plane,” with non-commutative parameter 6 = k/m?.

Coupling an “exotic” particle to an electromagnetic field, the two extension
parameters, k and m, combine with the magnetic field, B, into an effective mass,
m*, given by (4); when this latter vanishes, the consistency of the equations of
motion requires that the particle obey the Hall law. Interestingly, for m* = 0,
Hamiltonian reduction® yields the “Chern-Simons mechanics” considered before by
Dunne, Jackiw and Trugenberger.® The reduced theory admits the infinite symme-
try of area-preserving diffeomorphisms, found before for the edge currents of the
Quantum Hall states.1?

2. Exotic particle in a gauge field

Let us consider the action
Lom 0,
/(P—A)-dx—hdt+—2-p><dp, (2)

where (V, ff) is an electro-magnetic potential, the Hamiltonian being h = p2/2m +
V. The term proportional to the non-commutative parameter  is actually equivalent
to the acceleration-dependent Lagrangian of Lukierski et al.®The associated Euler-
Lagrange equations read

* -
mxT; =p; — m05ijEj,

. . 3)
Pi = E; + Begjag,
where we have introduced the effective mass
m* =m(l —6B). (4)

The velocity and momentum are different if § # 0. The equations of motions (3)
can also be written as

0 6 1 0
-0 01
. oh
[ = Q[ hy a) — .
waplp 2. where (wap) 10 0 B (5)
0 -1-BO0

Note that the electric and magnetic fields are otherwise arbitrary solutions of the
homogeneous Maxwell equation 0, B + €;;0; E; = 0, which guarantees that the two-
form w = %wagdéa A d€g is closed, dw = 0.
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When m* # 0, the determinant det (wqg) = (1 — 0 B)> = (m* /m)2 is nonzero
and the matrix (wag) in (5) can be inverted. Then the equations of motion (5) (or
(3)) take the form £, = {€a,h}, with the standard Hamiltonian, but with the new
Poisson bracket {f, g} = (w™1)ap0af0s9 which reads, explicitly,

{fg}=m[(9f 8g 0Oy Of

m*
Of 69 _ 9g of (‘9_f§9__39_§£>]
+0<3m1 Bzs  Om1 61‘2)+B 9103 OpiOpa )]

Further insight can be gained when the magnetic field B is a (positive) nonzero
constant, which turns out the most interesting case, and will be henceforth assumed.
(The electric field E; = —;V is still arbitrary). Introducing the new coordinates

m*
I—Vﬂ “ii D
m*

1
P = P EBSij Qj»

(6)

1

Qi=$i+B

(7)

will allow us to generalize our results in Ref. 3 from a constant to any electric field.
Firstly, the Cartan one-form!? in the action (2) reads simply P;dQ; — hdt, so
that the symplectic form on phase space retains the canonical guise, w = dP; AdQ;.
The price to pay is that the Hamiltonian becomes rather complicated.
The equations of motion (3) are conveniently presented in terms of the new
variables Q and the old momenta p, as

: E; m ; E;
e (3 5).

—. B (8)
h; = €i; B vj =k .
LA gy <m EJkB>
Note that all these expressions diverge when m* tends to zero.
When the magnetic field takes the particular value
1
B= Bc =
; ©

the effective mass (4) vanishes, m* = 0, so that det(wag) = 0, and the system
becomes singular. Then the time derivatives £, can no longer be expressed from
the variational equations (5), and we have resort to “Faddeev-Jackiw” reduction.’
In accordance with the Darboux theorem (see, e.g., Ref. 12), the Cartan one-form
in (2) can be written, up to an exact term, as

1 1
¥ — hdt, with 9= (pi— §BC €ij T;)dz; + §0€ij pidp; = PdQ;,  (10)

where the new coordinates read, consistently with (7),

1
Qi=1xi+ B EiiPi» (11)
[
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while the P, = —%Bc €i5 Q; are in fact the rotated coordinates ;. Eliminating
the original coordinates £ and 7 using (11), we see that the Cartan one-form
reads P,dQ; — H(Q, p)dt, where H(Q,p) = 52/(2m) + V (@, p). As the p; appear
here with no derivatives, they can be eliminated using their equation of motion
8H(Q,5)/05 = 0, i. e., the constraint

P EijEj

— — === 12

m "~ B, (12)
A short calculation shows that the reduced Hamiltonian is just the original poten-
tial, viewed as a function of the “twisted” coordinates @, viz.

H=V(Q). (13)

This rule is referred to as the “Peierls substitution”.®® Since 82H/0p;0p; = ;j/m
is already non singular, the reduction stops, and we end up with the reduced La-
grangian

red Q X Q V(Q) (14)

supplemented with the Hall constraint (12). The 4-dimensional phase space is hence
reduced to 2 dimensions, with @; and @2 in (11) as canonical coordinates, and
reduced symplectic two-form wyeq = %Bc £4jdQ; N dQ; so that the reduced Poisson
bracket is

1 /8F G OG OF
(.6} =5 (55; 5; ~ 30; 93) 1s)
The twisted coordinates are therefore again non-commuting,
1
{Q1.Qs}, = —0= 5 (16)
c

The equations of motion associated with (14), and also consistent with the Hamilton
equations Q; = {Q;, H }red, are given by
E;

= &= B
in accordance with the Hall law (compare (8) with the divergent terms removed).

Putting B, = 1/6, the Lagrangian (14) becomes formally identical to the one
Dunne et al.? derived letting the real mass go to zero. Note, however, that while @
denotes real position in Ref. 9, our Q here is the “twisted” expression (11), with
the magnetic field frozen at the critical value B, = 1/6.

(17)

3. Infinite symmetry

It has been argued!! that the physical process which yields the Fractional Quantum
Hall Effect actually takes place at the boundary of the droplet of the “Hall” liquid:
owing to incompressibility, the bulk can not support any density waves, but there
are chiral currents at the edge. These latter fall into irreducible representations
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of the infinite dimensional algebra W11 e0,'? which is the quantum deformation of
Woo, the algebra of classical observables which generate the group of area-preserving
diffeomorphisms of the plane.

Our reduced model is readily seen to admit ws,, the classical counterpart of
W10, as symmetry. To see this, let us remember that, as argued by Souriau,'? and
later by Crnkovic and Witten,!3 it is convenient to consider the space of solutions of
the equations of motion (Souriau’s “espace des mouvements” [= space of motions|),
denoted by M. For a classical mechanical system, this is an abstract substitute for
the classical phase space, whose points are the motion curves of the system. The
classical dynamics is encoded into the symplectic form Q of M. It is then obvious
that any function f(¢) on M is a constant of the motion. (When expressed using
the positions, time, and momenta, such a function can look rather complicated).
Any such function f(¢) generates a Hamiltonian vectorfield Z# on M through the
relation

—0uf = Qu2". (18)

The vector field Z# generates, at least locally, a 1-parameter group of diffeo-
morphisms of M. All diffeomorphisms of M which leave the symplectic form
invariant form an infinite dimensional group, namely the group of symplectomor-
phisms of M. Any symplectic transformation is a symmetry of the system : it
merely permutes the motions curves.

For the reduced system above, the reduced phase space is two dimensional. The
space of motions is therefore locally a plane. (Its global structure plainly depends
on the details of the dynamics). Now, for any orientable two dimensional manifold,
the symplectic form is the area element; it follows that the reduced system admits
the group of area-preserving transformations as symmetry.

4. Quantization

Let us conclude our general theory by quantizing the coupled system. Again, owing
to the exotic term, the position representation does not exist.
Introducing the complex coordinates

2= %—E(Ql-i-in) +\/L§(—iP1+P2)

VB . 1 .

w = —2-—(Q1 —’LQ2) + ﬁ( —iP -—Pz)
the two-form dP; AdQ; on 4-dimensional unreduced phase space becomes the canon-
ical Kihler two-form of C?, viz w = (2i)~!(dz A dz + dw A dw). choosing the an-
tiholomorphic polarization, the “unreduced” quantum Hilbert space, consisting of
the “Bargmann-Fock” wave functions

(19)

¢(Z, Z,w, ’ll_)) = f(z’ w)e—%(zz-}-wu‘))’ (20)
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where f is holomorphic in both of its variables. The fundamental quantum opera-
tors,

2f=2f, 3f=20.1,
Of = wf,uf =20,

satisfy the commutation relations [%,%] = [@,@] = 2, and [2,@] = [Z,8] = 0.

We recognize here the familiar creation and annihilation operators, namely a} = z,

a;, = w, and a, = 8, ay, = Oy. Using (7), the (complex) momentum p = p; +ip2

and the kinetic part, hg, of the Hamiltonian become, respectively,

mB _ B
w

d hy =
m* an 0 2m*

(21)

p=—i (22)

For m* 79 0 the wave function satisfies the Schrodinger equation 18, f = h f, with
h(] + V. The quadratic kinetic term here is

/\

-~ B o~ o~y B o~
ho = W(ww +W D) = ﬁ(ww +1). (23)

The case when the effective mass tends to zero is conveniently studied in this
framework. On the one hand, in the limit m* — 0, one has

z—VBQ, w— 0, (24)

where Q = Q1 +1Qs, cf. (7); the 4-dimensional phase space reduces to the complex
plane. On the other hand, from (22) and (21) we deduce that

m*

mB p=
The limit m* — 0 is hence enforced, at the quantum level, by requiring that the
wave functions be independent of the coordinate w, i.e.,

&

1

— 28, (25)

8wf - 07 (26)
yielding the reduced wave functions of the form
U(z,2) = f(z)e” 3%, (27)

where f is a holomorphic function of the reduced phase space parametrized by z.
When viewed in the “big” Hilbert space (see (20)), these wave functions belong, by
(23), to the lowest Landau level. %314

Using the fundamental operators Z an Z given in (21), we easily see that the
(complex) “physical” position z = z; + iz2 and its quantum counterpart Z, namely

w=\/—%;<z+\/gu7), EZ\/;;(“'\/gza‘U)’ (28)

manifestly diverge when m* — 0. Positing from the outset the conditions {26) the
divergence is suppressed, however, leaving us with the reduced position operators

5f=0f=—=2f 3f=0Qf=

1 2
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whose commutator is [@,5] = 2/Bg, cf. (16). In conclusion, we recover the “Laugh-
lin” description (1) of the ground states of the FQHE in Ref. 2. Quantization of
the reduced Hamiltonian (which is, indeed, the potential V(z, Z)), can be achieved

using, for instance, anti-normal ordering.

9,14
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We give a brief summary of our recent works on the three-state chiral clock model. In
these works, we use improved effective field theories with clusters being strips, infinite in
the chiral direction and finite in the non-chiral direction. Hence, effective-field transfer
matrix methods can be employed in these studies. The effective fields are determined
by the Gibbs-Bogoliubov free energy variational principle, leading to Weiss or Bethe
approximations in different studies respectively. By systematic improvement of these
approximations, i.e. widening the strips, these studies point to the conclusion that there
is no Lifshitz point existing at finite non-zero chirality.

1. Introduction

The three-state chiral clock model was introduced independently by Ostlund! and
Huse.? It is the simplest model with only nearest-neighbor interactions which
exhibits spatially modulated phases. These spatially modulated phases occur
diversely in physical systems.?> The reduced Hamiltonian for this model on the
two-dimensional square lattice is

27 27
—BH({ni;},A) = | Ky cos = (i =g +A) + Kicos —(nij—nirj) |
%J

(1)
where 8 = 1/kgT. From the symmetry within this model, we can restrict ourselves
to 0 < A < 1/2 without losing generality. Ostlund used free-fermion analysis,
which is valid for low temperature and A close to 1/2, to show that there are
incommensurate phases in this model. This fact makes the model interesting for
the study of commensurate-incommensurate phase transitions and hence it has
been the focus of considerable theoretical efforts.

*This work has been supported in part by NSF Grants No. PHY 97-22159, PHY 97-24788 and
PHY 01-00041.
tEmail address perk@okstate.edu
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The model (1) has been studied by finite-size scaling methods,*® Monte-Carlo
simulation,® hierarchical lattice approximation,!® Monte-Carlo renormalization
group! and series expansion methods.!?-1* Important analytical predictions using
domain-wall arguments and general topological ideas also have been presented.!>17
In spite of all these efforts, several features remain controversial, for example, the
existence of a Lifshitz point at A # 0 in the phase diagram of this model. Haldane et
al.,’® Schulz,'® and Von Gehlen and Rittenberg” argue against the idea of a Lifshitz
point at A # 0, while Howes,'? Huse and Fisher,'” Selke and Yeomans,® Duxbury
et al.,* and Martins and Tsallis'® are presenting arguments for it. Apart from this
controversy over a qualitative feature, there are also uncertainties concerning the
nature of various phase transitions in this model.

In order to shed more light on these problems, we used improved effective field
theories with clusters to be taken as strips which are infinite in the chiral direction
and finite in the non-chiral direction. This treatment is equivalent to separating the
original two-dimensional square lattice into many identical decoupled strips with
effective fields on their boundaries and treating interactions within them exactly.
Effective-field transfer matrix methods!® can be successfully used in such strip-
related calculations.

Obviously, within an improved effective field theory, we have to pay serious
attention to

i) how to put the effective fields on the boundary (so as to partially include the
effects of the out-of-cluster part of original system) and

it) how to relate the typical order parameters of the finite-strip system to ones of
the original system.

These two aspects determine whether the approximate critical points obtained will
be converging to the true ones and how fast the convergence will be. Currently,
the most-commonly used effective field theories employ the Gibbs-Bogoliubov free
energy variational principle, resulting in the Weiss and Bethe approximations. It has
been found that even an infinite chain with effective fields (which are determined
from free energy considerations) on the boundaries can qualitatively improve the
simple effective field results.1®

More interestingly, as advocated by Suzuki, it is possible to apply the coherent
anomaly method (CAM)!® to well-chosen sequences of effective field theories. By
systematically treating wider and wider strips—i.e. more and more interactions are
treated exactly—one obtains better and better approximations to the exact phase
diagram of the original physical system and an excellent extrapolation to the exact
results can be expected from these successive approximations, if the strips become
wide enough.

This paper is organized as follows. In Section 2, we present our analysis of
effective field theories based on the Gibbs-Bogoliubov free energy variational
principle.?° In Section 3, we first show how the approximate wavevector-dependent
susceptibility is obtained in two series of effective field theories with either Weiss or
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Bethe approximations, resulting in two series of Lifshitz point approximants. From
these a new series is constructed showing that possibly no Lifshitz point exists at
finite (non-zero) chirality.?! A brief summary is given in Section 4.

2. Effective Field Theory from Free Energy Considerations

The approximate free energy Fyr is obtained by the use of the Gibbs-Bogoliubov
inequality

F<Fyr = min(Fg + <H — H())), (2)

where F is the exact free energy of the original system with H being the original
Hamiltonian. Hy is a trial Hamiltonian and Fy is the exact free energy of the system
defined by Hp. The average (- --) is carried out in the ensemble defined by Hy and
this convention will be used throughout this paper. For boundary spins, it is more
convenient to introduce the vector notation

27 . 2w
Si; = (cos 3 Mo Sin ?ni,j) . (3)
H is given in Eq. (1) and Hy is defined as follows:

2T
—BHy = ZK" cos —3-(ni,j —Nij+1 +A)
]
N,—1(p+1)N-2 o
n Z Z Z K cos '§‘(nk,j ~ Nk41,5)
p=0 k=pN J
No.—1 L—1

+ Z Z Ky, - (SpN—l,p’L+k + SpN,p’L-Hc)a (4)
p,p'=0 k=0

where 0 <4 < N;N —1,0 < 7 < N,L — 1, periodic boundary conditions are
imposed on both directions, and 3 = 1/kgT. The trial Hamiltonian Hy consists of
N, independent strips of width N and length N,L with effective boundary fields
{n; = (n1,m52)} having period L to replace the exact interactions between strips.
To find a good approximation for the free energy, we use Eq. (2) to find the minimum
conditions which {7;} should satisfy. The necessary minimum conditions can be
simplified as

n,; = (So,;) = my. (5)
The corresponding approximate free energy per site fyp can be given as
L1
fMF=f0+NIfﬂ 20(277j'mj—mj'mj), (6)
G=

where fj is the free energy per site of the system defined by Hy and can be calculated
by the effective transfer matrix method.!® 20
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It is easy to see that the effective fields in our trial Hamiltonian are essentially
the thermal averages of the strip boundary spins whose configuration can be used
to characterize the related phase. Egs. (5) can be solved by iteration methods and
interested readers can consult our full paper?® for technical details. From physical
considerations, we may expect three types of solutions to Egs. (5), i.e.

i) the disordered solution with (f = 0),
i) the ordered solution with (7 # 0) which can be obtained by setting L =1 in
Egs. (5), and
i45) modulated solutions with unequal effective fields, i.e. L > 1.

The thermodynamically stable phase is the one that gives the absolute minimum
free energy for all different solutions with all possible L. Hence, for 0 < A <
1/2, we can expect that the disordered solution gives the lowest approximate free
energy for the disordered phase and the ordered solution for commensurate phase.
In the modulated phase, one of the modulated solutions should give the lowest
approximate free energy and the choice of solution may vary from point to point.

The numerical results are summarized as follows. We obtain Ay (1) = 0.3143,
Ar(2) ~ 0.2883, AL(3) =~ 0.2770, AL(4) =~ 0.2709 for K, = K; and Ap(1l) ~
0.2258, Ar(2) < 0.2156 for K, = 10K,, where the notation Ar(N) is used to
denote the approximate Lifshitz point from the effective field theory for a strip of
width N. Hence, we can safely claim that the Lifshitz point AL(N) located by
this approximation is systematically decreased when the width N becomes larger.
The result for different ratios of K,,/K; also coincides with our intuition that the
larger K, /K; leads to faster convergence. Its possible explanation is discussed in
our papers 20 and 21.

As reviewed by Wu,?2 simple mean-field theory predicts a first-order phase tran-
sition in the three-state Potts model, which is equivalent to the A =0 three-state
chiral clock model. Qur effective field theory with finite-width strip also predicts
a first-order phase transition for 0 < A < % which is characterized by a sudden
change of spin profiles (described by the thermal average of the central-row spins
in our eflective field theory) due to the discontinuity of the effective fields when the
system crosses the critical point. However, this artificial feature of the effective field
theory can be overcome by systematically improving the effective field approxima-
tion.?® When N — oo, these effective fields {n,} (which are non-vanishing but have
no direct physical meanings in the original problem) should give an infinitesimally
small effect on the spin profiles (which should approach zero) and on the specific
heat. Hence, the extrapolation of these effective field approximations would be able
to give the correct nature of the phase transition, i.e. a continuous phase transition.

3. Effective Field Theory from Susceptibility Considerations

When the system changes from the disordered phase into the incommensurate phase
as the temperature is lowered, the peak of the wavevector-dependent susceptibility
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also changes into a divergence. Hence, we only have to approximate the wavevector-
dependent susceptibility in the disordered phase. We take the trial Hamiltonian of
one strip in the disordered regime as follows:

N
—BH' = —BH + KchZcos (%rm,j —jQ)
7 i=1

+ Km; [cos (-23—7rn1,j - jq) + cos ('231r'nN,j - jQ)] ()

where H is a restriction of the exact Hamiltonian taking precisely all its terms within
the strip, and where 7 denotes the amplitude of the modulated effective boundary
fields, h the amplitude of the auxiliary external bulk fields, and ¢ the wavevector of
the external field and modulated effective boundary fields along the chiral direction.
(In the disordered phase and with a weak field condition, we can expect the response
of the spin average to be characterized by the same wavevector ¢ because of the
symmetry of H and H'|,—g =0 under translation. When we introduce our Weiss and
Bethe effective-field approximations, the effective fields should be characterized by
this wavevector ¢ as well.) Meanwhile, because most of the previous understanding
has come from the study of the Hamiltonian limit, which corresponds to either
K,/K; — 0 or K,/K; — 00,5781214 it is kind of natural for us to keep K, /K
general.

Since in all calculations below we take ensemble averages based on H' and often
with both 7 and h being zero, we use (---) to denote the statistical average with
ensemble based on H' and (- - )¢ to denote (- - -)|4=0,n=0. For convenience, we also
define quantities Q¢ and Q5 ; as follows:

exp (i?—Tan,o), if N=2m+1,
Qe = % [exp (i%rnm,g) + exp (i—zgnmﬂ,o)] , if N =2m, ®)
Qs,; = % [exp (1—232711,]-) + exp (i%EnN,j)] . (9)

These quantities have a direct interpretation: @ is the spin in the middle row of
the 0-th column, if the number of rows N is odd. If the number of rows IV is even,
we take the average over the two middle rows. Qs ; is the average of the two spins
in the boundary rows i = 1 and ¢ = N of the j-th column (j = —o0, - -+, 00).

We put the self-consistency conditions

Q) =7 for Weiss approximation, (10)
(Qc) = (Qs,0) for Bethe approximation. (11)

The wavevector-dependent susceptibility has a peak located at g, which gives
an approximation to the characteristic wavevector of the corresponding correla-
tion function. By some tedious calculation, the critical point that demarcates the
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paramagnetic-incommensurate phase transition can be located from

min (1 - K, E (Q.Q5,5)0 exp(ijq)) =0 for Weiss approximation, (12)
q -
J

mqinz ((Qaongyj)g - (QCQg’j)o) exp(ijg) =0 for Bethe approximation, (13)
J

where the minimum condition is over all ¢g. The corresponding q,, will give an
approximation to the wavevector g, characteristic of the correlation function at the
phase transition point. Here and in the following we write X = K; and K. = Ky,
its value at the critical point separating the disordered and modulated phases. K,
and K, vary proportionally.

In both approximations, the susceptibility near K. (K < K.) can be presented
in the form

><='>Z/(%E - 1). (14)

where ¥ is the coherent anomaly coefficient and has been worked out for both
cases.?!

From the above, we can obtain two series of approximations. However, both
series are short and hence difficult to extrapolate. To circumvent this problem, we
construct a new extrapolation method as follows.

If there exist two sequences {a(n)} and {b(n)}, which satisfy

) limy—o0 a(n) = ¢, limy, 00 b(n) = ¢ and a(n), b(n) # c for any n,
i) limno0 (a(n + 6n) — a(n))/(b(n + én) — b(n)) exists and is not 1,

it is possible to construct a third sequence {c¢(n)} with lim, . c(n) = ¢ by

o(n) = a(n + 6n)b(n) — a(n)b(n + én)

a(n + én) — a(n) — b(n + én) + b(n)
Under certain conditions, we can expect that the sequence {c(n)} will converge
faster than either {a(n)} or {b(n)}.
We find that this new construction works very well for the square lattice Ising
model and Potts cases with various ratios of K,/K;.?* Here we only present the
Potts model results, i.e. the case with A = 0 and K,, = K, in Table 1, where

(15)

Table 1. Table of T}, Tw and Th.
N 3 4 5 6 7
Ty 1.56208 1.55004 1.54073 1.53471 1.52965
Tw 1.65702 1.62624 1.60251 1.58794 1.57563
Th 1.5010 1.4992 1.4974

critical temperature T,(N) is obtained by Bethe approximation, Ty (N) by Weiss
approximation, N being the width of the finite strip, and T,(N) is obtained by
Eq. (15) with 6N = 2. The exact value for N = oo is T¥ = 1.4925. We clearly
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see good convergence of series {T,(N)}. We have also used this construction to
find the range of critical temperatures for A # 0.2! More interestingly, we use this
construction to find the characterizing wavevector along the critical line.

As is well-known,* we should be able to get phase transition information through
the analysis of the wavevector at the phase transition point. If a Lifshitz point Ay,
exists at finite chirality, the characterizing wavevector along the critical line should
vanish for A < Ay. Although we are not sure how this Lifshitz point Ay will
depend on K,,/K;, old works% 11,12 indicate that there is no big dependence of Ay,
on K,,/K;.

Two cases with K,, = 10K; and K,, = 100K; at A = 0.05 have been studied.
The results for the two cases are similar, so we only present in Table 2 the results
for the case with A = 0.05 and K, = 100K}, where the reduced critical wavevector

Table 2. Table of Gy, w and §n.
N 3 4 5 6 7
gw 0.0463680 0.0402710 0.0353594 0.0320544 0.0291924
dp 0.0362354 0.0314054 0.0276127 0.0250293  0.0228355
gn  —0.00038 0.00069 0.00099

is defined by ¢ = 3q/(27A). Here, gn(N) is obtained by Bethe approximation and
dw{N) by Weiss approximation, where NV is the width of the finite strip, and §.(NV)
is obtained by Eq. (15) with d NV = 2. These calculations for the wavevector need
an accuracy of 10~8 for ¢. Higher accuracy will be needed for smaller A and our
numerical values would not have been reliable enough then.

Although we only have three members in this new sequence {¢n(N)} and we
cannot make a very conclusive case, it looks very tempting to say that this sequence
will converge to the true §. from below. Compared with previous results for Ay, to
be around 0.25 to 0.40,%11:12 we have A < 0.05. Hence, we may conclude that
even for a very small A the wavevector at the transition point is non-zero. This
means that the transition should be from the paramagnetic to the incommensurate
phase and that possibly no Lifshitz point exists at finite chirality at all.

4. Summary

In the above sections, we have used two different methods to approach the problem
whether a Lifshitz point exists in the two-dimensional classical three-state chiral
clock model at finite non-zero chirality. The first method gives more information
about the general phase diagram, whereas the second method seems to more reliably
determine the boundary of the disordered phase. However, both extrapolations
together consistently indicate that most likely no Lifshitz point exists in this model
at finite non-zero chirality. A study of somewhat wider strips on more powerful
computers may take away all remaining doubt.
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We show how growth by agglomeration can be described by means of algebraic or differ-
ential equations which determine the evolution of probabilities of various local configu-
rations. The minimal fluctuation condition is used to define vitrification. Our methods
have been successfully used for the description of glass formation.

1. Introduction

In a series of papers published during the past ten years,! ™ new models of growth

by agglomeration of smaller units have been elaborated, and applied to many im-
portant physical systems, such as quasicrystals,® fullerenes,% 7 and oxide and chalco-
genide glasses.® 1! Here we shall present the main ideas on which these models are
based, and briefly discuss the latest developments.

In order to make our presentation concise, the example we choose is the sim-
plest covalent network glass known to physicists, the binary chalcogenide glass
AszSe(1_z), where x is the concentration of arsenic atoms in the basic glass-former,
which in this case is pure selenium. The generalization to other covalent networks,
e.g. GegSen_g), is quite straightforward. These glasses (in the form of thin and
elastic foils) are used in photocopying devices.

Whether the formation of a solid network of atoms or molecules occurs in a
more or less rapidly cooled liquid, or as vapor condensation on a cold support, the
most important common feature of these processes is progressive agglomeration of
small and mobile units (which may be just single atoms, or stable molecules, or even
small clusters already present in the liquid state) into an infinite stable network,
whose topology can no longer be modified unless the temperature is raised again,
leading to the inverse (melting or evaporation) process.

To describe such an agglomeration with all geometrical and physical parameters,
such as bond angles and lengths, and the corresponding chemical and mechanical

*Email: rk@ccr.jussieu.fr
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energies stored in each newly formed bond, is beyond the possibilities of any rea-
sonable model. This is why stochastic theory is an ideal tool for the description
of random agglomeration and growth processes. Instead of reconstructing all local
configurations, it takes into account only the probabilities of them being found in
the network, and then the probabilities of higher order, corresponding to local cor-
relations. This is achieved by using the stochastic matriz technique. A stochastic
matrizc M represents an operator transforming given finite distribution of proba-
bilities , [p1,p2, ..., pn] , into another distribution of probabilities, [p}, Dy, .., oyl It
follows immediately that such a matrix must have only real non-negative entries,
each column summing up to 1.

The algebraic properties of such matrices are very well known. The main fea-
ture that we shall use here is the fact that any stochastic matrix has at least one
eigenvalue equal to 1. The remaining eigenvalues have their absolute values always
less than 1. This means that if we continue to apply a stochastic matrix to any
initial probability distribution, after some time only the distribition corresponding
to the unit eigenvalue will remain, all other contributions shrinking exponentially.
This enables us to find the asymptotic probability distribution.

In what follows, we identify these probability distributions with stable or meta-
stable states of the system, fixing the statistics of characteristic sites in the network.
Taking into account Boltzmann factors (with chemical potentials responsible for the
formation of bonds), we are able to find the glass transition temperature in various
compounds. In particular, one is able to predict the initial slope of the curve Ty(c),
i.e. the value of (dT,/dc)c—p.' %13

2. Stochastic matrix describing cluster agglomeration

Consider a binary selenium-arsenic glass, in which selenium is the basis glass former,
and arsenic is added as modifier (although its concentration can be as high as
30%). The chemical formula denoting this compound is As.Se(;_.), where c is the
As concentration. In a hot liquid, prior to solidification, the basic building blocks
that agglomerate are just selenium and arsenic atoms, indicated respectively by
(—o—) and (%) When the temperature goes down, clusters of atoms start to
appear everywhere, growing by agglomeration of new atoms on their rim. Consider
a growing cluster: one can distinguish three types of situations (we shall call them
“sites”) on the cluster’s rim. The concentration of free As atoms in the liquid will
be called ¢ and that of Se, (1 — ¢).

Two choices are possible for constructing the states and transition matrix (see
Ref. 14). There are three possible kinds of sites: a selenium atom with one unsatu-
rated bond, and an As atom presenting one or two free bonds; these are indicated
by z =o— y= < and z = e—. To each site one of the two basic cells can attach
itself, reproducing one of the initial configurations, in the specific combinations
shown in the next column of the Figure 1. The attachment of one single basic cell,
or the saturation of one single bond, is a step in the evolution. In the second choice,
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each step is obtained by the complete saturation of all the bonds at the rim, so that
only two types of sites (denoted by = and y) are seen on cluster’s rim, assuming
that the growth is of dendritic type (no small rings present). It can be shown!4 that
the two approaches lead to the same results, which may be considered as a proof
of the ergodicity of the proposed model. We shall choose the second version of the
model for the sake of simplicity. In this case, we can take into account only the z
and y-type sites, because the z-type sites transform after the next agglomeration
step into an z or y type site. The elementary step in the agglomeration process,
described by he transition matrix, corresponds now to the complete saturation of
all the available free bonds on the rim. This is represented in Figure 1 :

—0--0— X 2(1-c)ec

~0—< y 3ce™"

—g 2x 4(1—c) e
~< y ¢ X+y 12c(l-c)e ™

<
~€< 2y 9c?e 2

Figure 1: States, steps and un-normalized probability factors .

Observing that from the site z only the sites of £ and y type can be produced,
we can forget it and consider the dendritic growth with only two types of sites
appearing all the time. Given an arbitrary initial state (pg, py), the new state results
from taking into account all possible ways of saturating the bonds of the previous
state’s sites by the available external atoms. The un-normalized probability factors
are displayed in the Figure. The non-normalized probability factors can be arranged
in a matrix

2(1—c)e~ 4(1 — c)2e 2 1)
8(1 —c)2e 2 +12¢(1 — c)e™ ™ 12¢(1 — c)e "% 4 18c%e 2
The normalized transition matrix is written as
My, M M, 1-M,
M= T zy) _ ( T yy) 9
(Myw Myy 1= Mee My @
where the entries are obtained by normalizing the columns of the matrix (1).
2(1 — )¢ 3cp
v = G My = P 3
M, 2(1 —¢)€ + 3¢ and ¥ 2(1—¢) + 3cp ®)

where we have introduced the abbreviated notation { = e¢"7€ and u = "~ °.
The eigenvalues of this matrix are 1 and My, — My, = My, — Myz. and the
stationary eigenvector is

() s 32)
pzo sz + Mya: Myz ’
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It can be seen from Figure 1 that on the surface of an average cluster, p, is the Se
concentration and py is the As concentration. Now, the high homogeneity exhibited
by known glass structures suggests that even in relatively small clusters, deviations
from the average modifier concentration ¢ must be negligible. Thus, in the bulk,
the As concentration should be equal to c¢. Therefore, the condition of minimal
fluctuations in the bulk concentration can be interpreted as the glass transition
condition. This means that the asymptotic state is fixed by the external concen-
tration, therefore the above eigenvector must be equal to the average distribution
vector (1 — ¢, c). The solutions are ¢ =0, ¢ = 1 and the nontrivial one
My, 6 —4¢

© Moy + My 12-46-9p° ®)

This equation can be checlied against experiment. For example, we can evaluate
the derivative %—Z = (g—éi ~ for a given value of c. In particular, as ¢ — 0, we can
neglect the As—As bond creation (equivalent to putting z = 0 in (5)), to get

or Ty

dc|,.o In(3/2)’
(where T, is the glass transition temperature of pure Se). This is the present—case
expression of the general formula given by the stochastic approach, the fraction
(3/2) being replaced by (m’/m), where m and m' are the valences of the basic glass

former and of the modifier), remaining in very good agreement with the experimen-
tal data (see Refs. 15-17).

3. Low concentration limit.

The above scheme can be easily generalized to the case of arbitrary valence, say
ma and mp. In that case, the stochastic 2 x 2 matrix has the same form as (2),
but with the entries given by

ma(l—c)¢
mA(l — c)§ -+ mpc ’

mA(l — C)
ma(l —c¢) +mpep’

Mmzzl—Mym: Mwyzl_Myy:

The asymptotic probability has the same form as before, as well as the zero fluctu-
ation condition relating ¢ with T (interpreted as the glass transition temperature).
The derivative of ¢ with respect to the temperature T gives the “magic formula”

de 1 (24— p)€ng — (22 — &) plnp

s : (6
aT T (- 226+ (- ZEuP
where we used the fact that % = —%Un{ , and % = —#% plnp. This defines
the slope of the function Ty(c), which is an important measurable quantity :
dT, (1-2ag)+(1- 22 ) "
- g m
de (74 — p)€Ing — (T2 — &) pinp

138



Stochastic Description of Agglomeration and Growth Processes 1991

The initial slope, at ¢ = 0, is of particular interest. Its expression is very simple,

taking into account that when ¢ = 0, we have also £ = 22 which leads to
dT, Tyo (1 - 2 0
de =T In(mE) 8)
de In(2)

Its value has been checked against the experiment very successfully, in more than 30
different compounds. In some cases the formula does not seem to work well; usually
it comes from the change of valence of certain atoms provoked by the influence of
the surrounding substrate.

One could be worried about the apparent singularity in this formula when m4 =
mp, i.e. when one deals with a mixture of two different glass formers with the same
coordination number. It is not difficult to show that also in such a case a reasonable
limit can be defined, as has been recently suggested by M. Micoulaut.!® As a matter
of fact, suppose that the glass transition temperature of the pure glass-former A
is T40, and that of the pure glass-former B is T,1. We can re-write our minimal
fluctuation condition in a very symmetric manner, invariant with respect to the
simultaneous substitution ma < mp,c (1 —c)and £ & p

c(l—c)[(l,—c)(l—;”—ia—c(l—Z—ju)]=o ©)

Obviously, the “pure states” ¢ = 0 or ¢ = 1 represent stationary solutions of (9)
and can be factorized out. The non-trivial condition for the glass forming is thus

A-g-T2g—cll- =2y =0 (10)

Now, using the limit conditions at ¢ = 0, T, = Ty and ¢ —» 1, Ty = T,
and introducing the generalized Boltzmann factors with the energy barriers for
corresponding bond creations as Fa4, Eap and Egp, we can write

m m
Eap—Eaa=kTpln(=2), Eap—Epp=kTyuln(—2), (11)
ma mp
so that the expressions £ and p at the arbitrary temperature T can be written as
Eap-Fas . Tgo T, Eap-Bpp Tl
(= T S CF = B F S CHF 1)
ma
Substituting these expressions into (7) and taking the limit ¢ — 0, we get
Tg0~Tgi
dTy, _ Tooll = (k) 7 ] (13)
de =07 In(2)
A

It is easy to see now that even when m4 = mpg, this formula has a well defined
timit. Indeed, if we first set mB =1+ ¢, and then develop the numerator and the
denominator of the above equatlon in powers of ¢, then in the limit when € — 0 we
arrive at a simple linear dependence which is in agreement with common sense and
with experiment as well, namely

dT,
dg le=0= Tg1 — Tyo (14)
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This formula is also confirmed by many experiments, e.g. performed on selenium-
sulfur mixtures (where mgy = mp = 2). The deviations from the linear law (14)
observed in the Se — T'e binary glass are explained by the fact of the chemical
properties of tellurium, which changes its valence from 2 to 3 in presence of selenium.

4. The effect of rapid cooling

An interesting extension of this model is obtained when we take into account the
effects of rapid cooling, i.e. when the time derivative of the temperature can no
longer be neglected. The treatment of this problem was suggested in Ref. 20, and
has been solved quite recently.?!

Consider the agglomeration process defined by the above stochastic matrix,
P’ = Mp, with p representing a normalized column (a “vector”) with two entries,
Pz and py = 1 — p;. After one agglomeration step, representing on the average one
new layer formed on the rim of a cluster, we can write

Ap=p' —-p=(M-1)p (15)

Let us introduce a symbolic variable s defining the progress of the agglomeration
process; obviously, s(¢) should be a monotonically increasing function during the
glass transition. If the temperature variation is so slow that the derivative dT/dt =
(dT'/ds)(ds/dt) can be neglected (which is often called the annealing of glass), the
master equation of our model can be written as

—

__op , .
Ap = %As—(M 1)pls

where the variation As represents one complete agglomeration step. If we want to
use real time ¢ as an independent parameter, we should write
4 _Apds _ 228 _ Loy qyp (16)
dt  Asdt As T
We have introduced here the new entity 7 = (ds/dt)~* which can be interpreted as
the average time needed to complete a new layer in any cluster, or alternatively, the
time needed for an average bond creation. Now, if the temperature varies rapidly
enough, the matrix M can no longer be considered as constant. The equation (16)
must be modified according to the well known “moving target” principle. That is,
the total derivative of p with respect to ¢ should read:

i ds . OMdT . di [1, oM .
L o i L Rt Y- L

where we supposed linear dependence of the temperature on time, so that the
derivative dT'/dt can be denoted by constant cooling rate q. In the two-dimensional
case only one component of p'is independent, because p; +p, = 1. Let us choose p,
(whose asymptotic value should be equal to ¢) as independent variable. Then (17)
will reduce to the single equation :

dp, 1 oM, My,
@y _ 2 (Myy—1)py+Myz(1—py)]+q[ oy + o (1~py)] (18)

dt T orT
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where we have used the fact that p, =1—py , Mgy = 1My, and My, =1 M,,,.
What remains is just simple algebra. After a few operations we find the asymp-
totic value of p,, denoted Py, obtained when we set dp, Jdt =10

OMys
oo — My +7q (=)
Y (May + Mye) +Tq<——"’<Mw+Mw’>

(19)

As in the former case, we define the glass transition temperature by solving the zero-
fluctuation condition pJ® = c. The quasi-equilibrium condition thus obtained can
be written in a form displaying an apparent symmetry between the two ingredients
(“A” and “B") of binary glass. As in the previous case (when ¢ = 0), the limit
values ¢ = 0 and ¢ = 1 represent stationary solutions, which is obvious (no local
fluctuations of concentration ¢ are possible when there is no ingredient other than
A or B atoms alone). After factorizing out ¢(1 — c¢), we get

mpg _ ma .
ma(l —c)é + mpec ma(l —c)+mpey
Tq culnu (1—c)€in€
B — 20
T MATB ma(l —c) + mpep)?  ma(l —c)é+mpc)? (20)
where we have used the fact that ﬂg’# = _lnTé’ ﬂg%l = _l_qu# . The

above formula seems quite cumbersome, but it become much simpler in the low
concentration limit, ¢ — 0 Close to ¢ =0 we get
mp Tq mp

=&t 2 Ing =0 (21)

(quite obviously, in the limit ¢ — 1 one gets the same formula switching m4 with
mp and replacing £ by u). Replacing & by the expression (12), we arrive at :

Too—T

[1—(%)%—]+<T>Tu )= (22)

It is easy to see that independently of the ratio mp/ma, for temperatures T' above
T40 we must have ¢ < 0, and vice-versa, during rapid cooling the glass transition
occurs at the temperature T' > Tgg.

The dimensionless combination (7 ¢)/T defines the quenching rate as the prod-
uct of (1/T)(dT/dt) = d(InT')/dt by the time constant 7, characterizing the kinetics
of the agglomeration process, i.e. the average time it takes to create a new bond. It
may depend weakly on the temperature, but for the sake of simplicity suppose it
is constant. It can be determined by comparing formula (22) with the experimen-
tal data. To take an example, let us again consider the selenium-arsenic glass at
¢ — 0 (almost pure selenium with a small addition of As). We know that in this
case Ty — Tgo = 318°K. The formula (22) then gives the quasi-linear dependence
of AT = T — Ty on the quenching rate q: for T, = 328°K (i.e. AT = 10°K) we
get Tq = —10.38; for T, = 3389K (i.e. AT = 20°K) we get 7q = —21.51; for
Ty = 348°K (i.e. AT = 30°K) we get 7q = —32.26, and so forth.
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Finally, if we want to establish the formula for a pure glass-former, without any
modifier, we should take the limit (ma/mp) — 1 and p — £; we then get

T—-Ty T4q Tqo Tho

—Tg—+(-17)%=0 or T-Tp=ATy=—(7q) —:,g,—. (23)
Eventually, the deviations from this simple dependence may indicate that the char-
acteristic time 7 depends on T. This can shed more light on the agglomeration

kinetics in various glass-forming liquids. More details can be found in Refs. 18,21.
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After a short summary on the elliptic quantum group By, )\(g [2) and the elliptic algebra

Uqg,p(5l2), we present a free field representation of the Drinfeld currents and the vertex
operators (VO’s) in the level k. We especially demonstrate a construction of the higher
spin type I VO’s by fusing the spin 1/2 type I VO’s and fix a rule of attaching the
screening current S(z) associated with the g-deformed Zy-parafermion theory. As aresult
we get a free field representation of the higher spin type I VO’s which commutation
relation by the fused Boltzmann weight coefficients is manifest.

1. Elliptic Quantum Group and Elliptic Algebra
1.1. Elliptic Quantum Group B, (slz) [2]

The face type elliptic quantum group By, )\(E’u\[z) is a quasi-Hopf algebra (B, )\(!:\[2 ),
Ay, € S, ®()), a, B, R(\)) obtained as a deformation of the Hopf algebra
(Uq(sl2), A, €, S, R) by the face type twistor F(A) (A € h) satisfying the shifted
cocycle condition®

FOONA @id)F(A) = F® (A + hW)(id @ A)F(N). (1.1)

The “deformation” means that By, A(sly) = Uq(s:\lg) as an associative algebra, but
the coalgebra structure is deformed in the sense Ay (z) = F(A\)A(z)F~1()\) Vr €
U,(sl2), R(N\) = FEY(A\RFI2~1()),etc. The universal R matrix R(\) satisfies
the dynamical Yang—Baxter equation.
RUIDA + ORI WRED (A + hD) = RED R (A + hD)YRID(N). (1.2)
;From this, we obtain the dynamical RLL relation which characterizes B, A(sl2)
Ry (21/22, A + h) Ly (21, M Ly (22, A + V)
= L (22, N LF (21, A + R REy, (21/ 22, N). (1.3)

*A short report on a part of the work done with Robert Weston.!
2We follow the notation in Ref. 2.
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Here L{(2,A) = (v, ®id)RT(N), Riw(21/22,A) = (v,z ® Tw,zp) RT(N),
RT(A) = ¢°®4+48°R(}) in the evaluation representation (7v. ., V;).
Hereafter we use the parameterization A = (r — ¢+ 2)d + (P + 1)h; and A +
= (r+2)d+ (P +hy +1)3h1 (k1 € h). Then the two dimensional representation
(Ty @) 2, ® Ty ,,) of the R matrix, up to gauge transformation, is given by

1
b(u, P+ h1) c(u, P+ hy)
&(u, P+ h1) b(u, P+ hy) ’
1

R*(z,P+h) = R%l)v(l) (z, A+ h)=pT(u)

R*(z,P) = V(l)V(l) (2,A) = R (2, P)lrsre.

— A2u 20 kg * __ 2r + — o {pe?2}* {z"'Hq*z""}
Herez—q yP=q7, T =T—Cp =4¢g andp ('u,)——ZZ {pz}{pq“z} {qzz—l}z ’

{z} = (2;p,¢%) 0 and b(u,s) = [ﬂl's—}yﬁ—:_%ml, c(u,8) = %’ c(u,s) = %%J;%},
b(u, s) = 11 o7 - The symbol [u] denotes the Jacobi theta function [u] = q_z_“%-’i:b;;—
Op(2) = (2 P)oo(P/2P)oo(P; Plocs (2P Ph)oo = [y, inpz0(l — ).
We also use [u]* = [u]|r—r+. These R matrices are nothing but the Boltzmann weight
of the Andrews—Baxter—Forrester (ABF) model. Hence one can regard Bq,A(sﬁQ) as

a central extension of Felder’s elliptic quantum group E; ,(sl3).

1.2. The elliptic algebra U, ,(sl3)

The algebra Uq,p(gb) is an elliptic analogue of the algebra Uq(;‘z) in the formula-
tion via the Drinfeld currents. Our currents E(u), F'(u), K (u) satisfy the following
relations.?

K(u)K (v) = p(u = v) K (v) K (u),
[u—v+ 5]

K(u)E(v) mE(U)K(U)a
S
Kw)F(v) = [——_F—_—]F(@K(u)

[u—v—1"E(w)E() = [u—v+1]"E(v)E(u),
[u—v+1F(u)F(v) = [u—v—1]F(v)F(u),

(@), FO)] = —= (@ 2B w+3) -8l )i (0= 7))
Here p(u) = p**(u)/p* (u), pT*(u) = p*(w)|r—r- and

2r—c 1 2r—c 1
HY*(w)=kK (u+ VK _-
(w)=& (u 2 +2) <ui— 3 2)

with kK = lm ___é(z;p 9)

. (8%2:P1q*) o0 (Pa% 23,9 o
b z K
2—q-2 £(2;p,9) Slepma) =

T (*20,4) 00 P2i0,0 ) 0
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Let us introduce the half currents K*(u), Et(u) and F*(u) by

K% (u) = K(u+ =), (1.4)
o e u—u 1_ Pl*1]*
B =a 7{0 2(71riz’ Bl + ;I)L —u - 1P ]—[ﬂ (15)

dz' 1. [u—u -1+ P+h[l]
Pt = F — = 2 .
() “]{, gmiz T T Y pw s P +h -1

(1.6)

Here C* : |p*q1z| < |2/| < |g72|, C : |pgz| < |2'| < |gz|. @ and a* are the
normalization constants satisfying ';a_ qll =1.

Theorem 1.1: Define the L-operator f+(z) € End VV ® Uq,p(glg) by

e (270) (8 00) (520

Then we have the following RLL-relation.
Rt (21/22, P + h1) Lt (21)L* (22) = LT (22) Lt (21)R*" (21/22, P).  (L.7)

;From this, one can recover the dynamical RLL relation (1.3) in V = W = V1) by
introducing the new L-operator L*(z, P) := L+ (2) ( e%) . In fact, Uq,p(glg)

e @
0
can be regarded as an extension of the algebra By, A(8l2) by an extra element €@ and
imposing the commutation relation [P,e®?] = —e%.% The elliptic algebra Uq,p(glg)

hence provides an alternative formulation of B, ,\(glz) via the Drinfeld currents.

1.3. The vertex operators of Uy p(slz)

(From the spin 1/2 type I and II intertwining operators @8’{,‘;) (2), \11*3’(’{;)('2;) of
Uq(slz), we define the By (slz) intertwiners @3’(’1’;)(z,)\) and \Il*g’gf;)(z,)\) of spin
1/2 as follows.

) (2,0) == (i[d @ myw ) F(A) 0 848 (2) - V(w) — V(v) @ VO,

T (7)) = T () o (myw , ®I)FN) T VO @ V() — V().

Here V(1) is the level k highest weight U, (;Iz) module with the highest weight x4 and

Vz(l) is the [+ 1 dimensional evaluation representation. Furthermore, we can extend
them to the spin {/2 VO’s acting on the Uy ,(slz ) modules V(1) := @, V (1) ®e?
as follows.

O (2) .= @l (2,0) = V(u) - V() o VO, (1.8)
O () 1= T (2, 0)eM®2 VO @ T () = V(). (1.9)
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Then from the intertwining relations of Q("g{f) (2,A) and U2 (2, X), we can derive

Py 1
their analogue for the VO’s of U, ,(slz) as follows.
OB () L*(2) = R oy (2/w, P+ hy) ¥ (2)8O®H) (w), (1.10)
L* (2) 8O0 (w) = OB () T (2) Ry oy (2/w, P — B — RP)1.11)

It is also possible to derive the commutation relations of the VO’s. Especially, the
spin 1/2 type I VO’s satisfy
l: z1 / 22) y

(1.12)

where R(z,s) = PR(z,s), R(z,s) = R*(z,s)p(u)/p*(u), Pa® b = b® a and
W' = Wl'r—)k+2-

Rz, P+ b)) (21) 80 (29) = 3 804 (23)@ 4 (a0) W (:,
I‘l'l

2. Free Field Representation

The CFT limit of the ABF model and its fusion models are described by the coset
(;[2 Yk ® (glg)T_k_z / (3[2 )r—g Virasoro minimal model, which is known to be equiv-
alent to the tensor product of the Zg-parafermion theory and one boson theory
with a certain background charge. Corresponding to this fact, the elliptic algebra
Uq,p(glz) can be realized by using the g-deformed Zg-parafermion theory and one
g-boson theory.

2.1. Drinfeld currents [3]

We use three kinds of bosons satisfying the relations.

[ao,n,GO,m] = 6n+m,ow%, [PO,Q()] _ ig’
(01,0, 01,m] = "+mvow,;—2m’ [P1, Q1] = 2(k + 2),
[@2,n, @2,m] = ~0ntm,0 [2n1£kn], (P2, Q2] = —2k.

We also set ag,, = %lao,n. As usual, it is convenient to introduce the correspond-
ing boson fields.

(4 m-_ Ao P _Am i Dim|

¢;(4; B,C|z; D) = BC(QJ%—PJlogz)+mz¢:o[Bm][cm]a],mz gPim
P; - Am m Cm ¢

657 (4; Blz;.C) = LRCRUIRDY {Bm]]aj,:l:m2¥ ¢“™ (=0,1,2)

m>0

and ¢p(4; B,C|z) = ¢o(4; B, C]z)|r_w*,ao,n_>%,n. We often use the abridgment
¢;(Clz; D) = ¢;(A; A, Clz; D), ¢;(C|z) = ¢;(C|z;0) etc.
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Now let us define the g-analogue of the Zj-parafermion fields ¥(z) and ¥1(z2)
by ¥(z) = U~ (2), ¥¥(2) = I+(2) with

;@—_lq—_T) : exp{i¢2(c|2;i2)}
X(exp{_ (h (1 2z ;;2) + (P (1;2Iz;¢§)}

—exp{ & )(1;2IZ;$5-J2F—2)4= P(MIZ;%Z%)}) g

The Zj-parafermion theory contains the screening current S(z), which commutes
with U*(z) up to the total difference.

= ;lzexp{qbl(k—{—Z‘z; k+2)}

({66 (152fs 257) + o7 (112 )

{525 2) o 13 )

Proposition 2.1: The Drinfeld currents of Uq,p(gl2) at ¢ = k are given by
K(u) = z~m %0271, B(u) = U(z) e *H9, - F(u) = () e%o2).

\Ili(z) =

5(=) =

Then we have,

We regard these currents as the operators acting on the following Fock spaces.
Famis = P Frar ® FE,
M

FiE =Clay, a2y (1 € Zo)] ® e A @ 22
Fon = C[aoz (1 € Zco)] @ eV Froamo,

where agm = 5% + 520y, 1<a<r—-1, 1<m<r—k-1), ap =

Vi o- = —y/ . In fact, E(2) : Famy — Fam-20, F(2) 1 Famuy —
fa—2,m;J7 (z) amJ—>-7:amJ 2.

2.2. The type I vertex operators

2.2.1. The spin-1/2 VO'’s

Let uy = (k — J)Ag + JA; be the level k ;[2 weight. We set J' = J + a (o = +1)
and define the components of the spin 1/2 VO as follows.

pbaried) (y) = gl (2) Z 3%(2) ® ve, (2.13)
e==1

where {ve}.—+ is a basis of the two dimensional representation V(). We realize
®2(z) as an operator ®*(z) : Famy — Fa-emiJta-
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In the case o = +, solving the “intertwining relation” (1.10) with [ = 1, we
obtain @7 (z), after a certain gauge transformation, as follows.*

B+ (z) = ﬁqsm(z) : emth(12be) (2.14)

dz' [u—u'+1+K]
T (z) = Fr(w)dt(z) = ]fc P pa— . T
F,z

F(z')®1(z). (2.15)

Here we set K = P + hy. ¢1,1(2) is the g-analogue of the spin 1/2 parafermion
primary fields. In general, the sipn /2 (I =0,1,..., k) field ¢;;(z) is given by

z;%) - ¢ (l;2,k+2 Z,k——';'—2>} (2.16)

The VO’s &} (z) satisfy the following commutation relation.

Y R(a1/z, K)G2 87, (21)8], (22) = 0/ (wr — u2) @, (22) 7, (21)-

€1,€2

d11(z) = exp {—d)g (l;2,k

with p'(u) = p(u)lr—k+2-

On the other hand, the VO’s ® (z) require an attachment of the Z-parafermion
screening current S(z), because among E(z), F(z), S(z), only S(z) can decrease the
quantum number J. However since the g-deformed Zg-parafermion theory has no
coalgebra structure, we have no definite guiding principle to fix the rule of S(z)-
attachment. We do this by hand for the spin 1/2 VQ’s requiring the commutation
relation (1.12) and extend it to the higher spin VO’s by fusion procedure. We thus
obtain the following realization of the spin 1/2 VO’s.

o7 (2) = fc S o (s 1l [;”__f_"; !

Here [u]’ = [u]|,2r,q2+2 and the contour Cs,, should be chosen in such a way
that the poles 2z’ = gFtlzg?(k+2! (1 = 0,1,2,..) are inside whereas the poles
2 = q F1zq7 20+ (1 = 0,1,2,..) are outside.

(2.17)

2.2.2. Fusion construction of the higher spin VO'’s

We next consider the fusion of the [ spin 1/2 VO’s. For a = Z§=1 o, we set

807(2¢ ) = 3 8 (a2 D)aE (D) 882 (218)
£1,..,8

rei=¢

It turns out that the simplest component @g}l(z) is expressed by using the spin [/2
g-parafermion primary field ¢;;(2)

2D (2¢1) = BF (22002t (202 . 87 (2)

1 U 1-1
= | = | C(2)a(eq' ) : e~ oliklza ™)
(Hé:ﬁ[K —J])
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with C(z) being a function appearing from the normal ordering.

Lemma 2.2: In (2.18), let jo (1 < a < m(< 1)) be integers satisfying o;, = —,
and for other j, a; = +. Then in (2.18) one can move all S(z) in @, (z) to the
right and obtains the expression which has no j, (@ =1,..,m) dependence at all.

3
Z Ez..s

This indicates that the VO’s @2”"‘ (z) have no intermediate-weight-path dependence.
Hence <1>£”"(z) manifestly satisfies the commutation relation for the spin /2 VO’s.

2311(21/22, ngiééﬁ‘“(zl) Doz (z5)

€1,€2
II I - (03]
= Wy,
Z (H ay II—of —

’ !
@y ,0g

where I = P; + 1, Ry; and W}, are the | x I fused ABF Boltzmann weights.

2 /Zz) )% (22)20) (1),
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We compute the survival probability of an initial state, with an energy in a certain win-
dow, by means of random matrix theory. We determine its probability distribution and
show that is is universal, i.e. characterised only by the symmetry class of the hamiltonian
and independent of the initial state.

In classical mechanics, temporal chaos is characterised by the extreme sensibility

of a trajectory to variation of initial conditions. No direct analog of this phenomenon
has been found in quantum mechanics so far. On the other hand, numerical evidence
has been accumulated,! showing that energy levels of a quantum system, whose
classical counterpart is chaotic, have a statistical behavior described by Wigner’s
random matrix theory (RMT), on the mean level spacing scale. The question we
want to address is the following: are there specific predictions of RMT for quantum
dynamics, which would characterise the temporal behavior of ”chaotic” quantum
systems.
We consider the following situation: The system is prepared in an initial state ¢
at time 0, with an energy in a certain window, centered at e and of width 2si(e),
where I(e) is the mean level spacing, and we want to compute the probability to
find our system again in the state ¢, at a later time t. This quantity that we call
the survival probability R is given by

_ (plexpit H P(A)yp) 2
Sl P N @

H is the hamiltonian of our system and P(A) is the spectral projector on A.
We have chosen to take an energy in a range of the order of the mean level spacing in
order to look at properties of the system which are independent of specific details. If

*hkunz@dpmail.epfl.ch
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(Aj, ;) denote respectively the jth eigenvalue and eigenvector of the Hamiltonian
H | then the survival probability can be written as

Zj:l Y5 X;j €Xp 2MiTT;

R=
2 j=1 ¥iXi

2
) ij—l (2)

where

yi = (o, ¥9)I* 3)
and if we define z; by the relation
Aj =e+z;l(e) (4)

1 lf\.’l,‘J‘ S S
0 otherwise

Xi = X(=3,5)(Tj) = { (5)

The Heaviside function © ensures that there is at least one eigenvalue in A.
What appears naturally in this expression is the time measured in units of the
Heisenberg time

h
tg = Te)- (6)
so that
t

If we look at this problem from the point of view of RMT, we will replace the
Hamiltonian by a large N x N self-adjoint matrix, whose probability distribution
is basis independent and therefore of the form

B—W()‘l’m’/\N) dH (8)

Wigner’s gaussian model corresponds to the choice
N
N 2
W=23 X 9)
j=1

The first conclusion to be drawn is that the survival probability is statistically
independent of the initial state . This follows from the fact that the variables
{yj};.vzl have a probability distribution, independent of ¢ and given by:

N N
1 5
pn(y)dy = =8 Syi-1)| [Ty 'dy (10)
j=1 ji=1

The parameter 3 = 1, 2, 4 characterise the symmetry class of the Hamiltonian,
respectively orthogonal, unitary and symplectic. Equation (10) follows easily from
the Haar measure on the corresponding groups. Cy is a normalising constant.
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The variables {z; };V=1 are statistically independent of the variables {y; };Vzl and
have a distribution given by

1
——exp —W (e + xI(e)) AP (x) dx (11)
Dn
where the Van der Monde determinant
A = ] lei—=l (12)
1<i<j<N

comes from the change of variables H;; — ();, i,l)j);.\;l.z Dy is a constant of nor-
malisation.

We can take I(e) = N_pl(a’ where p(e) is the density of states when N = oo.
The problem that we need to solve now is to find the probability distribution of
the survival probability p(R)dR in the N = oo limit. We find that R is not self-
averaging i.e. p(R) is not a delta distribution concentrated on the mean value of
R. On the other hand its probability distribution p(R) is universal, i.e. it depends
only on the symmetry parameter 3, at least for a large class of W.

There are two formulas for p(R), one more appropriate to small windows, another
one to large windows.

In the first case, we decompose p(R) into

p(RID = >~ T pn (RI7) (13

where E, is the probability to find exactly n eigenvalues in A and p,(R|r) is the
conditional probability density of R knowing that there are exactly n eigenvalues
in A.

It can be expressed as

2
n

8 oo
pn(R\T)z/ i!E(wl,...,mn)dnx/ pn{z1,...,20)d"28 | — szexp%ri'ra:j

~s 0 j=1 (14)
- E -
E(xl,...,wn)=—(x—l’—’—mn) (15)
En
E, = E(z1,...,zp)d"z (16)

E(z1,...,%,) being the probability density of finding the n eigenvalues in A at
(Z1,-..,2n).

Useful expressions for E (z1,...,%,) and E, can be found in Refs. 2 and 3. It is
expressible in terms of a determinant
E(z1,...,x,) =det Lg (zilz;) ; (,5)e(l...n) (17)
where
Kp
Lg= 18
A1k 8 (18)
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Kp is an operator whose kernel in the simplest case § = 2 is given by

sinm(z — y)
Ky ) = (19)
defined on L2(—s, s).

Universality comes from the fact that E (z;,...,z,) is expressible in terms of
the correlation functions and the latter ones depends only on 3, for a large class of
W. W modifies only the density of states and therefore the mean level spacing I(e).
This expression for p (R|7) is mostly useful in the small window limit, because when

s—0

Ey ~ 77 4n(1-8) (20)
Moreover in this case we have
: 7 B
ll—lf(l) s"E (sx1,...,5%n) = An H Iz — ;] (21)
1<i<j<n

so that the probability distribution of R shows a scaling behavior

_ 1
lim s_ﬂ_lp’r{ ! R2 Zm} =/ 98(A)dA (22)
50 (m7s) @
R—1

the function gg(A) being given by
950\ = A2 [5\/1—)\+%ln/\—lnl+\/1 —,\] (23)

On the other hand, one can see from eq (13) and (14) that the probability
distribution of R is well defined at infinite times. Namely

o (BI7) = (i) +0 (1) (24

as can be seen by an integration by parts where
2

o] 2r n do. n .
D, (R]00) :/0 tn (21, .. .,zn)/0 H —2%6 R-— Z zje'%s (25)
j=1 j=1

Using an integral representation for the delta appearing in the definition (10) of
the p,, we can reexpress (25) as

Pn (Rloo) = ! /:Hoo du e /0+oo drrJy (\/}—21') [/000 dze " Jo(rz) zg_lr(%')

Amen Je_ico

€ being any positive number, and Jy(z) the Bessel function. This expression can be
simplified, considerably when 8 = 2, 4.
In the unitary case (3 = 2) one finds

n-——l n—3

(1-R)= (27)

Pn (Rloo) =

154



Quantum Dynamics and Random Matriz Theory 2007

For a large window of energy, it is more appreciate to find another expression for
Pn (R|T). It is given as some integral over a Fredholm determinant G.

G is a generating function for the variables {y;} and {z;} appearing in the definition
of R, eq (2).

N
G(r;e;2) = I\}gnoo <exp —z’Nz y;X; [rcos 2mra; + @) + z]> (28)

=1

It can be expressed in terms of the operator Kz appearing in eq (19), when 8 =1, 2
as

N

G = By [det (1+ Kpgf )] (29)
with
Eq = [det (1~ Kp)|® (30)
and g is the multiplication operator by the function
. -1
g= [1 + % [z + rcos(2nTz + go)]] (31)

When the window is large (s >> 1) we can expand the determinant in powers
of Kg, the first two terms of this expansion dominating the other ones.*
One finds that the probability distribution is exponential.
.1 (R
lim ~p| —

$—00 § S

1 R
7') =—= o exp ——— &) (32)
In the orthogonal case (3 = 1), for example

427+ |rlln1+ 2| if 7| <1 (33
°™ =12+ /rm At if || > 1 )

One can notice the singularity at the Heisenberg time T = 1 and the fact that (00)
exists.
However if we smooth out in time R(7), taking for example

— 1 1
R= / R(r)dr (34)
1 — 170 To
then we get a self-averaging gquantity
.1 (R -
i (5) -1 )
with
1 1
g= / dro(r) (36)
T — 70 To

Some numerical work on chaotic billiards,’ in the large window limit, confirm this
exponential distribution. Integrable billiards show a very different behaviour.®
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Finally, we would like to mention the fact that Wigner’s energy level statistics
can be obtained for models, where eigenvalues and eigenvectors are correlated. We
think therefore that the study of quantum dynamics could discriminate between
such models and those we have considered where they are uncorrelated.
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We extend a recent construction for an integrable model describing Josephson tunneling
between identical BCS systems to the case where the BCS systems have different single
particle energy levels. The exact solution of this generalized model is obtained through
the Bethe ansatz.

1. Introduction.

The experimental work of Ralph, Black and Tinkham!?2 on the discrete energy
spectrum in small metallic aluminium grains has generated substantial interest in
understanding the nature of superconducting correlations at the nano-scale level.
Their results indicate significant parity effects due to the number of electrons in
the system. For grains with an odd number of electrons, the gap in the energy
spectrum reduces with the size of the system, in contrast to the case of a grain
with an even number of electrons, where a gap larger than the single electron
energy levels persists. In the latter case the gap can be closed by a strong applied
magnetic field. The conclusion drawn from these results is that pairing interactions
are prominent in these nano-scale systems. For a grain with an odd number of
electrons there will always be at least one unpaired electron, so it is not necessary
to break a Cooper pair in order to create an excited state. For a grain with an even
number of electrons, all excited states have a least one broken Cooper pair, resulting
in a gap in the spectrum. In the presence of a strongly applied magnetic field, it is
energetically more favourable for a grain with an even number of electrons to have
broken pairs, and hence in this case there are excitations which show no gap in the
spectrum.

*email: jrl@maths.ug.edu.au.
femail: keh@dftuz.unizar.es
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The physical properties of a small metallic grain are described by the reduced
BCS Hamiltonian®4

c c
Hpcs = ijnj _gZCL+CL_Cj_Cj+. 1)
Jj=1 ik

Above, j = 1,..., L labels a shell of doubly degenerate single particle energy levels
with energies €¢; and n; is the fermion number operator for level j. The operators
Cit, c;f- .. are the annihilation and creation operators for the fermions at level j. The
labels + refer to time reversed states.

One of the prominent features of the Hamiltonian (1) is the blocking effect. For
any unpaired electron at level 7 the action of the pairing interaction is zero since only
paired electrons are scattered. This means that the Hilbert space can be decoupled
into a product of paired and unpaired electron states in which the action of the
Hamiltonian on the subspace for the unpaired electrons is automatically diagonal
in the natural basis. In view of the blocking effect, it is convenient to introduce

hard-core boson operators b; = ¢;_cj4, b;. =cl, ¢l which satisfy the relations

J+7i—

(B2 =0, [b, bL] = 8;u(1 - 2bb;)

[bj, be] = [b}, B}] =0

on the subspace excluding single particle states. In this setting the hard-core boson
operators realise the su(2) algebra in the pseudo-spin representation, which will be
utilized below.

The original approach of Bardeen, Cooper and Schrieffer® to describe the phe-
nomenon of superconductivity was to employ a mean field theory using a variational
wavefunction for the ground state which has an undetermined number of electrons.
The expectation value for the number operator is then fixed by means of a chemical
potential term u. One of the predictions of the BCS theory is that the number of
Cooper pairs in the ground state of the system is given by the ratio A/d where
A is the BCS “bulk gap” and d is the mean level spacing for the single electron
eigenstates. For nano-scale systems, this ratio is of the order of unity, in seeming
contradiction with the experimental results discussed above. The explanation for
this is that the mean-field approach is inappropriate for nano-scale systems due to
large superconducting fluctuations.

As an alternative to the BCS mean field approach, one can appeal to the exact
solution of the Hamiltonian (1) derived by Richardson and Sherman.® It has also
been shown by Cambiaggio, Rivas and Saraceno’ that (1) is integrable in the sense
that there exists a set of mutually commutative operators which commute with the
Hamiltonian. These features have recently been shown to be a consequence of the
fact that the model can be derived in the context of the Quantum Inverse Scattering
Method (QISM) using a solution of the Yang-Baxter equation associated with the
Lie algebra su(2).%? One of the aims of the present work is to extend this approach
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for application to generalised models. As a specific example, we will show that a
model for strong Josephson coupling between two BCS systems falls into this class.

Recall first that electron pairing interactions manifest themselves in macroscopic
systems via three well known phenomena:

e supercurrents
e Meissner effect
e Josephson effect

As noted by von Delft,? the notion of a supercurrent in a nano-scale system is
inapplicable because the mean fee path of an electron is comparable to the system
size. Likewise, the penetration depth of an applied magnetic field is comparable to
the system size, which prohibits any Meissner effect.

Josephson!! put forth a proposal for the tunneling of electron pairs between
superconductors separated by an insulating barrier. A theory was derived to de-
scribe weak coupling between two superconductors treated at the mean field level in
the grand-canonical ensemble. A remarkable prediction of the theory was that it is
possible for a direct current to flow across the insulator for the case of zero applied
voltage, whereas a constant voltage across the insulator produces an alternating cur-
rent. The essential features of the theory stem from the phase difference between
the superconductors, which is well defined since the variational wavefunctions for
the superconductors have undetermined particle numbers.

For the case of nano-scale systems, the above predictions are again invalid due
to the finite particle numbers for each system, giving rise to phase uncertainty.
However, if we are to consider strong coupling where individual particle numbers
are not conserved, only total particle number, it is appropriate to study the effective
Hamiltonian

L
H = Hpos(1) + Hpos(2) &5 Y (Db +Bi@0(D), ()
i,k

where ¢ is the Josephson coupling energy, for the purpose of investigating the na-
ture of pair tunneling at the nano-scale level. In a previous work!? it was shown that
the above Hamiltonian is integrable for £ ; = g for the case when Hgcs(1), Hpes(2)
have identical single electron energy levels. Below we will extend this construction
to the case where Hpcs(1), Hpcs(2) describe non-identical systems.

2. A universal integrable system.

First we introduce the Lie algebra su(2) with generators St, S~, S* satisfying the
commutation relations

[S%, §%) = +8%, [§F, §7] =25~ (3)
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The Casimir invariant, which commutes with each element of the algebra, has the
form

C =5t~ + 878" +2(5%)°.
Associated with the su(2) algebra there is a solution of the Yang-Baxter equation

in EndV ® EndV ® su(2), where V denotes a two-dimensional vector space. This
solution reads!?

R12(u - ’U)Ll('u.)Lz(’U) = L2(v)L1(u)R12(u - U)
with

2
n

Ru)=IQI+ — m ",

(u) ® +u§ en Den,

m,n
L(u):I®I+-Z(e}®sz—e§®Sz+e§®S—+e§®S+)

where {e’} are 2 x 2 matrices with 1 in the (m,n) entry and zeroes elsewhere.
Above, I is the identity operator and 7 is a scaling parameter for the rapidity
variable u which plays an important role in the subsequent analysis. With this
solution we construct the transfer matrix

t(u) = trg (GoLoc(u — €2)...Lo1(u — €1)) 4)

which is an element of the £-fold tensor algebra of su(2). Above, trg denotes the
trace taken over the auxiliary space and G = exp(ano) with ¢ = diag(l, —1). A
consequence of the Yang-Baxter equation is that [t(u), £(v)] = 0 for all values of the
parameters u and v, and independent of the representations of su(2) in the tensor
algebra. Defining

L u—€;
T; = lim J
u——}e]- T]

t(u)

for j = 1,2,...,L, we may write in the quasi-classical limit T; = 7; + o(n) and it
follows that [7;, 7&] = 0, V4, k. Explicitly, these operators read

L
Ok
Tj=2aS;+Zm (5)
k#j 7
with=St*®5 +5~ ®5t +25%® S=.
We define a Hamiltonian through
1 1 & 1 & 1 &
c 1 L
=-D 25 —=> 575 (7)
j j‘lk
The Hamiltonian is universally integrable since it is clear that [H, 7;] = 0, Vj

irrespective of the realizations of the su(2) algebra in the tensor algebra.
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Realizing the su(2) generators through the hard-core bosons; viz

_ .1
Sf=b;, S;y=bl, Si= 5 =n) (8)

one obtains (1) (up to a constant) with g = 1/« as shown by Zhou et al.® and von
Delft and Poghossian.?

We now turn to applying (7) for the study of two coupled BCS systems. To
accommodate this, it is convenient to first consider three index sets Py, Py, P» such
that individually the BCS Hamiltonians are expressible

L L
HBCS(i) = Z €Ny — g Z b;;bj.
jE(PoUPi) j,kE(PoUPi)

If the single particle energy ¢; is common to both systems, then j € Py. Hence it
is meant to be understood that €; # ¢ # ¢Vj € P,k € P,, 1l € Ps. In the case
that j € Py, the local su(2) operators are described by the tensor product of two
pseudo-spin realisations acting on the four-dimensional tensor product space. We
can now realise (7) in terms of the hard-core boson representation (8)

. _ . . 1 .
S =b;(i), S; =bl@@), Si= 5 =n;(9))
for j € P;, i = 1,2 whereas for j € Py we take the tensor product representation
SF =1b;(1) +5;(2)
— _ t(9
S; = bj(1) +bj(2)
" 1
SF=1- 5 (n;(1) +n5(2).
Under this representation of (7) we obtain (2) with £; = g = 1/a, establishing
integrability at this value of the Josephson coupling energy. For the case when the

index sets Py, P; are both empty, i.e., the two BCS systems are identical, this result
was previously shown by Links et al..10

3. The exact solution.

In addition to proving integrability for £; = g, we can also obtain the exact so-
lution from the Bethe ansatz. Below we will derive the energy eigenvalues for the
Hamiltonian (7) in a very general context, which includes those of (2) withe; =g
as a particular case.

For each index k in the tensor algebra in which the transfer matrix acts, and ac-
cordingly in (7), suppose that we represent the su(2) algebra through the irreducible
representation with spin sg. Thus {S{, S5, Sz} act on a (2si + 1)-dimensional
space. Employing the standard method of the algebraic Bethe ansatz'? gives that
the eigenvalues of the transfer matrix (4) take the form

L M

U — € + NSk u—w; —1n

Aw) = explem) | | — =T =4~
k : J
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S € — NS i u—w;+n
— €k — NSk s
+exp(—a77)H — u—Jw~ .
k J J

Above, the parameters w; are required to satisfy the Bethe ansatz equations
c M
Wy — €x + NSk wp —w; + 1
expan) || —————=-|| ————.
( ]-;‘[wl—ek—nsk lzlwl—wj—n

The eigenvalues of the conserved operators (5) are obtained through the appro-
priate terms in the expansion of the transfer matrix eigenvalues in the parameter
7. This yields the following result for the eigenvalues A; of 7;

£ 25 e 2
A=12 - i
I a+Z€j——6k Z.Ej—'l)i SJ (9)
k#j i
such that the parameters v; satisfy the coupled algebraic equations
£ o M

2 o_ 10
ot Z o (10)

Through (9) we can now determine the energy eigenvalues of (7). It is useful to
note the following identities

M L
ZQZ”’H;Z,C:U;J—SE_ M(M —1)
aM—I—Z]:Ek:vJ_Ek_
M L s M L B c
%:;Uj—ek sz:v]—ek gsk'

Employing the above it is deduced that

L c
Z)\j :2QZS]' —2aM
Ze,,\ = 2azejs, +ZZs,sk—2MZsk——2aZvJ +M(M 1)

J k#j

whlch, combined with the eigenvalues 2s;(s; + 1) for the Cammu‘ invariants Cj,
yields the energy eigenvalues

M c

E=22vj—223kek. (11)
j k

From the above expression we see that the quasi-particle excitation energies are

given by twice the Bethe ansatz roots {v;} of (10).
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In order to specialise this result to (2) at integrable coupling, it is useful to
first make the following observation. For j € Fp, in which case the su(2) algebra
is realised via the tensor product of two hard-core boson representations, it is well
known that the representation space is completely reducible into triplet states and
a singlet state. Note however, that for the singlet state the su(2) generators act
trivially, and hence this state is blocked from scattering in analogy with the blocking
of single particle states discussed in the introduction. Hence the su(2) algebra will
only act non-trivially on the triplet states. In specialising (10,11) to the case of (2),
we need only to set s; =1/2 for j € P1 U P, and s; =1 for j € Py.

4. Conclusion

We have displayed the existence of a general class of integrable systems which
includes the reduced BCS Hamiltonian and a model for strong Josephson tunneling
between two reduced BCS systems. By deriving the models through the QISM we
have also determined the exact solution via the Bethe ansatz. A further application
of this approach is the computation of form factors and correlation functions.® 19
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I will review the finite density algorithm for lattice QCD based on finite chemical po-
tential and summarize the associated difficulties. I will propose a canonical ensemble
approach which projects out the finite baryon number sector from the fermion deter-
minant. For this algorithm to work, it requires an efficient method for calculating the
fermion determinant and a Monte Carlo algorithm which accommodates unbiased esti-
mate of the probability. I shall report on the progress made along this direction with the
Padé-Z3 estimator of the determinant and its implementation in the newly developed
Noisy Monte Carlo algorithm.

1. Introduction

Fermions at finite density or finite chemical potential is a subject of a wide range
of interest. It is relevant to condensed matter physics, such as the Hubbard model
away from half-filling. The research about nuclei and neutron stars at low and high
nucleon density is actively pursued in nuclear physics and astrophysics. The sub-
ject of quark gluon plasma is important for understanding the early universe and
is being sought for in relativistic heavy-ion collisions in the laboratories. Further-
more, speculation about color superconducting phase has been proposed recently
for quantum chromodynamics (QCD) at very high quark density.!

Although there are models, e.g. chiral models and the Nambu—Jona-Lasinio
model which have been used to study QCD at finite quark density, the only way
to study QCD at finite density and temperature reliably and systematically is via
lattice gauge calculations. There have been extensive lattice calculations of QCD at
finite temperature.? On the contrary, the calculation at finite density is hampered
by the lack of a viable algorithm.

In this talk, I shall first review the difficulties associated with the finite density
algorithm with chemical potentials in Sec. 2. I will then outline in Sec. 3 a proposal
for a finite density algorithm in the canonical ensemble which projects out the

*email: liu@pa.uky.edu
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nonzero baryon number sector from the fermion determinant. In Sec. 4, a newly
developed Noisy Monte Carlo algorithm which admits unbiased estimate of the
probability is described. Its application to the fermion determinant is outlined in
Sec. 5. I will discuss an efficient way, the Padé-Zs method, to estimate the Trlog
of the fermion matrix in Sec. 6. The recent progress on the implementation of the
Kentucky Noisy Monte Carlo algorithm to dynamical fermions is presented in Sec.
7. Finally, a summary is given in Sec. 8.

2. Finite Chemical Potential

The usual approach to the finite density in the Euclidean path-integral formalism of
lattice QCD is to consider the grand canonical ensemble with the partition function

Zoo(u) =) Zne N = /DUdetM[U, ule= 5, (1)
N

where the fermion fields with fermion matrix M has been integrated to give the
determinant. U is the gauge link variable and S is the gauge action. The chemical
potential is introduced to the quark action with the e#? factor in the time-forward
hopping term and e™#¢ in the time-backward hopping term. Here a is the lattice
spacing. However, this causes the fermion action to be non-Hermitian, i.e. v M~y5 #
M. As a result, the fermion determinant det M[U] is complex and this leads to the
infamous sign problem.
There are several approaches to avoid the sign problem:

2.1. Fugacity Expansion

It was proposed by the Glasgow group® that the sign problem can be circumvented
based on the expansion of the grand canonical partition function in powers of the
fugacity variable e/,

B=3V

Zeo(w/T,T,V)= Y eHTBzy(T,V), (2)

B=-3V
where Zp is the canonical partition function for the baryon sector with baryon
number B. Zg¢ is calculated with reweighting of the fermion determinant

det MU, p)

det M[T, 0]+~ ®)
Since the reweighting is based on the gauge configuration with y = 0, it avoids the
sign problem. However, this does not work, except perhaps at small i or near the
finite temperature phase transition. We will dwell on this later in Sec. 3. This is
caused by the ‘overlap problem’® where the important samples of configurations in
the x4 = 0 simulation has exponentially small overlap with those relevant for the
finite density. As a result, the onset of baryon begins at 4 ~ m,/2 instead of the
expected My /3 which resembles the situation of the quenched approximation.

Zgo(p) = (
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2.2. Imaginary Chemical Polential

In this approach, the chemical potential is taking an imaginary value yu = iv. The
fermion determinant is real in this case and one can avoid the sign problem.>~” The
partition function is

Zae(iv/T,T,V) = ’n-e—fl/TeiuB/T, )

which is periodic with respect to v with a period of 27T. Comparing with Eq.
(2), one can in principle obtain canonical partition function Zg from the Fourier
transform

2nT
Zg(T,V) = L dvZgoliv/T, T, V)e #B/T. (5)
2nT Jq
In this approach, one needs to integrate over the whole range of v from 0 to 27T
after one obtains the Monte Carlo configurations of Zgc(iv/T, T, V) at different v.
In practice, it is proposed to calculate the following ratio in the two-dimensional
Hubbard model,”

Zee(v/T,T,V) _ det M (iv) (6)
Zee(in/T,T,V) N det M (ivg)’

with a reference value 1. Several patches each centered around a different reference
point vy are used to cover the range of v. This was successful for the two-dimensional
Hubbard model with a 42 x 10 lattice up to B = 6 where the determinant was cal-
culated exactly. While this works for a small lattice in the Hubbard model, it would
not work for reasonably large lattices in QCD. This is because the direct calculation
of the determinant is a V3 (or V2 for a sparse matrix) operation which is an im-
practicable task for the quark matrix which is typically of the dimension 108 x 108.
Any stochastic estimation of the determinant will inevitably introduce systematic
error. Furthermore, this will also suffer from the ‘overlap’ problem discussed above.
Any Monte Carlo simulation at a reference point v will have exponentially small
overlap with those configurations important to a nonzero baryon density.

/que‘sb"“ det M (ivp)

2.3. Overlap Ensuring Multi-parameter Reweighting

To alleviate the sign problem with the real chemical potential and the overlap
problem due to reweighting, it is proposed® to do the reweighting in the multiple
parameter space. The generic partition function Zg¢ in Eq. (1) is parametrized by
a set of parameters ¢, such as the chemical potential u, the gauge coupling 3, the
quark mass mq, etc. The partition function can be written to facilitate reweighting

- _ det M[U, o]
Z = [ DU det M[U, agle™5slV0l {g=SslUrel+55Uiao] 22 7
where the Monte Carlo simulation is carried out with the og set of parameters and

the terms in the curly bracket are treated as observables. This is applied to study
the end point in the T-y phase diagram. In this case, the Monte Carlo simulation
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is carried out where the parameters in o include u = 0 and 8. which corresponds
to the phase transition at temperature T.. The parameter set o in the reweighted
measure include mu # 0 and an adjusted 8 in the gauge action. The new f is
determined from the Lee-Yang zeros so that one is following the transition line in
the T-y plane and the large change in the determinant ratio in the reweighting is
compensated by the change in the gauge action to ensure reasonable overlap. This
is shown to work to locate the transition line from p = 0 and T' = T, down to the
critical point on the 4% and 62 x 4 lattices with staggered fermions.®

While the multi-parameter reweighting is successful near the transition line, it is
not clear how to extend it beyond this region, particularly the T = 0 case where one
wants to keep the 8 and quark mass fixed while changing the y. One still expects
to face the overlap problem in the latter case. For large volumes, calculating the
determinant ratio will be subjected to the same practical difficulty as discussed in
the previous section 2.2.

3. Finite Baryon Density — A Canonical Ensemble Approach

We would like to propose an algorithm to overcome the overlap problem at zero
temperature which is based on the canonical ensemble approach. To avoid the
overlap problem, one needs to lock in a definite nonzero baryon sector so that
the exponentially large contamination from the zero-baryon sector is excluded. To
see this, we first note that the fermion determinant is a superposition of multiple
quark loops of all sizes and shapes. This can be easily seen from the property of
the determinant

. (Trlog M)"
der M = Mot 11 57 (N ®)
n=

Upon a hopping expansion of log M, Trlog M represents a sum of single loops with
all sizes and shapes. The determinant is then the sum of all multiple loops. The
fermion loops can be separated into two classes. One is those which do not go across
the time boundary and represent virtual quark-antiquark pairs; the other includes
those which wraps around the time boundary which represent external quarks and
antiquarks. The configuration with a baryon number one which entails three quark
loops wrapping around the time boundary will have an energy Mp higher than that
with zero baryon number. Thus, it is weighted with the probability e~ M8Nat com-
pared with the one with no net baryons. We see from the above discussion that the
fermion determinant contains a superposition of sectors of all baryon numbers, pos-
itive, negative and zero. At zero temperature where Mg N;a; >> 1, the zero baryon
sector dominates and all the other baryon sectors are exponentially suppressed. It
is obvious that to avoid the overlap problem, one needs to select a definite nonzero
baryon number sector and stay in it throughout the Markov chain of updating
configurations. To select a particular baryon sector from the determinant can be
achieved by the following procedure:® first, assign an U(1) phase factor e™* to
the links between the time slices ¢ and ¢ + 1 so that the link U/UT is multiplied
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by e~*/et®; then the particle number projection can be carried out through the
Fourier transformation of the fermion determinant like in the BCS theory

1 2 )
Py = > /0 doe "N det M[¢] (9)

where N is the net particle number, i.e. particle minus antiparticle. Note that all
the virtual quark loops which do not reach the time boundary will have a net phase
factor of unity; only those with a net N quark loops across the time boundary will
have a phase factor e**" which can contribute to the integral in Eq. (9). Since QCD
in canonical formulation does not break Z(3) symmetry, it is essential to take care
that the ensemble is canonical with respect to triality. To this end, we shall consider
the triality projection® 19 to the zero triality sector

1
det M = 5 Hz;ﬂ det M[¢ + k27/3). (10)

This amounts to limiting the quark number N to a multiple of 3. Thus the triality
zero sector corresponds to baryon sectors with integral baryon numbers.

Another essential ingredient to circumvent the overlap problem is to stay in the
chosen nonzero baryon sector so as to avoid mixing with the zero baryon sector
with exponentially large weight. This can be achieved by preforming the baryon
number projection as described above before the accept/reject step in the Monte
Carlo updating of the gauge configuration. If this is not done, the accepted gauge
configuration will be biased toward the zero baryon sector and it is very difficult
to project out the nonzero baryon sector afterwards. This is analogous to the situ-
ation in the nuclear many-body theory where it is known!?® that the variation after
projection (Zeh-Rouhaninejad-Yoccoz method41%) is superior than the variation
before projection (Peierls-Yoccoz method!®). The former gives the correct nuclear
mass in the case of translation and yields much improved wave functions in mildly
deformed nuclei than the latter.

To illustrate the overlap problem, we plot in Fig.1 Trlog M{¢] for a configuration
of the 8% x 12 lattice with the Wilson action with 8 = 6.0 and x = 0.150 which
is obtained with 500 Z; noises. We see that the it is rather flat in ¢ indicating
that the Fourier transform in Eq. (9) will mainly favor the zero baryon sector. On
the other hand, at finite temperature, it is relatively easier for the quarks to be
excited so that the zero baryon sector does not necessarily dominate other baryon
sectors. Another way of seeing this is that the relative weighting factor e~ s N:at
can be O(1) at finite temperature. Thus, it should be easier to project out the
nonzero baryon sector from the determinant. We plot in Fig. 2 a similarly obtained
Trlog M [¢] for a configuration of the 8 x 202 x 4 lattice with 3 = 4.9 and x = 0.182.
We see from the figure that there is quite a bit of wiggling in this case as compared
to that in Fig. 1 indicating that it is easier to project out a nonzero baryon sector
through the Fourier transform at finite temperature.
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83 x 12 B = 6.0 k = 0.150 Wilson action lattice
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Fig. 1. Trlog M|¢] for a 8% x 12 configuration with Wilson action as a function of ¢.

We should mention that while we think we can overcome the overlap problem
and the determinant det M([¢)] is real in this approach, nevertheless in view of the
fact that the Fourier transform in Eq. (9) involves the quark number N the canonical
approach may still have the sign problem at the thermodynamic limit when N and
V are very large. However, we think it might work for small N such as 3 or 6 for
one or two baryons in a finite V. This should be a reasonable start for practical
purposes.

While it is clear what the algorithm in the canonical approach entails, there
are additional practical requirements for the algorithm to work. These include an
unbiased estimation of the huge determinant in lattice QCD and, moreover, a Monte
Carlo algorithm which accommodates the unbiased estimate of the probability. We
shall discuss them in the following sections.

4. A Noisy Monte Carlo Algorithm

There are problems in physics which involve extensive quantities such as the fermion
determinant which require V2 steps to compute exactly. Problems of this kind with
large volumes are not numerically applicable with the usual Monte Carlo algorithm
which require an exact evaluation of the probability ratios in the accept/reject step.
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82 x 20 x 4 B = 4.9 k = 0.182 Wilson action lattice
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Fig. 2. Trlog M[¢] for a 8 x 20% x 4 finite temperature configuration with dynamical fermion.

To address this problem, Kennedy and Kuti!! proposed a Monte Carlo algorithm
which admits stochastically estimated transition probabilities as long as they are
unbiased. But there is a drawback. The probability could lie outside the interval
between 0 and 1 since it is estimated stochastically. This probability bound violation
will destroy detailed balance and lead to systematic bias. To control the probability
violation with a large noise ensemble can be costly.

We propose a noisy Monte Carlo algorithm which avoids this difficulty with two
Metropolis accept/reject steps. Let us consider a model with Hamiltonian H(U)
where U collectively denotes the dynamical variables of the system. The major
ingredient of the new approach is to transform the noise for the stochastic estimator
into stochastic variables. The partition function of the model can be written as

zZ= / [DU} e #®)

- / [DU)[DEP(€) £(U,©). (11)

where f(U, £) is an unbiased estimator of e~ (U) from the stochastic variable £ and
P; is the probability distribution for &.
The next step is to address the lower probability-bound violation. One first

171



2024 K.-F. Liu

notes that one can write the expectation value of the observable O as

(0) = [1DU)IDg P(©) W) sien(s) 11V /2, (12)

where sign(f) is the sign of the function f. After redefining the partition function
to be

Z=/wmwwﬂMﬂam, (13)

which is semi-positive definite, the expectation of O in Eq. (12) can be rewritten as

(0) = {O(U) sign(f))/{sign(f)). (14)

As we see, the sign of f(U, £) is not a part of the probability any more but a part
in the observable. Notice that this reinterpretation is possible because the sign of
f(U, &) is a state function which depends on the configuration of U and &.

It is clear then, to avoid the problem of lower probability-bound violation, the
accept/reject criterion has to be factorizable into a ratio of the new and old proba-
bilities so that the sign of the estimated f(U, £) can be absorbed into the observable.
This leads us to the Metropolis accept/reject criterion which incidentally cures the
problem of upper probability-bound violation at the same time. It turns out two
accept /reject steps are needed in general. The first one is to propose updating of U
via some procedure while keeping the stochastic variables £ fixed. The acceptance
probability P, is

_ (1 £ (U, OI)

Py (U1, € — Us, €) mm(1, oo (15)
The second accept/reject step involves the refreshing of the stochastic variables £
according to the probability distribution P:(€) while keeping U fixed. The accep-
tance probability is

P, (U6 - U, &) mm(l, |f(U,£1)|) . (16)
It is obvious that there is neither lower nor upper probability-bound violation in
either of these two Metropolis accept/reject steps. Furthermore, it involves the
ratios of separate state functions so that the sign of the stochastically estimated
probability f(U,¢) can be absorbed into the observable as in Eq. (14).

Detailed balance can be proven to be satisfied and it is unbiased.’? Therefore,
this is an exact algorithm.

5. Noisy Monte Carlo with Fermion Determinant

One immediate application of NMC is lattice QCD with dynamical fermions. The
action is composed of two parts — the pure gauge action S4(U) and a fermion action
Sr(U) = —Trln M(U). Both are functionals of the gauge link variables U.
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To find out the explicit form of f(U, &), we note that the fermion determinant
can be calculated stochastically as a random walk process!”

e“‘“M=1+Tr1nM(1+ﬁl;M(HT”;‘M(...))). (17)

This can be expressed in the following integral

o0 1 =
eTrlnM:/Hden(ni)/(; Hdpn
i=1 =2

1 2
[1 -+ In My (1 + 6(p2 — 5)nf In Mipp(1 + 6(ps — 3)mb In Mns (., (18)

where P, (7;) is the probability distribution for the stochastic variable ;. It can be
the Gaussian noise or the Zy noise (P,(n;) = d(|n;] — 1) in this case). The latter
is preferred since it has the minimum variance.!® p,, is a stochastic variable with
uniform distribution between 0 and 1. This sequence terminates stochastically in
finite time and only the seeds from the pseudo-random number generator need
to be stored in practice. The function f(U,n,p) ( € in Eq. (11) is represented by
two stochastic variables 17 and p here) is represented by the part of the integrand
between the the square brackets in Eq. (18). One can then use the efficient Padé-Zs
algorithm!? to calculate the 7; In M%; in Eq. (18). We shall discuss this in the next
section.

Finally, there is a practical concern that Trln M can be large so that it takes
a large statistics to have a reliable estimate of €™ 1»™ from the series expansion in
Eq. (18). In general, for the Taylor expansion e* = Y 2™ /n!, the series will start to
converge when z" /n! > "1 /(n+1)!. This happens at n = z. For the case = 100,
this implies that one needs to have more than 100! stochastic configurations in the
Monte Carlo integration in Eq. (18) in order to have a convergent estimate. Even
then, the error bar will be very large. To avoid this difficulty, one can implement the
following strategy. First, one notes that since the Metropolis accept /reject involves
the ratio of exponentials, one can subtract a universal number ¢ from the exponent
z in the Taylor expansion without affecting the ratio. Second, one can use a specific
form of the exponential to diminish the value of the exponent. In other words, one
can replace e® with (e(®=20)/N)N to satisfy |z — xo|/N < 1. The best choice for g
is T, the mean of z. In this case, the variance of e* becomes /N _ 1.

6. The Padé—Z,; Method of Estimating Determinants

Now we shall discuss a very efficient way of estimating the fermion determinant
stochastically.1®

6.1. Padé approxzimation

The starting point for the method is the Padé approximation of the logarithm
function. The Padé approximant to log(z) of order [K, K| at 2 is a rational function

173



2026 K.-F. Liu

N(z)/D(z) where deg N(z) = deg D(z) = K, whose value and first 2K derivatives
agree with log z at the specified point zp. When the Padé approximant N(z)/D(z)
is expressed in partial fractions, we obtain

K
by
I = 1
og z b0+kz=;(z+ck)5 (9)
whence it follows
K
log det M = Tr logM w bTrI + ) _ by - Tr(M + cxI) 7. (20)
k=1

The Padé approximation is not limited to the real axis. As long as the function
is in the analytic domain, i. e. away from the cut of the log, say along the negative
real axis, the Padé approximation can be made arbitrarily accurate by going to a
higher order [K, K] and a judicious expansion point to cover the eigenvalue domain
of the problem.

6.2. Complex Z; noise trace estimation

Exact computation of the trace inverse for N x N matrices is very time consuming
for matrices of size N ~ 10%. However, the complex Z noise method has been shown
to provide an efficient stochastic estimation of the trace.!®2%2! In fact, it has been
proved to be an optimal choice for the noise, producing a minimum variance.??

The complex Z; noise estimator can be briefly described as follows.18:22 We
construct L noise vectors nt,n%,---,n’ where = {77{, 77;, 17%, ceey n’I;,}T, as follows.
Each element 77, takes one of the four values {1, +1} chosen independently with
equal probability. It follows from the statistics of 7} that

L
Bl<nm > =Bz S nil=0,  Bl<um>] = Zn 1)

The vectors can be used to construct an unbiased estimator for the trace inverse of
a given matrix M as follows:

El<piM™ip>] = E[—Z Z i M,

j=1m,n=1

L
Z +(Z Z mini]
m#n 7

= TrM L
The variance of the estimator is shown to be??
o = Var[< M~ > =E [l < nM™lp> —Tr M7
N
Z M, L)* = Z (Ml
m;én m;én

174



Finite Density Algorithm in Lattice QCD 2027

The stochastic error of the complex Zs noise estimate results only from the
off-diagonal entries of the inverse matrix (the same is true for Z, noise for any
n). However, other noises (such as Gaussian) have additional errors arising from
diagonal entries. This is why the Z; noise has minimum variance. For example,
it has been demonstrated on a 16% x 24 lattice with 8 = 6.0 and x = 0.148 for
the Wilson action that the Zs noise standard deviation is smaller than that of the
Gaussian noise by a factor of 1.54.18

Applying the complex Zs estimator to the expression for the TrlogM in Eq.
(20), we find

Z kar(M + Ck)'l

b (M + )~ 'opf

ww

Mx N.Ml“

berP T, (22)

hl'—‘

2
2

>
1
-

where %7 = (M + ¢xI)~ 177 are the solutions of
(M + ¢ I)gR7 =17, (23)

Since M +cI are shifted matrices with constant diagonal matrix elements, Eq. (23)
can be solved collectively for all values of ¢; within one iterative process by several
algorithms, including the Quasi-Minimum Residual (QMR),?® Multiple-Mass Min-
imum Residual (M?® R),?* and GMRES.?> We have adopted the M3 R algorithm,
which has been shown to be about 2 times faster than the conjugate gradient al-
gorithm, and the overhead for the multiple cx is only 8%.?¢ The only price to pay
is memory: for each cg, a vector of the solution needs to be stored. Furthermore,
one observes that ¢, > 0. This improves the conditioning of (M + ¢I) since the
eigenvalues of M have positive real parts. Hence, we expect faster convergence for
column inversions for Eq. (23).

In the next section, we describe a method which significantly reduces the stochas-
tic error.

6.3. Improved PZ estimation with unbiased subtraction

In order to reduce the variance of the estimate, we introduce a suitably chosen
set of traceless N x N matrices Q®), i.e. which satisfy 271:;1 Qg% =0,p =
1.-.P. The expected value and variance for the modified estimator < nf(M~! —
Z;I::l A QPN > are given by

El<pt(M™! — Z,\ QP > =TrM!, (24)
p=1
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P
Ap(N) = Var[< nf(M™ = 2,Q®))n >]

p=1

P
1 -
= i Z ]Mmfn - Z)‘p 1(711’,)71,)'2 ’ (25)
p=1

m#n

for any values of the real parameters Ap. In other words, introducing the matrices
Q® into the estimator produces no bias, but may reduce the error bars if the Q®)
are chosen judiciously. Further, A, may be varied at will to achieve a minimum
variance estimate: this corresponds to a least-squares fit to the function nTM~1p
sampled at points 7;, j = 1-.-L, using the fitting functions {l,nTQ(”)n}, p=
1..-P.

We now turn to the question of choosing suitable traceless matrices Q® to use in
the modified estimator. One possibility for the Wilson fermion matrix M = I — gD
is suggested by the hopping parameter — & expansion of the inverse matrix,

1 1
M+ D) ! = =
I K K2 9 K>

_ D+ D%+ ... (26
5o T 0rar P arar? T agenl 20

This suggests choosing the matrices QP from among those matrices in the hopping
parameter expansion which are traceless:

o___F
Q (1 +Ck)2 b
2
@__~ pe2
Q (1 +Ck)3 )
Q(3) — K 3
(1 + Ck)4
QW = a (D* - TrD?)
(14 ck)® ’
Q® = K 5
(IT+ck)®
QO = & (D° - DY)
() ’
/‘&2r+1
Q(2'l"+1) — _—____DQ’I‘—FI r= 3, 4’ 5, ven

(1 + ck)2r+2 ?

It may be verified that all of these matrices are traceless. In principle, one can
include all the even powers which entails the explicit calculation of all the allowed
loops in TrD?". In this manuscript we have only included Q®, Q®), and Q(r+1).
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6.4. Computation of Trlog M

Our numerical computations were carried out with the Wilson action on the 83 x 12
(VN =73728) lattice with § = 5.6. We use the HMC with pseudofermions to generate
gauge configurations. With a cold start, we obtain the fermion matrix M; after
the plaquette becomes stable. The trajectories are traced with = = 0.01 and 30
molecular dynamics steps using k£ = 0.150. My is then obtained from M; by an
accepted trajectory run. Hence M; and My differ by a continuum perturbation,
and log[det M; / det M| ~ O(1).

We first calculate logdet M; with different orders of Padé expansion around
zp = 0.1 and zp = 1.0. We see from Table 1 that the 5th order Padé does not give
the same answer for two different expansion points, suggesting that its accuracy is
not sufficient for the range of eigenvalues of M. Whereas, the 11th order Padé gives
the same answer within errors. Thus, we shall choose P[11,11](z) with 2y = 0.1 to
perform the calculations from this point on.

Table 1. Unimproved and improved PZ estimates for log [detM;] with 100 complex Z2 noise
vectors. £ = 0.150.

P[K, K| (z) K = 5 7 9 11
Zo=0.1  Original: _ 473(10) 774(10) 796(10) 798(10)
Improved:  487.25(62) 788.17(62) 810.83(62) 812.33(62)
Z20=1.0  Original: __ 798(10) 798(10) 798(10) 799(10)

Improved:  812.60(62) 812.37(62) 812.36(62) 812.37(62)

In Table 2, we give the results of improved estimations for Trlog M;. We see
that the variational technique described above can reduce the data fluctuations by
more than an order of magnitude. For example, the unimproved error §y = 5.54 in
Table 2 for 400 Zs noises is reduced to 611 = 0.15 for the subtraction which includes
up to the Q! matrix. This is 37 times smaller. Comparing the central values in
the last row (i.e. the 11** order improved) with that of unimproved estimate with
10,000 Z> noises, we see that they are the same within errors. This verifies that the
variational subtraction scheme that we employed does not introduce biased errors.
The improved estimates of Trlog M from 50 Z, noises with errors 4, from Table 2
are plotted in comparison with the central value of the unimproved estimate from
10,000 noises in Fig. 3.

7. Implementation of the Kentucky Noisy Monte Carlo Algorithm

We have recently implemented the above Noisy Monte Carlo algorithm to the sim-
ulation of lattice QCD with dynamical fermions by incorporating the full determi-
nant directly.?8 Our algorithm uses pure gauge field updating with a shifted gauge

177



2030 K.-F. Liu

Table 2. Central values for improved stochastic estimation of log{det M ] and rth—order improved
Jackknife errors é, are given for different numbers of Z2 noise vectors. « is 0.150 in this case.

# 7o 50 100 200 400 600 800 1000 3000 10000
oth 802.98 797.98 810.97 816.78 815.89 813.10 816.53 813.15 812.81
8o +14.0 +9.81 £7.95 +5.54 +4.47 +3.83 +£3.41 £1.97 +£1.08
1%% 807.89 811.21 814.13 815.11 814.01 814.62 814.97 — —
o1 +4.65 +3.28 +£248 +1.84 +1.50 +1.29 +1.12 - -
2nd  813.03 812.50 811.99 812.86 811.87 812.890 813.04 — —
82 +2.46 +1.65 £1.34 £1.01 +0.83 +0.72 +0.64 - -
3rd  812.07 812.01 811.79 812.44 812.18 812.99 813.03 — —
83 +1.88 +1.31 £1.01 4074 +0.58 4051 +0.44 - -
4th 812.28 812.52 812.57 812.86 812.85 813.25 813.40 — —
84 +1.20 +0.94 +£0.68 £0.48 +0.39 +0.35 4030 - -
5th 813.50 813.07 813.36 813.70 813.47 813.54 813.50 — —
85 4+0.82 +0.62 +047 +0.34 +0.29 1025 4022 - -
6t® 813.54 813.23 813.22 813.28 813.20 813.37 813.26 — —
86 4+0.67 +0.49 £0.35 +0.25 +0.21 £0.18 +0.16 - -
7ts 814.18 813.74 813.44 813.42 813.39 — —
&7 4+0.44 +0.36 +0.26 +0.19 +0.16 - - - -
9tk 813.77 813.62 813.49 813.40 813.43 — — — —
89 +0.40 +0.30 +0.22 +0.16 +0.14 - - - -
117 813.54 81341 813.45 813.44 813.43 — — — —
1 +0.38  £0.27 +0.21 +0.15 £0.13 - - - -

coupling to minimize fluctuations in the trace log is the Wilson Dirac matrix. It
gives the correct results as compared to the standard Hybrid Monte Carlo simu-
lation. However, the present simulation has a low acceptance rate due to the pure
gauge update and results in long autocorrelations. We are in the process of working
out an alternative updating scheme with molecular dynamics trajectory to include
the feedback of the determinantal effects on the gauge field which should be more
efficient than the pure gauge update.

8. Summary

After reviewing the finite density algorithm for QCD with the chemical potential,
we propose a canonical approach by projecting out the definite baryon number
sector from the fermion determinant and stay in the sector throughout the Monte
Carlo updating. This should circumvent the overlap problem. In order to make
the algorithm practical, one needs an eflicient way to estimate the huge fermion
determinant and a Monte Carlo algorithm which admits unbiased estimates of the
probability without upper unitarity bound violations. These are achieved with the
Padé—Z3 estimate of the determinant and the Noisy Monte Carlo algorithm. So far,
we have implemented the Kentucky Noisy Monte Carlo algorithm to incorporate
dynamical fermions in QCD on a relatively small lattice and medium heavy quark
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Improved estimates for Trlog M_1

825 . : . . : |
Improved at kappa=.150 +—o—
Unimproved: 812.8 +/- 1.1 -
820 r -
815 [ o ] |
Pt ¥ 3
|
810 | l ]
805 B -
800 1 L 1 1 1 |
0 2 4 6 8 10 12

order of subtraction

Fig. 3. The improved PZ estimate of TrlogM; with 50 noises as a function of the order of
subtraction and compared to that of unimproved estimate with 10,000 noises. The dashed lines
are drawn with a distance of 1 ¢ away from the central value of the unimproved estimate.

based on pure gauge updating. As a next step, we will work on a more efficient
updating algorithm and project out the baryon sector to see if the finite density
algorithm proposed here will live up to its promise.
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Recent results on the short-time behaviors of a few models possessing a common feature
of long-ranged interaction will be summarized. For the disorder initial state, the initial
order increase is observed for each model in a heat-bath at the critical temperature. The
dynamic exponents are calculated. For arbitrary initial order and environment temper-
ature, universal characteristic functions are introduced in order to generalize the scaling
relations. Remarkable consistence between the theoretic renormalization group results
and the simulations are found in the long-range regime.

The short-time phenomena are those which happen at the times just after a
microscopic time-scale fnjc needed for a system to forget its microscopic details,
and much smaller than the macroscopic time scale tmac ~ 777%. In this time regime,
the system still remembers the macroscopic feature of the initial state. Since the
pioneer work of H.K. Janssen et al.,’ universal short-time scaling has been found
in a variety of different models (for a review, see Ref. 2). For initial states of zero
correlation length and zero (or very small) initial order, the order increases in the
short-time regime with a power law t where @ is a characteristic exponent of the
short-time regime.

Recently, we generalized the results of Ref. 1 to systems with long-ranged in-
teractions,® with an anisotropic cubic term,*5 and with impurities.>” Hopefully
these models could describe some realistic systems. On the other hand, we expect
that the analytical calculations for long-ranged interactions based on expansions
around the upper critical dimensions are more reliable in physical dimensions since

*The research is supported by the National Natural Science Foundation of China and the Advance
Research Center of Zhongshan University.
#Corresponding author, E-mail: stslzb@zsu.edu.cn
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the longer range of interaction the lower critical dimension(e = 20 — d with o the
decay power of the interaction).

A common observation is that the critical exponent 6’ depends on the range of
interactions. In the theoretic renormalization group calculation, the crossover from
the long-ranged interaction(LRI) to the short-ranged interaction(SRI) is subtle and
needs extra effort® since the fixed point of LRI does not continuously approach
that of the SRI as the interaction range decreases. There is a competition between
two fixed points in the regime of the weakly long-ranged interaction. The exactly
solvable kinetic spherical model provides a concrete example for the short-time
behavior of LRL®

In one dimension, Monte Carlo simulation is possible. The theoretic results of
LRI can be checked numerically. In order to have a picture for the crossover of LRI
and SRI, we simulate an adsorption-desorption model which has a dynamic phase
transition even for SRI.

1. Kinetic spherical model

The Hamiltonian of the spherical model is
o B
= 5253 - §ZJijsisj (1)
i i
with the constraint
Y sZ=N (2)

where 4, j are labels of lattice sites, N is the total number of spins. In the dynamic
process, a is a time-dependent Lagrange multiplier corresponding to the constraint.
Joyce!? first studied the static spherical model with long-ranged ferromagnetic in-
teractions. In a d-dimensional lattice,

Jij = J0T7;—j(d+s)/ Z T,i—j(d+s)
J
with 0 < s < 2 for long-ranged interactions and s = ¢, while s > 2 for short-ranged
interactions and o = 2. Where r;; is the distance between the sites ¢ and j.
The Langevin equation for this constrained spin system is

0S;
= = —daS; + 23 zj: Jii S5 +m (3)

where A is the kinetic coefficient and 7; being Gaussian white noises.

A remarkable observation is that the ordering process (governed by the zero-
temperature fixed point) and the critical dynamics (governed by the critical fixed
point) can be uniquely described by a characteristic function. The universal char-
acteristic function for arbitrary initial order!! is also found analytically. The gen-
eralized scaling relation for the relative order m, = (m(t) — m(oc))/m(oco) are

mr(t, T/, mo) = mr(b_zty E(b’ Tl)a (,D(b, mo)) (4)
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with 7" = T'/T,. The characteristic function (b, mg) is given by
o(b,mo) = (07" (mg® — 1) + 1] (5)
The function €(b, ") is the solution of the following equation
k k
€ (ba T,) — b—z(k—l) T (6)
1—eb, T 1—1
Where k = d/o and z = 0. At the critical point €(b,1) = 1. As mg — 0, p(b, mg) —
b%/2my, one attains
m(t) = mot % (7

That is ¢ =1 —k/2.

By use of the characteristic functions, the response propagator and correlation
function have the generalized scaling forms which are valid for the times larger than
tmic and for an arbitrary my,

Gp(ta t,a mO) = p-2+n+277'(p£(t)$p£(tl)’ E(p_17 TI)) (P(p_lv mO)) (8)

Cp(t,t',mo) = p~>+1G(pE(2), EEX'), (0™, T"), (™, m0)) 9)

where the domain sizel? £(t) ~ t# with p = 1/0, h and § are two universal functions.

2. Dynamic Ginzburg-Landau model

The Ginzburg-Landau model with anisotropic cubic term has a hamiltonian
:d229£2I2&229_ana4
H[s]_/d 1{2(%) +5(vEe)? + 587+ ()P + ;(s ) } (10)

where s = (s%®) are n-component order parameter fields; g; and g, are the cou-
pling constants for the isotropy and the anisotropy respectively. The SRI model
corresponds to ¢ = 1 and b = 0, whereas for the pure LRI model ¢ < 2, a =0
and b = 1. The long-time relaxation behavior of the model has been extensively
studied.!0-13-15 Here we will concentrate on the short-time behavior.

"The dynamics is given by the Langevin equation

d0H|[s]|

6t8 (l’, t) =-A m

+&%(a, 1) (11)

where X is the kinetic coefficient. The random forces £ = (£*) are assumed to be
Gaussian distributed.

The anisotropic cubic fixed point is stable when n > n, = 4 — 2D,¢ where
D, = ¢(1) - 2¢4(0/2) + 4(o) with ¢)(z) being the logarithmic derivative of the
gamma function. In the two-loop level, we attained for n > n,.

_ 2 _
o — L("?Fnl_) {1 _ [L_éi’;__”_‘fpa _ 3%1)(1112 - aBa)} e} eT)
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Pure F.P. SRQI F.P.
n>4,86 < 1<n<4,6<d n=1,4 <d3
n+2 € 0
20in+8§€ 40
TRQI F.D.
n#1l,8> 8 ords n=1,6> 6 n=1,8~el/2
2{n—1)p+3ne € 0
20'15'n.+4; 6a

Here we have introduced

d2a =
B, =K} / (2 % 1+z°+(e+x)7] “x™°
with e a unit vector in the 20-dimensional space, K2, = 2727 /[r°T(0))].

For n < mn. one has the same result as in the isotropic model (g, = 0 and
0 < 2 — Ngr, With 7, the Fisher exponent at the SRI fixed point)

0/ — _778+77§+770
2z
e(n+2) 1 n+ 20 + 12(In2 — 0 B,)
E pu —_— | e
20(n+ 8) (n+8)2 a(n+8)

(13)

A discussion on the weakly long-range regime of 2 — 7s < 0 < 2 is given in Ref. 8.

3. Dynamic Ginzburg-Landau model with impurities

The Hamiltonian with both LRI and long-range quenched impurities(LRQI) is de-
fined as

/dd { —(v%s)?+ 532 + %(32)2 + %qﬁsz} (14)

The static random-impurity noises ¢(z) describe the quenched disorders (ran-
dom temperatures ) and satisfy the following configurational averages

<¢(m)>av =0, <¢(I)¢(a“/)>av = [91 + 92(“V2)_p/2]5($ — :l:/),

where g1 corresponds to the SRQI, whereas go represents the LRQIL.®

Table 1 gives the results for d < 20 to the first order in € and p, or €}/2. We have
defined 6§ = €+ p, 6, = 2(n+2)e/(n+8), 62 = 3ne/[4(n—1)], and 83 = Z(e/D,)'/2.
For n < 4, the impurities are relevant because of the extended Harris criterion.!® It
is remarkable that the exponent & at the SRQI fixed point does not depend upon
n for 1 < n < 4 and vanishes for n = 1.

Rich scaling patterns are found at the upper critical dimension d = 20. They
are (1) the impurity irrelevant phase of n > 4

£\ s
m(t) = mg (ln {[;) (15)
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(2) the short-range disorder phase of 1 < n < 4

t\ s( Z4n_-:l 1) ) t sZ:tzﬂ
m(t) =mp {In— In — (16)
t1 ty
(3) Ising short-range disorder of n = 1. In this case, the one-loop exponents are
non-universal due to the degeneracy of 3-function.® The two-loop result is

1/2
m(t) ~ mo exp { (QULD) ((In(t/2))"/* — (in(t/t))""?] } (17)

In the above three equations, to, tg, ty and ¢1,t2 are microscopic time-scales

4. Monte Carlo simulations

Monte Carlo simulation for 1-d LRI Ising model is being done.!” The preliminary
results are encouraging. For o = 0.7, the simulation gives # = 0.1648. This value
agrees with our theoretical prediction 8 = 0.1673. Contrast to this, the theoretic
values of ' of the SRI are 0.131 for d = 3 and 0.356 for d = 2, whereas the results
of Monte Carlo are 0.104 and 0.191 respectively.

We also simulated a one-dimensional adsorption-desorption process (ADP) which
is an irreversible non-equilibrium model. Each site could be either occupied(denoted
by s; = 1) or not-occupied(denoted by s; = 0). The possibility of adsorption is A
(provided the site under consideration is vacant). The desorption has a long-ranged
correlated probability

wisi=1—38,=0=A4 Z (1- t|1+0 (18)
|§—i]>0
By choosing A, the desorption probability is normalized to unity for the state that
all sites are vacant. The critical exponent §’ versus the interaction range parameter
o is plotted in Figure 1. Within the statistical error, one sees that the exponent of
o > 2 has the same value as that of the short-range model.!® In the last reference,
the characteristic function is also discussed.
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We describe generalized D = 11 Poincaré and conformal supersymmetries. The corre-
sponding generalization of twistor and supertwistor framework is outlined with OSp(1[64)
superspinors describing BPS preons. The % BPS states as composed out of n =32 — k
preons are introduced, and basic ideas concerning BPS preon dynamics is presented.
The lecture is based on results obtained by J.A. de Azcarraga, I. Bandos, J.M. Izquierdo
and the author.!

1. Introduction

M-theory has been proposed as a hypothetical quantum theory describing elemen-
tary level of matter, which should incorporate and possibly explain various prop-
erties of “new string theory” (for review see e.g. Refs. 2,4). One of the features
of such new theory of fundamental interactions should be the appearance of many
extended elementary objects (p-(super)branes, D-(super)branes etc.) related with
each other via duality /dimensional reductions net. Such a variety of basic objects
in the theory makes sensible a search for some underlying composite structure.

The basic dynamical degrees of freedom in M-theory yet are not known—there
were presented only some proposals usually related with D = 11 space-time geom-
etry. We postulate that the composite structure of M-theory should be formulated
in terms of new degrees of freedom related with new geometry. Because M-theory
is supersymmetric, and supersymmetry reveals more elementary nature of spino-
rial objects, we shall postulate that the basic fundamental geometric structure in
M-theory is spinorial.

The only well-known part of the description of M-theory is algebraic. Assuming
that M-theory lives in D = 11 { this assumption is consistent with description of
D =11 SUGRA as the low energy limit of M-theory) we can postulate the following

*Supported by KBN grant 5P0O3B05620
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basic D = 11 M-superalgebra®
{@r Q) = Zea(TuC)ra P + CTuiC)ra 2 4 (D €, 20051 (1)

where p,v = 0,1,...10, r,s = 1,...32. The collection of 528 Abelian generators
Zps {Zrs = Zgp) describes the generalized momenta in M-theory. Introducing dual
generalized coordinate space

er = (PPC)rs X”’ + (F[II«II]C)TS X[l“’] + (F[NE—I%]C)N X[Ml---[ts] H (2)

we obtain large generalized phase space, with coordinates and positions described
by the adjoint representations of Sp(32) algebra.

Let us recall the assumption of Penrose twistor formalism in D = 4811 that
basic spinorial degrees of freedom in twistorial theory of elementary particles are
described by N twistors (i =1...N)

9 = (AP, w®4) )

where /\X), w®4 (A = 1,2) are the pairs of D = 4 Weyl spinors. The following
formula for the composite four-momentum is assumed? 11

N
1) 7(9)
Pup=> 2PXY, (4)
i=1

where P,z = 1% 5 P,. We shall propose analogous formula in D = 11 for general-
ized momenta.

N
Zpe = AP, (5)
=1

where A, (r = 1...32) are D = 11 real Majorana spinors. In D = 4 the twistors
(3) are the fundamental representations of the spinorial covering SU(2,2) of D = 4
conformal algebra (SU(2,2) = SO(4, 2)). In D = 11 there exists only minimal con-
formal spinorial algebra'? 14 describing the classical real algebra Sp(64), containing

D =11 conformal algebra
SO(11,2) C Sp(64; R). (6)

In Sect. 2 we shall consider the generalization of D = 11 Poincaré and conformal
superalgebras, supersymmetrizing the minimal D = 11 conformal spinorial algebra.
In Sect. 3 we shall introduce in D = 11 the generalization of twistor and super-
twistor formalism, with the extensions of Penrose-Ferber relations, which relate
0OSp(1]64) supertwistor space described by real coordinates (¢2 =0; R =1...65)

Tr= (Ar,w",§) , (7)

aThe relation (1) is the standard, minimal M-superalgebra. One can also add arbitrary spin-tensor
central charges (see e.g. Refs. 5,6). The most general case was considered by Sezgin.”
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with the generalized phase space (X, Prs) (see (1-2)). In Sect. 4 we shall describe
algebraically 3—’“2-BPS states by n = 32 — k superspinors (7) representing D =
11 generalized supertwistors. These supertwistorial constituents we shall call BPS
preons. It appears that our model geometrically corresponds to new type of Kaluza—
Klein theory, with discrete internal extension of space-time coordinates.

2. D = 11 Conformal M-(Super)Algebra

Let us observe that the D = 4 conformal algebra (P,, M, D, K,) is endowed with
the following three-grading structure

L, Ly L_,
: (8)
P, M,,DK,
Grading (8) in determined by the scale dimensions of generators
[DvP#]:PLH [D7M#V]=0’ [D’Ku]z'"Ku (9)

and it is easy to see that the conformal algebra (8) has two Poincaré subalgebras:
(Py, M,,) and (K, M,,). For D = 4 superconformal algebra SU(2,2;1) = (P,
Myv, D, A K,; Qa, Qj4, Sa, S;) the three-grading (8) is extended to the following
five-grading

Ly Lyp Ly L_ypp Ly

P, Q4 Q4 My, D,ASs, S, K,

where consistently

[DaQA]:%QAa [Dv‘S’A]:_%SAa
(11)
[D7QA]:%QA’ [DvSA]zésA’
and again SU(2, 2; 1) contains as subsuperalgebras the Poincaré superalgebras (P,,
M;u/v QA; QA) and (K/.H Mum SA7 SA)
The structure of D = 11 generalized superconformal algebra, which we call
conformal M-superalgebra is quite analogous. The D = 11 conformal M-algebra
Sp(64) can be in analogy to (8) described by the following three-grading

L1 LO L—l

ZTS R"S ZT'S (12)

528 Abelian GL(32; R) 528 Abelian
generators algebra generators

We see that Sp(64) contains two copies of generalized D = 11 Poincaré algebras,
described by inhomogeneous Sp(32) algebras (Sp(32; R) C GL(32;R)) with 528
Abelian translation generators.
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The superextension of D = 11 conformal M-algebra OSp(1;64) which we call
conformal M-superalgebra is described by the following five-grading (see also Refs.
15,16)

Ly Ly Lo L_y/3 L4
: (13)
ZTS Q'I‘ ‘RI'S S’I’ ZT'S

where (Q,,S,) are the pair of 32-component supercharges, transforming as fun-
damental representations of Sp(32), with R,, C Sp(32) if R,s = Rsr. The sub-

algebras spanned by the generators (Qr, Z,s) and (S, Z,s) describe two copies of
M-superalgebra given by the relations (1).

It should be added that the gradings (12,13) correspond to the grading structure
of real Jordanian (super) algebras.17-18

3. D = 11 Supertwistors and Their Relation with Generalized
Superspace

Let us recall two basic relations of Penrose twistor theory in D = 4811
(i) relation between the generators of Poincaré algebra and twistor components (2)
P,p=2Xa)B, (14)
Map = Aa®@pg), Mg =X iwp (15)

where Map = 3(0uw)apM* and Mz = () 15 M*P. The relations (15)
can be extended to all 15 generators of D = 4 conformal algebra.
(ii) Penrose incidence relation between twistor and space-time coordinates

wh =iapXB4 B = —iX4BXp (16)
where XBA = (X AB )* describe four real Minkowski coordinates if the SU(2, 2)
twistor norm vanishes

(t,t) =i (A,@A Y AwA) —0. (17)

The relations (14-17) can be supersymmetrized. If we introduce the D = 4
supertwistor (£4,7), which is the fundamental representation of SU(2,2;1) with
complex Grassmann variable 7 (72 = 52 = 0, {n,7} = 0), the relations (14-15)
has been extended by Ferber!® to all generators of D = 4 superconformal group
SU(2,2:1).

The Penrose relations (16-17), firstly supersymmetrized in Ref. 19 look as fol-
lows

PWe recall that (ouv)aB = gli[(”u)AB;,,BB - (UV)AB;,? Bl = —%qupT(UpT)AB = [(;uV)BA]*
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wh =irg ZB4 = A (XBA - ioBoA)
oA =i (XAB + i()AOB) AB

n=xab4  F=2,0". (18)

For D = 11 the generalized twistors and supertwistors are real (see (7)) and the
real OSp(1;64) superalgebra (R,S =1...64)

{Qr,Qs} = Rrs, (19)

can be obtained if we assume that®.

1
Rpg =Tn T =T 20
rs =TrTs Qr 7 rE, (20)
where Tg describes D = 11 real twistorial quantum phase space (ngrs = —7sr is
the Sp(64) antisymmetric metric)
[Tr, Ts] = ings, (21)

supplemented with trivial one-dimensional Clifford algebra relation £2 = 1.
The relations (19) are extended to D = 11 as follows:

W= (X070 A, E=0" . (22)

Relations (22) relate the D = 11 supertwistor space coordinates (7) with the ex-

tended D = 11 superspace (X, 6;), described by 528 bosonic and 32 fermionic
coordinates.

4. BPS States in M-Theory and Composites of BPS Preons

The %BPS state |k) can be defined as an eigenstate of generalized momenta gen-
erators

Zps|k) = zpslk), (23)
such that det 2., = 0. The number %k determines the rank of generalized momenta,

matrix z,

%BPS state: {rank z,, =n =32—-k; 1<k <32}. (24)

;From (24) follows that the BPS state |k) preserves a fraction v = 4 of super-
symmetries.

°By Bott periodicity this realization is related with twistor framework in D = 3 (see Ref. 20),
also with real structure. In D = 5,6,7 one has to use the extension of Penrose framework to
quaternionic twistors (see e.g. Ref. 21 for D = 6).
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We call BPS preon the hypothetical primary object carrying the following gen-
eralized momenta!

Zrs = Ar As . (25)

The formula (25) corresponds to putting » = 1 in the relation (5) and describes
g—éBPS state. More general formula (5) describes the generalized momenta of a
system composed out of n BPS preons and it describes (for 1 < n < 32) the
%BPS state (we recall that k = 32 — n).

The number n = 32 — k of zero eigenvalues of the matrix z,.; determines the
number of independent supercharges Q,(f), annihilating the BPS state |k). These
supersymmetries, preserving the BPS state, are called in p-brane theory the x-
transformations. We see that the supersymmetric D = 11 single BPS preon dynam-
ics should have 31 x-symmetries. Recently?? such dynamical superparticle modelsd
with fundamental OSp(1;2n) superspinor as basic variable has been proposed. It
should be recalled here (see e.g. Ref. 24) that in the standard super p-brane for-
mulations half of the supersymmetries are promoted to s-transformations, i.e. in
D =11 we obtain 16 k-transformations.

Using the D = 11 supertwistor description with the relations (22) and (25) pro-
viding a bridge between BPS preons and generalized space-time, we can formulate
three different geometric pictures:

(i) Purely supertwistorial picture, with basic phase space parametrized by BPS
preon coordinates T}(;) (see (7)). The canonical Liouville one-form describing
free action is given by the relation

Q i (wa)r A 4 g0 dgw) , (26)

i=1

which can be supplemented by some algebraic constraints.
(ii) Mixed geometric picture, with the components w'®) expressed by means of the
relation (22). One obtains from (26)

QZ _ Z/\(:‘)r /\(:)'r (d TS _ o7 das) , (27)

i=1
(iil) Generalized space-time picture, with the relation (5) inserted in (27).
Qg = Zps (dX7° — 07 d6°) . (28)

The application of these three geometric pictures to the description of D = 11
dynamics (for n > 1) is under consideration.

dFor D = 4,6 and 10 see Refs. 22, 23.
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5. Final Remarks

We mention here two interesting aspects of the presented approach which deserve
further attention;

()

geometric confinement of BPS preons

Because the space-time coordinates are composed out of preonic degrees of
freedom, the D = 11 space-time point can be determined only in terms of at
least 16 preonic set of spinorial coordinates. This is the D = 11 extension of
known property of Penrose theory in four dimensions with two twistors needed
for the definition of composite Minkowski space-time points.

(ii) internal symmetries
The formula (5) expresses 528 generalized momenta in terms of 32n preonic
spinorial coordinates A (i = 1,...n). The internal symmetries can be ob-
tained by interchanging BPS preons. For the case n=16 corresponding to the
choice of v = %SUSY one can introduce internal O(16) symmetries, leaving
the values of Z,, invariant.
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We have performed a Random Matrix Theory (RMT) analysis of the quantum four
state chiral Potts chain for different sizes of the quantum chain up to eight sites, and
for different unfolding methods. Our analysis shows that one generically has a Gaussian
Orthogonal Ensemble statistics for the unfolded spectrum instead of the GUE statistics
one could expect. Furthermore a change from the generic GOE distribution to a Pois-
son distribution occurs when the hamiltonian becomes integrable. Therefore, the RMT
analysis can be seen as a detector of “higher genus integrability”.

Introduction : the quantum chiral Potts chain

Since the pioneering work of Wigner! and Dyson,? Random Matrix Theory (RMT)
has been applied successfully in various domains of physics. One motivation is to
describe, in a united universal framework, various phenomena implying chaos® or at
least complexity. An extreme case is the emergence of integrability which manifests
itself in the drastic change of the generic wignerian energy level spacing distribution
into poissonian distribution. The first examples of this connection emerged when
one considered simple harmonic oscillators or free fermions models. This reduction
to Poisson distribution reflects nothing but the independence of the eigenvalues. At
this point it is natural to ask whether this link between Poisson reduction and Yang—
Baxter integrability still holds when the solutions of the Yang—Baxter equations are
no longer parametrized in terms of abelian varieties. The perfect example to address
this question is the chiral Potts model for which Au-Yang et-al have found a higher
genus Yang-Baxter solution.? The Hamiltonian of the quantum chiral Potts chain
first introduced by Howes, Kadanoff and den Nijs® and also by von Gehlen and
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Rittenberg® is defined as :

N-1
H=Hx+Hzz =Y Hjji=—3 3 [@ (X)) +on-(Z:2,1)"] (1)
J j n=1

where X; = In®--- @ XQ® - -@Iyand Z; = IN® - Q@ Z® - ® Iy. Here
Iy is N x N unit matrix, while X and Z are N x N matrices whose elements
are defined by Z;,, = djmexp[2mi(j — 1)/N] and Xjn = 6 m+1 (mod N). The
self-dual model” corresponds to a,, = @,. Some spectral analysis of this model have
been performed for the quantum self-dual model or the 3-state model.®8 In this
paper we examine the N = 4 (four state chiral Potts model) non self-dual case.
The conditions for the quantum Hamiltonian to commute with the transfer matrix
family (integrability conditions) read (see equations (33a), (33b), (33c) and (33d)
in Ref. 9) :

@ _ o} @i’ + 3" _ of +of @)
aa; oo’ I
(@3 — a2)(202 — aja3) =0, (a1 — o3°)(2a3° — aro3) =0

In order to have a real spectrum we also choose to have an hermitian hamiltonian
restricting to conditions a; = o and @7 = @3* (where the star denotes the complex
conjugate). A possible parametrization is then :

o =a3 =+V1+r+ivl—r, ag=1 (3)

ar=o3" = Vn2+rm+ivn?—rn, Wm=n

where r and n are real. The value n = 1 corresponds to the self dual situation.

1. The RMT machinery.

RMT analysis considers the spectrum of the (quantum) Hamiltonian, or of the
transfer matrix, as a collection of numbers, and looks for some possibly univer-
sal statistical properties of this collection of numbers. Obviously, neither the raw
spectrum, nor the raw level spacing distribution, have any universal properties. In
order to uncover universal properties, one has to perform some normalization of the
spectrum: the so-called unfolding operation. This amounts to making the local den-
sity of eigenvalues of the spectrum equal to unity everywhere?®. In other words, one
subtracts the regular part from the integrated density of states: one considers only
the fluctuations. It has been found that the unfolded spectra of many quantum sys-
tems are very close to one of four archetypal situations described by four statistical
ensembles. For integrable models this is the statistical ensemble of diagonal random

2The unfolding can be achieved by different means. Let us note however that there is no rig-
orous prescription and the “best criterion” is the insensitivity of the final result to the method
employed or to the parameters (for “reasonable” variation). A detailed explanation and tests of
these methods of unfolding are given in Ref. 10.
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matrices and the level spacing distribution is close to a Poissonian (exponential)
distribution, P(s) = exp(—s). For non-integrable systems it can be the Gaussian
Orthogonal Ensemble (GOE), the Gaussian Unitary Ensemble (GUE), or the Gaus-
sian Symplectic Ensemble (GSE), depending on the symmetries of the model under
consideration. If the hamiltonian is time reversal invariant!® the level spacing dis-
tribution is either described by the Gaussian Orthogonal Ensemble (GOE), or by
the Gaussian Symplectic Ensemble (GSE):

PgoEg(s) = gs exp(~ms?/4), PGgsg(s) = B3s* exp(—Bs?) (4)
where B = (%)2% ~ 2.963. Note that GOE can also occurs in a slightly more
general framework (“false” time-reversal violation, A-adapted basis'?). When one
does not have any time-reversal symmetry (or “false time-reversal symmetry”) the
Gaussian Unitary Ensemble distribution should appear :

Poug(s) = %32 exp(—4s%/m) (5)

To quantify the “degree” of level repulsion, it may be convenient to use a para-
metrized distribution which interpolates between the Poisson law and the GOE
Wigner law. Among the many possible distributions we have chosen the Brody
distribution:

1+
Ps(s) = (14 B) cz 8" exp(—cos”1), with cp = [F (g j: i)} ©

1.1. Representation theory

In the presence of symmetries, one should distinguish eigenstates according to their
quantum numbers. This is an essential requirement of the method. For instance both
lattice shift and shift of colour commute with the hamiltonian H. They generate a
symmetry group S = Zr, ® Z, which does not depend on the parameters o, @; of
the hamiltonian H. Since the group S = Zp ® Z; is abelian one may diagonalize
simultaneously all the elements of the group S as well as the hamiltonian H on the
S-invariant spaces. This amounts to block-diagonalizing H and to split the spectrum
of H into the many spectra of each block. The construction of the projectors is done
with the help of the character table of irreducible representations of the symmetry
group. Details can be found in Ref. 10 and Ref. 14.

In this work we concentrate on the four-state case (N = 4) of the quantum
hamiltonian (1). For generic r and n in parametrization Eq. (3), the total sym-
metry group is Zy ® Z4. Since the characters of Z;, ® Z4 are complex, one has
to use complex numbers even though the final results are real, which increases the
programming difficulties. We always restricted ourselves to hermitian hamiltonians.
Consequently the blocks are also hermitian and there are ounly real eigenvalues. The

diagonalization is performed using standard methods of linear algebra (contained
in the LAPACK library).
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2. Results.

We show in this paper that the RMT analysis can act as an integrability detector.
More specifically we want to exhibit the transition to integrability when the param-
eters meet conditions Eq.(2). We thus choose to move in the «;, @; parameter space
along a trajectory compatible with the hermiticity of the hamiltonian, generalizing
the parametrization (4) and crossing the integrable variety Eq.(2) :

o =a3=V1i+r+ivl—r, ag=1
ar=03"= Vni+rn+ivVn2 —rn, aw=n (7)

where t, r and n are real, with n # 1 to avoid the self-dual case. Thevalueag =t =1
thus corresponds to the occurrence of genuinely “higher genus integrability” on this
trajectory.

We have constructed the quantum Hamiltonian (1), of the four state Potts
model (1), for various linear sizes, up to size eight (L = 8), leading to matrices of
size up to 48 x 48 = 65536 x 65536. The results, displayed below, show that the
size L = 8 is sufficient to answer the question we addressed. Using the complex
characters and projectors associated with the group Z; ® Z; we have performed
the block diagonalization of the hamiltonian. The sum of the dimensions of all the
blocks corresponding to the 8 x 4 = 32 representations, is 4% = 65536 as it should.
We then performed the unfolding in each block independently. The behavior in the

L=8, R=(0,0) n=2.1, r=0.5, t=1.5, b=0.99

T T T T T .

UE
Poisson GSE

08 E

P(s)

04t .

0.2 | —

Fig. 1. Level spacing distribution versus GOE, GUE, GSE and Poisson.
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various blocks (representations) is not significantly different. We also compared four
different unfolding procedures, again getting similar results. We display the results
on the largest size L = 8 for the best unfolding procedure, namely the gaussian
unfolding.

Figure 1 shows the level spacing distribution P(s), for the representation (0,0)
and for 7 = 0.5, n = 2.1, and t = 1.5, which corresponds to a3 = o} = 1.225 +
10.707, ap =t =15, a7 =a3* = 2.337+1¢ 1.833 and a5 = 2.1.

This figure shows the energy level spacing distribution and the corresponding
brody fit (6) for the (least square) best value found to be fBproqy = 0.99. On the
same figure the GOE level spacing distribution is also displayed, both curves are
almost indistinguishable. The GUE or GSE level spacing distribution are clearly
ruled out, as well, of course, as the Poisson distribution. Very similar results are
obtained for all the distributions corresponding to the other representations and
other values away from the integrability value ag = ¢ = 1.

Let us now consider the (higher genus) integrable case which corresponds, with
our parametrization, to ag =1t = 1.

L=8, R=(0,0) n=2.1, r=0.5, t=1,3=0.04

1 T T T T T T T
Poisson
0.8 _
0.6 - B
% GOE

0.4 | B
0.2 F } { b

0 1 1 1 1 1 { £ 1
0 0.5 1 15 2 2.5 3 35 4

Fig. 2. Level spacing distribution on the integrability variety.

Figure 2 displays the level spacing distribution, compared to a Poisson distri-
bution (and also to the GOE level spacing distribution), for the integrable case
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r =05 n =21, and t = 1 which corresponds to on = of = 1.225 4+ 1 0.707,
as =t=1,a1 =a3* = 2.337 +1 1.833 and @3 = 2.1. The best brody distribution
approximation of the data is found to be for Bproqy = 0.04 using a least square
fit. We have obtained very similar results (namely an extremely good agreement
with a Poisson distribution) with other values of the parameters n and r, and for
the various representations, when ¢ is kept equal to the (higher genus) integrability
value t = 1.

The RMT analysis can therefore be used to detect integrability even when the
integrability is not associated with abelian curves but is a more subtle integrability
where higher genus curves occur.

This extremely good agreement with an independent eigenvalues framework is
found for ¢t = 1 exactly. When ¢ is slightly different from 1, one is clearly no longer
Poissonian in agreement with the fact that the Poissonian framework should only
correspond to the integrable value ¢ = 1. In order to quantify the (finite size)
transition from integrability to chaos, we calculate the best brody parameter, as a
function of the parameter ¢, keeping r and n constant. Figure 3 displays Bprody, as
a function of ¢, for all the representations.

08

0.8

0.7 |-

0.5

Q4 -

03

02

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Fig. 3. The brody parameter, as a function of the parameter ¢t.

These results confirm a quite sharp transition from a GOE distribution to a
Poisson distribution. In the thermodynamic limit one can expect Bprody to be equal
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to the GOE value Byrogy = 1 for every value of the parameter t, except at point
t = 1, where the Poisson value Biroqy = 0 should occur.
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We obtain an explicit expression for the defining relation of the deformed Wy algebra,
DWA(E[N)q t- Usmg this expression we can show that, in the ¢ — 1 limit, DWA(slx)q,:
with ¢t = e~ " q_N_ reduces to the sly-version of the Lepowsky—Wllson s Z-algebra of
level k, ZA(sln)x. In other words DWA(s[N)q,t with t = e~ N N g *%" can be considered
as a g-deformation of ZA(sly)g-

In the appendix given by H. Awata, S. Odake and J. Shiraishi, we present an inter-
esting relation between DWA(sly)q,¢ and {-function regularization.

1. Introduction

One of our motivation for study of elliptic algebras (deformed Virasoro and W alge-
bras, elliptic quantum groups, etc.) is to clarify the symmetry of massive integrable
models. Massive integrable models includes quantum field theories with mass scale
and solvable statistical lattice models. Typical examples of the latter are models
based on sly: Andrews-Baxter-Forester (ABF) model and Baxter’s eight vertex
model. About these models we know the following:!

model ABF(111) 8 vertex
Boltzmann weight face type vertex type
Bq, )\(5 [2) ~
algebra (B® {P,e} = U, »(s12)) Ag,p(sl2)
gradation
(energy level of Hg) homogeneous gradation principal gradation
space of states irr. rep. space of DVA irr. rep. space of A, ,(sl2)
free field direct indirect
realization (construction of VO) (map to ABF)

*Talk at the APCTP-Nankai Joint Symposium on “Lattice Statistics and Mathematical Physics”,
8-10 October 2001, Tianjin China.
todake@azusa.shinshu-u.ac.jp
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In order to obtain more direct free field realization of the eight vertex model
and its higher rank generalization, it may be useful to study (deformed) current
algebras of sly in principal gradation. Motivated by this, Hara et al.? studied
free field realization of the Lepowsky-Wilson’s Z-algebra® and found some relation
between the deformed Virasoro algebra (DVA) and Z-algebra. Recently Shiraishi
constructed a direct free field realization of the eight vertex model with a specific
parameter p = ¢3, where the type I vertex operator is given by the DVA current.*

In this article we extend the relation between DVA and Z-algebra to the higher
rank case. In section 2 we present an explicit expression for the defining relation
of the deformed Wy algebra. This is a main result of this article. In section 3, by
using this explicit expression, we show that the deformed Wy algebra reduces to
the sly-version of the Lepowsky—Wilson’s Z-algebra in some limit. In the appendix
given by Awata, Odake and Shiraishi, we present an interesting relation between
the deformed Wy algebra and ¢-function regularization.®

2. Deformed Wjy Algebra
2.1. Definition

Let us recall the definition of the deformed Wy algebra, DWA(;[ N)g.t-57 It is defined
through a free field realization. This algebra has two parameters(q and t), and we set
t = ¢P and p = gt . Let us introduce fundamental bosons b, (n € Z ;i =1,---,N
s S°N | p™™hi = 0) which satisfy

1 _ p(NS,-_j—l)n

T pNnO(i<j)5n+m’O, (1)

B ] = == (1= ™) (1 7")

where 8(P) = 1 or 0 if the proposition P is true or false, respectively. Exponentiated
boson A;(z) (i =1,---, N) is defined by

Ai(z) = :exp (Z h;z‘”) : q‘/BhépN_;‘l’i. (2)
n#0

Here : * : stands for the usual normal ordering for bosons, i.e., hﬁl with n > 0
are in the right. By using this A;(z), DWA(sln)q: current Wi(z) = 3, , Wiz™"
(f=1,---,N —1) is given by

Wi(z) = > Aj (p2

1<j1 <o < <G <N

and we set WO(z) = W (z) = 1. (Remark that A;(z) corresponds to the weight of
vector representation of sly and W(z) corresponds to the i-th rank antisymmetric
tensor representation.) DWA(:'T[N)Q,t is defined as an associative algebra over C
generated by W} .2

a1t is also defined as a commutant of the screening currents.5-8
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The highest weight state |A) is characterized by W |A) = 0 (n > 0) and W§|A) =
w(A)|A) (w*(\) € C), and the highest weight representation space is obtained by
successive action of W¢, (n > 0).
Since DWA (sln),; has two parameters(q and t), we can take its various limit
by relating g and t. In the following limit?

g=e?, h-o0 2
t=¢P, [(:fixed (010:\/3—\/%;)7 (

DWA (sl N)q,t Teduces to the Wy algebra with the Virasoro central charge ¢ = (N —
1)(1— N(N +1)o2) because the g-Miura transformation of DWA(sly) becomes the
Miura transformation of Wy algebra. Each DWA current W¥(z), however, reduces
to some linear combination of Wy currents.

Limit I : {

2.2. Relation
In order to write down relations between DWA currents, we define the delta function

8(z) = Y pez 2™ and the structure function f%7(z) = Yoo f;‘jZ‘3 (1<4,j<N-1),

roe) =exp( Y 2a-am-t L

_ —_ N
n>0 pn 1 pr

min(z,7)n 1 — p(N—ma.x(i,j))n

prEn z”).(s)

It has been expected that DWA currents satisfy quadratic relations, f%J (2 )W’(zl)
Wi(z2) —WI(22)W'(2y) f“(f;:;) = (terms containing delta function), in mode ex-
pansion it becomes
Wy, W3] = Z f e’] W3n+e W, _ Wi ie)
21
+(contribution from the terms containing delta function). (6)

For i =1 and j > 1 case, the relation is® "’

FRRW ()W (22) — W ()W () fPH(B) (i 21)
= Lo0UP) (558 sywoti g a) - o 8 W 7E ), (1)
and for i = 2 and j > 2 case, the relation is’
PIRWA ()W () — W (22)WP(21) f72(2)  (522)
(-9 -t (A -gp)(1 —t"1p)
1-p (1-p)(1-p?

x ((5(1)%+1 2 Wit (pzg) — S(p~%1 2)yit? (p_lz’z))

1~ 1_t—1 j ° 1 ; 1 o
SOt ) (b 2y e W 0 20):

bUsually we call this limit as a conformal limit. However there are many other limits in which the
resultant algebras are related to conformal field theory.
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~b6(pE )W (a0 ) W (5 E )3
=gPA =t (s
A (M ’“)(

2 . .
LW ) + W) @)

—i, P7 j+2 1 i+27 —1
=4 2) (o W) + W ) ).
Here a normal ordering for currents _ * ° is defined by
SWi(rz)W(2)?

'

!
2miz 1 =

Z i ifé:]( m— ZW'L n+m + pb—m— le W:;H-l) oz (9)

n€Z m=0 £=0

where 12— stands for 3", 2" Due to this normal ordering, infinite sums in the
RHS of (6) become finite sums on the highest weight representation space.
Egs.(7) and (8) are directly calculated by using the commutation relation of h,.
In principle, we can continue this calculation for i > 3 cases, but in practice it is
hopeless. So we use another method: fusion and induction. To write down general
formula, we extend the range(0 < i < N) of Wi(z) and that(1 < 4,57 < N — 1) of
[ (z) toi € Z and i, j € Z respectively ; W(z) = 0 for i <0ori > N, and f>I(z)
is given by (5) for all ¢, € Z.
Explicit expression of the defining relation of DWA(;[N)N is as follows:
FRIEW ()W (22) = W ()W (21) f7H(2)  (0Si<j<N)
i k-1

__(1=9-t7) (1—75 va(pur

k=11=1
X((;(p%%_z)f" Rtk (p= T YWk (p= 8 2 ) WITR(p% 2y)

—3(pm TR @) I (B Wik R 2 )Wk (R ), (10)

(1—gz)(1 —t712)

(1—2)(1—p2)
terms of the normal ordering _ * 0 by repeated use of the following formula, which
is obtained from (9) and (10),

f"’j(r_l)Wi(TZ)W"(Z) (0<i<j<N)

where 'y(p%z) = . We can rewrite the RHS of this relation in

' ) _ ( 1_ t_ i k-1
= SWi(r)WI(2) + Z [T~
k=1 Il=1
1 i—i . E
" <’1Tf TR W@ Wt )
‘1——5-—1” kith(p'T) "“z)Wﬂk(p‘%z))’ (11)
_rrp 2
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where 7 € C is a “good” number (such that it does not give poles, see (15)). For
example, (8) is easily recovered by (10) with ¢ =2 and (11) with ¢ = 1.
In order to prove (10) we present some formulas. Direct calculation shows
£y () = pitlipiyn d 1 i<J s (19
2796 = 96 {157 G20 )

fripEET AR ) fli () = fLikpE

it

2)fHItk(pEez)
(t,4,—k,5+k=>1), (13)
[T () = e M) (g2 1), (14)
and f*% in the RHS of (10) is regular. By computing ()\Ifi’j(ﬁf)Wi(zl)Wj (22)|\)
in the free field realization, we can show that (10) implies
Poles of fi(2 )W’(zl)WJ(zg) (0<i<j<N)are

Z = p(ZFE+h) (1 <k <min(i, N — 7)), (15)

because (A|f%I(22)W*(z1)W(22)|)) is a Taylor series in 22, and for any states of
the highest weight representation space, {)) and |@), (|7 (22)W*(21)W7 (22)|6)
differs from (| f*7(£2)W*(21)W?(22)|\) only for finite number of terms (Laurent
polynomials in z; and z3), which do not create other poles. (See also Appendix C of
Ref. 9 where different notation is used.) Therefore f**WoW? in the RHS of (10) is
regular and we can reverse its order, f@°(p°)WeW? = foe(p=¢)WPW*. From (7)
(or by using the free field realization), we have the following fusion relation

lim  (1-p*F 2)f9(2)W (@)W (z)
Z19pT "2 29
_ ¢%iillwf“(pi%m) (1<j<N), (16)
and if (10) is correct, (10) implies
lim (1 pTF L) L)W (2) W (21)

zz—)p¥ 2 2y
1-q)1 -t e
- Lol [[6') - wHeFez) (0<i<j<N). (7)
=1
Proof of (10) : (i) The case ¢ = 0 and ¢ < Vj < N, and the case j = N
and 0 < Vi < j are trivial. (ii) The case ¢ = 1 and 7 < Vj < N, ie. (7), is
already proved. (iii) Let us assume (10) holds for i(< N) and i < Vj < N. We
will show (10) holds for ¢ + 1 and i +1 < Vj < N. (For ¢ = N — 1, we have
i+1= N < j = N. Therefore it is sufficient to consider ¢ < N — 1 and j <
N.) Multiply f¢(& )flj(z2 YW1(z3) from left to (10) with ¢ > 1 (whose second
feb(pe)wew?b term in the RHS is replaced by reversed order one f>¢(p~¢)WbW?),
rewrite f19(2)W' (23)W7 (z2) = f9 (2)WI(22)W*(23)+- - - by using (7), multiply
(1_-%1?_1)(1 —p T 22), and take a hmlt z3 — p~'T 2zy. By using (12)-(16) and
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(17) (with j — j + 1), studying poles carefully and replacing z; — p? 21, we obtain
(10) with2 - 44+ 1 (2 <941 < j < N). (iv) Therefore we have proved (10) by
induction on :. O

3. Relation to Z-Algebra

Affine Lie algebra sl ~ 1s an associative algebra over C with the Chevalley generators,
et and h; (i =0,1,"-+, N — 1), which satisfy

[h'i.a h"l] = 05 [h’ia ei] = ia’ije:":5 [e;'{-aej_] = 5’ijh'i’ (18)
and the Serre relation (adef)!~ “”e = 0 (¢ # j), where (a;)o<ij<n—1 is the

Cartan matrix of AE\})_I Dynkin dlagrarn.10 This algebra admits various gradations
and we denote its grading operator as d and p for the homogeneous and principal
gradation respectively, which satisfy

homogeneous gradation : [d, eii] = ief&io,

1
principal gradation : p, el = :i:e:—’. (19)

In current basis ;[N is given as follows:

homogeneous gradation

generators : H:, EZ* (n€Z,1<4i< N —1), k : center, d : grading operator.
relations :

[HE, J]:kaijnanm,o, [Hi, ELJ) = +a,, B

n+m:?

[EF, B9 = 89 (HE Ly + knnimo),  [d, Xn] = nX, (X = HY, E*1) (20)

and (B, EXd) = [EX* EX7 ) and the Serre relations which we omit to write

explicitly, where (@s;)1<i,j<n—1 is the Cartan matrix of Ay_; Dynkin diagram.

principal gradation  Let us set w = e’¥ . Symbol = stands for = (mod N).

generators : 8, (n € Z, n #0), xsl”) (n€Z,1<u<N-—1,pis understood as
mod N), k : center, p : grading operator.

relations :

[ﬂm ﬂm] = kn5n+m,0 (n,m # 0) [ n, & S::)] (1 "-’_Vn) S:t)—ma

e, 5] :{ (whm — =)z t) (n+v#0) -
noonm (WM™ — W) Bptm + knwh ™ mo (0 +v =0),

[ps Xn] = Xn (X = ﬂa m(ll)) y

and the Serre relations.
Since these two current basis are basis of the same Lie algebra s{y, they are related
by linear transformation,

Brmv = Z Byt + Z Eny ™Y,

i=N-v+1

208



Comments on the Deformed Wy Algebra. 2061

N-v N
o . o it N
x%)‘n—i—u — Z wp,(z+u 1)E;L,nz+u + Z wu(z—}—u l)E:,,in—lu ’ (22)
i=1 i=N-—v+1
N-1

1-— . k
x%?n = Z 1 —L:)IJ' H:n - 1 _w“(Sm,O;
wherem € Z and 1 < u,v < N —1. Here, for simplicity of the presentation, we have
introduced gly generators E%7 (n € Z, 1 < 4,5 < N), which satisfy [EiJ, B3] =
637 E:Li’m — 6% B0 4 5% 57V kndyym., and the generators in the homogeneous
picture are expressed as E* = B2t Eot = Eitlé and HE = Eit — EiFLiHL
We remark E%J = [Ebl E49 | (i # ) and this RHS is independent on [ and m.
Next let us consider the splitting of the Cartan part:

(sly generator) = (exponential of Cartan generators) x (new generator), (23)

where new generator commutes with Cartan generators. For homogeneous grada-
tion, the algebra generated by these new generators is known as the (sly version of)
parafermion algebra of level k. For principal gradation, we name it as (sly-version
of) Z algebra of level k, ZA(s:\[N)k. (N = 2 case was studied by Lepowsky and
Wilson.?) Explicitly the generators of ZA(sIn)k, 2% (n € Z, 1 < p < N — 1, p is
understood as mod N), are obtained by

1 1 n
() =rexp(—2 3 =(1—wh™)Bu¢ ™) 1 24(0), (24)
nz0
where : * : stands for the normal ordering for boson (3, and we have introduced
currents (¥ (¢) = Y onez 2% ¢ and 2#(€) = ez #4¢ ™. Then (21) implies the
relation of ZA(;[ N)k>

g (8)2#(G1) 2" (Ga) — 2 (Ga)2* (Q)g™H ()

_ {6<w"§%)zﬂ+"(w“c2) — (W) (G) (v £0) (25)
k Do(wh$2) (p+v=0),
where D = ¢ dic, Dé(¢) = 3, czC™ and the structure function g#¥(() is given by

g4*(0) = exp(~ 7 3 ~(1~ Wk (1 — W), (26)
=

Next we present an interesting relation between DWA(;[N)q,t and ZA(sIn)x. Let
us consider the following limit®:

g=e¢em h—0
k+N

t=wl¢g v, k:fixed. @7)

Limit IT : {

kN )
CFor this choice of t = w™1¢"~ , we cannot take Limit I because 8 = k—}t\rﬁ - ?V—"g depends on k.
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We assume that DWA currents W*(z) have the A-expansion

Wi(p'® () = hwiz'() + O(R?). (28)
Then, under the Limit II, we can show that the relation of DWA (sl N)q,¢ (10) reduces
to that of ZA(s[N)k (25). (Eq.(10) begins from h? term and its coefficient is (25).

We remark that in this derivation We do not use free field realization at all.) In

other words, DWA(s[N)q,t with t =w™ q %% can be considered as a g-deformation
of ZA(s[N)k, which we denote as DZA(ﬁ[N)k,

DZA(E[N)k = DWA(S[N) k4N . (29)

gt=w-lqg N

Concerning the free field realization, however, our assumption (28) does not hold
on the Fock space except for N = 2 case. But calculation of some correlation func-
tions supports the assumption (28); We have checked (A|[W(¢1) -+ W()|A) =
O(h™) for n < 6. We guess that the assumption (28) holds on the level of correla-
tion functions, or, on the irreducible representation space obtained by taking some
BRST cohomology. For N = 2 case, (28) holds on the Fock space, and screening
currents and vertex operators of DVA (after some modification of zero mode) reduce
to those of ZA.

Finally we mention the character of DZA(&?[Z) g for k € Z>2,i.e. that of DVA,; =
DWA (sl2),.: with t = e~"i¢"%>. We write W(¢) and w()) as T(¢) and A respec-
tively, e.g., the highest weight state is defined by T,|\) = A|A)dpo {n = 0). Since
degenerate representations of DVA occur at A = An, = t2¢g7% +t"2g%,! let us

consider A = AL 2 (j= , -3 ki1, g) representations. Grading operator p
satisfies [p, Tp,] = nT and —p|A) = (10:%2) £)IA). The character of DZA is defined

by x; DZA(7) = try~” where y = €*™" and the trace is taken over irreducible DZA
spin j representation space. Shiraishi and present author conjecturedd

XA () = y#EHTE 7 (ymyms S B, (4 (0)

K 1 kt2
W v)e 42, i+
Here X(p 4 )( ) is the Rocha-Caridi character formula'
1 1 I’ 1 m ! 1’
if’s” (1) = . Z(y(p r—p'stmp'p)m _ (r+mp)(s+mp ))7 (31)
Yi¥Yloo en

which gives the character of the Virasoro minimal representation when p’ and p”
are coprime, (p',p”) = 1. In the above case, p’ = 2 and p” = k + 2 imply that
(p',p") =1 for odd k but (p',p"”) = 2 for even k. When ¢ is not a root of unity, by
studying the Kac determinant of DVA,! we can check that (30) is true. We remark
that the character of DZA(slg)k, DZA, coincides with that of ZA(E[z)k which is

obtained by using the result of Ref. 11, BRST structure of principal ;Iz.

dWe remark that this character appears in the calculation of the one-point local height probability
of the Kashiwara-Miwa model { M. Jimbo, T. Miwa and M. Okado, Nucl. Phys. B275[FS17]
(1986) 517-545).
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Appendix A. DWA(;[N)q,t and ¢{-function regularization
(by H. Awata, S. Odake and J. Shiraishi)

In this appendix we present an interesting relation between DWA(;[N)q,t and (-
function regularization.®

In string theory,'? the physical state condition is given by (Lo — 1)|phys) = 0
(and its antichiral counterpart), where Lg is the zero mode of the Virasoro gen-
erator. This condition and the space-time dimension are derived by careful study
of string theory (Lorentz invariance in the light-cone gauge, nilpotency of BRST
charge, etc.), but there is a shortcut method, ¢ function regularization method.

First we illustrate this method by taking a bosonic string theory as an example.
In the light-cone gauge the Virasoro generator L,, is given by L, = Efil meZ %
ok _,0f, where ol (n € Z,i =1, -,24) satisfies [a?, o] = 1678, ymoand : * :
stands for the normal ordering. The Virasoro zero mode without the normal order-
ing is LJoNC = 2?11 > onez 300k = P >onez 3 ook +12¢4% on”. Of
course the sum “»_ . n” is divergent and this expression is meaningless. But we
replace the sum “3 _ n” by ((—1), where {(z) is the Riemann ¢ function. Then
the above physical state condition is equivalent to the condition that the Virasoro
zero mode without the normal ordering annihilates the physical state:

Lg°NOlphys) =0, LjNC = Lo + 12¢(-1), (A1)

because of the value {(—1) = —&. We might say that the Virasoro generator
“knows” the value ¢(—1).

Next let us mimic the above procedure for DWA(;[ N)q,¢ case. DWA current with-
out the normal ordering becomes W "°NO(z) = «f44(1)~2” W(z), where “f*(1)”

is divergent for generic B (recall t = ¢° and q = eh). Let ak,, be coefficients
of the ff)l.lowing ﬁ'—expansion (1—-gm(1 - t‘")I 11—_’;:: 1—_11’_(—;;,:1 =3 >0 Gom (RR)2™.
Then f**(2) is f**(2) = exp(X 150 = Yo m>0 %m (P7)¥™2"). We define (-regularized
f&eg(1) by exchanging these summations over n and m and replacing ., o n®™ ™!
with ¢(1 — 2m) as follows:

fi’_ireg(l) = exp(z ab, (1 — 2m)h2m). (A.2)

m>0

In the Limit I (4), DWA current behaves as W¥(z) = (%) + O(h?), which can be
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shown by using free field realization.” So we require that 3 = NJN'—I or W%’ which
corresponds to the vanishing Virasoro central charge, and the zero mode of the i-th
DWA current without normal ordering takes the above value (%) on the vacuum

state |vac), which is characterized by A% |vac) =0 (n > 0, Vi),

Wi ™lvac) = (Vfac), WHSNO() = L W) (A3)

—reg(

Since we can show W¢|vac) = []:’ ] |vac), this requirement implies

N -1

et = () V] (A4)
where [1:’] = [i]'[%-l-i" ! = [n]---[1] and [n] = 7"”:?. We can check that this

: ' p2—p 2

equation really holds by using formulas log(sinhz) =logz +) _o(-1)"~ e
> (0 < [z| < 7) and {(1 - 2m) = (-1)™2= (m = 1,2, ). Here B, is the
Bernoulli number defined by =25 + % =1+ (- )" mﬂ)—mzn (|Jz) < 2m).
Therefore we might say that DWA(sln)q,: (with ¢ = qﬁN_ qN+1) for each N
“knows” all the values {(1 —2m) (m =1,2,---).

12°77'B,
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In order to achieve in configuration space a dimensional reduction from dimension two
to dimension one, the lowest Landau level (LLL) projection, also called the Peierls
substitution, is not sufficient. One has also, once in the LLL, to take the vanishing
magnetic field limit.

It is commonly believed that projecting a bidimensional (2d) 1-body system onto the
LLL of an external homogeneous magnetic field makes it essentially unidimensional
(1d), due to the dimensional reduction of the 1-body phase space from four to two
dimensions. Numerous applications have used this line of reasoning, usually referred
to as the Peierls substitution.! Starting from a 2d Hamiltonian

H =200+ w.(20 — 20) + %wgzz +Vi(z, 2) 1)

for a particle in a scalar potential Vi(z,Z) coupled to a strong magnetic field (we
assume without any loss of generality that eB > 0, w, = +eB/2 is half the cyclotron
frequency) and projecting it onto the LLL

¥(z) = f(z)e” 7 (2)
where f(2) is analytic, one obtains an eigenvalue equation which, in its modern
reformulation,? rewrites as

(wc+ A ) 1) = Ef(2) (3)

where the normal ordering :: means that wica is put on the left of z. Clearly, the
commutative 2d space has been traded for a non commutative space (1d phase

space like)
[2-0,,2) = — @

We We

However, this system is still bidimensional, as can be readily seen on its partition
function, which, in the simplest case V; = 0, scales like the 2d infinite surface of
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the plane. I will argue that in order to achieve an actual dimensional reduction, i.e.
not only in phase space but also in configuration space, the LLL projection is not
sufficient per se. One has also, once the system has been projected onto the LLL,
to take the vanishing magnetic field limit.3

Firstly, it might be objected that taking the B — 0 limit in the LLL is counter
intuitive: the LLL projection is physically justified when the cyclotron gap is large
compared to the temperature and/or the potential (hw, >> kT, fw, >> V4) so
that the excited states above the LLL can be ignored. Thus the LLL projection
is associated with a strong B limit, and clearly such an interpretation becomes
meaningless when the magnetic field vanishes. However, the algorithm proposed
here -LLL projection, then B — 0 limit-, which basically amounts to ask about
the whereabouts of the LLL Hilbert space in the particular limit when its defining
parameter, the magnetic field, vanishes, is well defined mathematicaily.

Secondly, the B — 0 limit in the LLL might be a priori ambiguous. Still, it can
be given a non ambiguous meaning if the system is regularized at long distance, for
instance by a harmonic well of frequency w,* and, only after i) projecting onto the
LLL harmonic eigenstates -the LLL eigenstates deformed by the harmonic well-
ii) letting B — 0, can one take the thermodynamic limit w — 0. Under these
conditions, we will see that a dimensional reduction of the configuration space from
dimension two to one is properly achieved.

Let us first start by a reminder about what is meant by thermodynamic limit
in a 2d harmonic well #: the 1-body spectrum is

Enm = (2n+ [m| + 1w (5)
with n > 0, m positive or negative integer. Clearly, the 2d harmonic well partition
function

1 1
Zy = Ry 6
(2sinh %‘5)2 -0 (Bw)? (6)
has to be identified in the thermodynamic limit, i.e. when w = 0, with the 2d free
partition function Z4=2 = V/(2n3), where V is the infinite surface of the 2d plane.
Therefore the 2d thermodynamic limit prescription should be that when w — 0

1 v
s @
(Bw) 2r3
Let us now consider, in the presence of a magnetic field, the Landau Hamiltonian
here for convenience expressed in the symmetric gauge®

Hy = —200 + w(20 — 20) + %wfzi (8)

2The first author to use a harmonic well regularization was E. Fermi, see cond-mat 9912229 where
the original article of Fermi® is translated.

bConsidering rather the asymmetric gauge where the Landau eigenstates are product of a plane
wave on one axis and a Hermite polynomial on the other axis would not help to understand the
dimensional reduction mechanism.
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and its spectrum
Epm = (2n+ |m| 4+ 1)we — muw, 9)

with an infinite degeneracy per Landau level eBV/(2x) - the product of the infinite
surface of the 2d plane by the magnetic field strength. In the LLL, n = 0,m > 0,
and F = w,, the 1-body LLL eigenstates are analytic (up to the Landau gaussian
factor)

m I
(__C___)Ezme—z“)czz (10)

As already said, the LLL partition function

eBV _
ZroL = 5 ¢ Pue (11)

is obviously 2d since it scales like the surface V' of the 2d plane.

What happens in the limit B — 0?7 Here an ambiguity arises due to the vanishing
field strength multiplying the infinite surface of the plane. In order to cure this
ambiguity, let us confine the system in a harmonic well, so that the 1-body LLL
harmonic eigenstates (i.e the deformation of the LLL eigenstates n = 0,m > 0 by
the harmonic well) are still analytic (up to the Landau-harmonic gaussian factor)

(

but now the spectrum is non degenerate

)%zme"%‘”‘zz (12)

m/!

E =w; + (w —we)m (13)
with w; = /w2 + w?. The LLL harmonic partition function becomes
e—ﬁwt
ZLLL+w = 1 _ e—Blwe—we) (14)

At this point, one should keep w fixed, let B — 0, and then take the thermody-
namic limit w — 0.

Before doing so, let us check that by keeping B fixed but taking the thermo-
dynamic limit w — 0, one correctly recovers Zr . Since, when w — 0, w; — w, ~
w?/(2w,) one indeed gets, using the 2d thermodynamic limit prescription (7),

e_lgwc
Zriitw ~ 55—
i w—0 5(wt - wc)

Note that what we found here is yet an other way to actually show that the Landau
degeneracy is, in the thermodynamic limit, eBV/(2x).

Now in the case of interest, first set B = 0, i.e. wy = w, then take the thermo-
dynamic limit w — 0, one gets, still using (7),

Pippen =~ LN V__ ga= (16)
LLL+e ™ o sinh BT“’ w—0 fw w=0 273 °
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i.e. the 1d partition function for a free particle on a line of infinite length L = /V.
At the level of the spectrum, being in the LLL and a harmonic well, and taking, as
advocated above, the B — 0 limit, the LLL harmonic basis (12) and spectrum (13)
have narrowed down to

wm+1 1
(S=p)tem, m20 ()
and
wim+1), m=>0 (18)

This amounts to pick up on each 2d harmonic energy level (j + 1)w, 7 > 0, with
degeneracy j+1, the eigenstate of maximal angular momentum j, and consequently
zero radial quantum number, yielding the spectrum (18) which happens to coincide
with a 1d harmonic spectrum, provided that the 2d positive angular momentum
quantum number m is now interpreted as the 1d harmonic quantum number.

It is therefore manifest, both on the partition function and on the spectrum,
that a dimensional reduction from d=2 to d=1 has been achieved. To put it bluntly,
we have shown that

v

eB
_ —Bw, d=1 __
ZyiL = ——27r Ve B—>0 Zy— = Dy 3 (19)

and accordingly for the density of states

eB d=1 vV
prir(E) = §;V5(E - we) 2P (E) = T (20)
where pr1p(E) and p¢=1(E) stand respectively for the LLL and the free 1d density
of states. Clearly, setting directly B = 0 in Zrrr or in prrr(E) has no meaning
whatsoever. Still, (19,20) have been given a non ambiguous meaning through the
long distance harmonic regularization.
Up to now one has dealt with spectra and partition functions. The same logic
applies as well to the Hamiltonian and the eigenstates: consider (1) but now in a
harmonic well

H = —200 + w.(20 — 20) + %wfzz +Vi(z,2) (21)
and project it onto the LLL-harmonic basis
(z) = fla)e™ %= (22)
to obtain the eigenvalue equation®
(wt (Wi — we)ad+ : Vi(z, -i-ta) :) £(z) = Bf(2) (23)
When B — 0 it becomes
w (1 204 Wiz, %a) ;) £(2) = Ef(2) (24)
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acting on ¥(z) = f(z)e~ #%%. It is obvious that the kinetic part of the Hamiltonian
(24) is nothing but the 1d harmonic well Hamiltonian in a coherent state repre-
sentation, with the mapping 2™ - H,,(z) between the 2d analytic function z™
and the 1d Hermite polynomial H,,(z). Moreover, looking at the potential V3, one
realizes that the 2d commuting space has been traded for a non commutative space

(20u,2] = - (25)

In the thermodynamic limit, w — 0, one gets an infinite non commutativity which
should be viewed as the signature of the dimensional reductlon which has taken
place from a 2d to a 1d system.
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An exactly solvable hard-core Bose-Hubbard model, which is equivalent to a mean-
filed plus nearest-level pairing theory, for a description of well-deformed nuclei is used
and applied to the actinide region. Binding energies and pairing excitation energies of
226-234y, 230-240() and 236-243py igotopes are calculated and compared with the
corresponding experimental values.

1. Introduction

Pairing is an important residual interaction in nuclear physics. Typically, after
adopting a mean-field approach, the pairing interaction is treated approximately
using either Bardeen—-Cooper—Schrieffer (BCS) or Hartree—Fock-Bogolyubov (HFB)
methods, sometimes in conjunction with correction terms evaluated within the
Random-Phase Approximation (RPA). However, both BCS and HFB approxima-
tions suffer from serious difficulties, the nonconservation of the number of particles
being one that can lead to serious problems, such as spurious states, nonorthogonal
solutions, etc. Another problem with these approximations is related to the fact
that both BCS and the HFB methods break down for an important class of phys-
ical situations. A remedy in terms of particle number projection complicates the
algorithms considerably, often without yielding a better description of higher-lying
excited states that are a natural part of the spectrum of the pairing Hamiltonian.
Over the past few years progress has been made in the development of better
algorithms that bypass the Bogolyubov transformation and thus are free of prob-
lems related to particle number nonconservation.!'? In these approximation, either
a configuration-energy truncation scheme or a many-body Fock-space basis cutoff
was used, so the results were still not exact.

*Dedicated to Professor Wu F. Y. on his 70th Birthday Celebration
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Exact solutions of the mean-filed plus pairing model were first studied for the
equal strength pairing model.3~® Recently, generalizations that include state depen-
dent pairing have been considered.®=® In these cases, the Bethe ansatz was used,
from which excitation energies and the corresponding wavefunctions can be deter-
mined through a set of nonlinear equations. Unfortunately, solving these nonlinear
equations is not practical when the number of levels and valence nucleon pairs are
large, which is usually the case for well-deformed nuclei.

2. A Hard-core Bose-Hubbard Model for nuclei

In Ref. 9, a hard-core Bose-Hubbard model was proposed, which is equivalent to
a mean-field plus nearest-level pairing theory. As is well known, an equal strength
pairing interaction, which is used in many applications, is not a particularly good
approximation for well-deformed nuclei. In Ref. 2, a level-dependent Gaussian-type
pairing interaction with

Gij = Ae~ Bl (1)

was used, where ¢ and j each represent doubly occupied levels with single-particle
energies €; and ¢;. The parameters A < 0 and B > 0 are adjusted in such a way
that the location of the first excited eigen-solution lies approximately at the same
energy as for the constant pairing case. Of course, there is some freedom in adjusting
the parameters, allowing one to control in a phenomenological way the interaction
among the levels. Expression (1) implies that scattering between particle pairs
occupying levels with single-particle energies that lie close are favored; scattering
between particle pairs in levels with distant single-particle energies are unfavored.
As an approximation, this pairing interaction was further simplified to nearest-level
coupling in Ref. 9, namely, G;; is given by (1) if the levels ¢ and j lie adjacent to
one another in energy, with G;; taken to be 0 otherwise. Hence, the Hamiltonian
can be expressed as

H= Zei + thijbi+bj, (2)
i oy

where the first sum runs over the orbits occupied by a single fermion which occurs
in the description of odd-A nuclei or broken pair cases, and the second primed sum
runs only over levels that are occupied by pairs of fermions. For the nearest-level
pairing interaction case the f-matrix is given by t; = 2¢; + Gy = 2¢; + A and
tiit1 = tiy1s = Gia with t;; = 0 otherwise. The fermion pair operators in this
expression are given by

bi+ = ai+af+’ b; = a;a;, (3)
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where a; 1 is the i-th level single-fermion creation operator and a;' the corresponding
time-reversed state. The b;* and b; satisfy the following commutation relation:

[bi, biT] = 0i;(1 — 2IN;), [Ni, b ] = 8ibs ™, [Ny, b] = =055 (4)

where N; = 1(a;ta; + a;*a;) is the pair number operator in the i-th level for
even-even nuclei.

In this paper the Nilsson Hamiltonian is used to generate the mean-field. In this
case there is at most one valence nucleon pair or a single valence nucleon in each
level due to the Pauli principle. Equivalently, these pairs can be treated as bosons
with projection onto the subspace with no doubly occupied levels.®

The eigenstates of (2) for k-pair excitation can be expressed as

14
. 3
lk1 57 (njl s Mgyt N5, )nf> = Zil Lige<in Ci(l'i)z-~-'ik X
b’ilTbizT"'bile(n.’iunjzv"'7njr)nf>a (5)
where 71, jo, - - -, jr are the levels occupied by r single particles, the prime indicates
that 4;, 43, ---, 4% can not be taken to be j1, j2, ---, jr in the summation, and

ny is the total numbers of single valence nucleons, that is ny = 3_; n;. Since only
even-even and odd-A nuclei are treated without including broken pair cases in this
paper, r is taken to be 1 for odd-A nuclei, and 0 for even-even nuclei. In Eq. (5),

ng?...ik is a determinant given by
ggil gzzl “es gé:-
Gii G i , (6)
o e g

where £ is a shorthand notation for a selected set of k eigenvalues of the ¢ matrix
without the corresponding r rows and columns denoted as ¢, which can be used to
distinguish the eigenstates with the same number of pairs, k, and g% is the p-th
eigenvector of the £ matrix.

The excitation energies corresponding to (5) can be expressed as

r k
BO =S+ S B, (7)
i=1 j=1

where the first sum runs over r Nilsson levels each occupied by a single valence
nucleon, which occurs in odd-A nuclei or in broken pair cases, the second one is a
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sum of k different eigenvalues of the {-matrix. Obviously, £ is a (k — ) x (k — )
matrix, since those orbits occupied by single valence nucleons are excluded resulting
from the Pauli blocking. E{¢#) is the p-th eigenvalue of the {-matrix, that is

Ziijgjgp — E(gp)giép‘ (8)
J

Hence

k r
‘FIIk;gi (nj1anjzy"';nj,)nf> = Z ZZ(_)P(ZEﬁ +E(€P(u)))x
=1

i1 <ig<-<ip p=1 P

&py) (Ep)) |

g gi . .g(ﬁp(u)) . (€P(k))bil

i Gy, Tbiz.r"'bik”(njl’njzv'"7njr)nf>

= E££)|k§€a (njwnjz "'njk)nf>a (9)

where P runs over all permutations, E¢») is the p-th eigenvalue of the £ matrix.
Eq. (9) is valid for any k. If one assumes that the total number of orbits is N for
even-even nuclei, the k-pair excitation energies are determined by the sum of &
different eigenvalues chosen from the N eigenvalues of the t matrix with = 0, the
total number of excited levels is N!/k!(N — k)!. While for odd-A nuclei or broken
pair cases, the levels that are occupied by the single valence nucleons should be
excluded in the original ¢ matrix. In the latter case, the eigenvalue problem (4) can
be solved simply by diagonalizing the corresponding ¢ matrix as shown in Eq. (9).

3. Applications to Actinide Isotopes

In this section, we try to describe nuclei in the actinide region with the mean-field
plus nearest-level pairing model using the axial-symmetric Nilsson potential as the
mean-field. Other than what is manifest through the mean field, the quadrupole-
quadrupole interaction is not considered. In this case, exact solutions can be ob-
tained by using the above simple method. As for the binding energy, the contri-
butions from real quadrupole-quadrupole interaction is expected to be relatively
small.!® This conclusion applies to low-lying 0% excited states as well as ground
states. As shown in Ref. 11, contributions from the pairing interaction is very im-
portant to the low-lying excited 0 states in these deformed regions. Hence, the
position of low-lying 0% states is an estimate based on the Nilsson mean field plus
pairing approximation.

In this well-deformed region there are a lot of nuclei. The parameters were fixed
by considering the 226-234T}, 230-240(J, and 236-243Py isotopes. Specifically, the
binding energies of these isotopes were calculated. Table 1 shows the binding energy
results as well as pairing excitation energies of the theory for 226—234T}, 230-24077,
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and 236-243Py, with the corresponding experimental values taken from Ref. 12.
The parameters A and B in Eq. (1) were fit as follows to maximize agreement with
experiment:

A =1+ bk +vng, B = as+ B2k + veny, (10)

where «;, §3;, and «y; are parameters that were fit for each isotope.

Table 1. Calculated binding and pairing excitation energies are compared with the
corresponding experimental values for various 226-234p 230-240yy apd 236-243py jso-
topes. Byp(MeV) and Bexp(MeV) denote, respectively, the theoretical and experimental
binding energies.

Spin Pairing excitation Pairing excitation
Nucleus and  Begp(MeV) By (MeV) Energies of Energies of
Parity Exp. (MeV) Th. (MeV)
226y ot -1730.54 -1732.17 0,7 0.805 02t 0.999
1,7 322 1,7 1299
27ty 4T ameo0 -39 4,0 s188 4.7 1301
1 6495 7 145
228 ot -1743.10 -1739.30 0.t 0831 0t 0718
5,7 002 5,7 0057
297y 3T me36 -14dd2 3,0 0317 3,0 0516
230y ot -1755.16 -1756.90 0,7 0635 0,7 1.199
5,7 o2 5,7 o907
231Th 5t -1760.27  -1764.21 8.7 0.302 5.7 1204
5,7 osr 5,7 123
02T 0.730 0,7 1.647
27y ot -1766.71 -1768.66 03t 1.079 03t 2585
Wy 1Y amwso arree2 LT 0310 1,7 ogor
0;T 0810 02T 1.066
234 ot -1777.69 -1779.81 03t 1.150 03T 2.562
04t 1.470 03t 2.904
sy 3" 175872 -1761.26 — 5, 0646
B2y ot -1760.00 -1758.94 02+ 0.691 0,t  0.961
$,7 0340 5,7 0732
233y §* amima a2 §,° 0546 3,7 0.803
02" 0.809 02" 0.747
Bay ot -1778.59 -1774.41 03t  1.044 03T 0.933
04t 1.781 047 1.696
%, 0670 %, 0826
28y i -1783.89  -178023  I.,”  0.700 T.~ 1056
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Table 1 (Continued)

Spin Pairing excitation Pairing excitation
Nucleus and  Bexp(MeV) By, (MeV) Energies of Energies of
Parity Exp. (MeV) Th. (MeV)
02t 0919 0t 0.913
236y ot -1790.44 -1786.71 03* 2155 037 1.186
04t 2750 0,7 2319
. %2: 0.846 ézi 0.586
BTy 3 -1795.56  -1795.48 3, 0.905 33 0.700
0t 0925 0t 0877
238y ot -1801.715 -1802.22 03t 0.993 03t 2874
5 + 5 +
. 5, 0.193 %, 0.185
29y 5 -1806.52  -1810.23 3, 0.734 33 0.459
8,7 omr 3,7 o
240y ot -1812.45 -1815.41 — 0,7 0.100
236py ot -1790.46 -1792.36 02t 3.000 02 0.645
B 2 0691 3, 0617
2Tpy z -1795.56  -1795.87 %, 0.696 %3 2.173
02t 0942 0t 0.407
037 1134 03 1.987
238py ot -1801.72 -1799.96 047 1.229 04T 2170
0st 1427 05 2.681
29py  1* .isoes2 -180512 3,0 o7z b,Y 0 osm
02t 0860 02 1.030
240py ot -1812.45 -1810.68 03t 1.089 03t 2144
0,7 1526 047 2626
+ 5 +
§2+ 0.233 3, 0088
21py $* -1816.64 -1816.09 33 0.801 3a 0.587
242py ot -1822.41 -1821.89 0t 0.956 0T 1.186
7 7 —
5o 0333 7, 0845
M3py (. -1826.63  -1828.63  §, 0.450 %3 1.146
7~ 7~
4 0.742 4 1.815
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We study the algebra Ay, the basis of the Hilbert space Hy, in terms of 8 functions of the
positions of n solitons. Then we embed the Heisenberg group as the quantum operator
factors in the representation of the transfer matrices of various integrable models. Finally
we generalize our result to the generic ¢ case.
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Keywords: noncommutative torus, integrable elliptic models.

1. Solitons on noncommutative plane

In the noncommutative plane R?, the coordinates z! and z? satisfy the following
relation:

[z*, 27] = i8, (1)

here 0 is a constant. The algebra A associated with this space is generated by the
functions of z! and z2. The functional form of the algebra A is defined by the Moyal
* product

£+ 9(@) = €1 £(2)g(y)lamy. @
The derivative 9; is the infinitesimal translation automorphism of the algebra .A:
zt — ot 4 €, (3)
where €* is a c-number. For algebra A this automorphism is internal:
Bif(x) = iBeii[z7%, f(x)] = i0ij[27 %, ()], (4)

here Oij = 061‘]'

*Email:byhou@phy.nwu.edu.cn
tEmail:dtpeng@phy.nwu.edu.cn
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The operator form of A is generated by Weyl-Moyal transformation.

Lrig?), o= ——(a —idd), 5)

V26

a

T = 1 (z
V20

which obey

[a,al] = 1. (6)

Since a and a' satisfy the commutation relations of the creation and annihilation
operators, we can identify the function f(z!,z?) as the functions of a and a! acting
on the standard Fock space H of the creation and annihilation operators:

H={[0),11),---,In), -} (7)
where |0) and |n) satisfy:
_ (ah)"
S Val

The Weyl-Moyal transformation maps the ordinary commutative functions onto
operators in the Fock space H:

al0) =0, |n) 0), a'aln) = nn). (3)

flz) = f(z=2" —ia®,z=2' +iz%) —

f(a,at) = d;fgzyf(m)ei[ﬁ(\/@a—z)w(\/é?af—z)], ©)
where:
It is easy to see that if
f—1f g—3 (11)
then
frg— fa (12)
and
/d%f(x) — 0T f(a,al). (13)

The translations of R? are generated by &- which are isomorphism to A while
applying on the Fock space H:

In paper 4, Harvey, Kraus and Larsen introduced a quasi-unitary operator to
generate various soliton solutions in noncommutative geometry. In noncommutative
plane R?, this operator is defined as

7= @

3

— (15)
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Acting this operator T on the basis of the Hilbert space H, we have

Tiny=n+1), QT =({n+1|. (16)
and
Tn){(n|TT = |n + 1){n +1]. (17)
This means that
TP, T" = Py, (18)

where P, = |n)(n| denote the projection operator onto the n-th states and P2 = P.
Thus we have

TTYn) =|n),(n <1) and TT|0) =0, (19)
and
TT=1-10)(0| =1 - P,. (20)

T is the quasi-unitary soliton generating operator.

2. Solitons on noncomimutative torus 7 and Heisenberg group

In the noncommutative torus 7, the algebra A is generated by the Wilson loop U,
(¢ = 1,2). The arbitrary element a € A is

a= chlyszfl ng (21)
J1j2
For the periodicities | and 27l of the torus, the generators of the algebra A are

U1 — eilzz’ Uy = e’l:l(Tgml—lez)' (22)
Since [x!,z%] = i locally, so
0102 = 021-‘]161‘[2120. (23)

Now let us consider the integral torus case 1—2{—;2 = A € N (or Z;) i. e. the

normalized area A of the torus is an integer. Then the Wilson loop U; and Us; are
commutative

U U, = UpUs. (24)
We orbifold 7 into —L— = 7y, by introducing

nxn
W; = (U;)*, (25)

then on H,, the Hilbert space on 7,, we will have noncommutative algebra A,
generated by

W1W2 = Wgwle% = W2W1w (26)
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which satisfy
Wr=Wws=1 (27)
where w = e,

The Basis vectors of the Hilbert space H,, are

n
n:ZF—a,b)(a:]-aza"'an)a

b=1
F, = Fa1,az = et H Oai,a2 (Zj - ;L- Z Zk)’ (28)
i=1 k=1
here o = (o, a2) € Z, X Zy, and
1o
oo =011 2] (29)

The # function can be transformed to a operator form by the Weyl-Moyal trans-
formation:

0(2) _ Zeirm27'+27rimz N 0(2) _ Zeiwmzr . Ulngn . (30)
m m
Since
W, : UPUR = o™ UTUR (31)
we have
n—1
WiVa(21, 75 2n) = ( I1 Té”)Té”_’,Va(zl, cey ) (32)
i=1
n—1 )
Wati(er ) =  [L79 )18 Valan, .20, (3)
i=1
where
TOf(2) = flz1,+ z + 0y, 2n)- (34)

Substituting the expressions of V, we get

lea(zl’ Tty zn) = Va+1(21, Tty Zn),

WoVa(z1, -+, 2n) = eX 5 Vo (21, -, 2n)- (35)
Then the algebra
An = (W& = W2 = W W3} (36)
is realized as the 2™ x 2" Heisenberg matrices I*,
(Ia)ab = Oatar,a™ 37)
Corresponding to the d; on R?, we have a su,(7) acting on H, 18
sun(Ta) : {Eala # (0,0)}. (38)
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Here
Ua(z ik (z i
Ey = (-1)*0,(0) = a9 8,
( ;Ig (o)) z]k) szaa ’L I
a = (a1, a2) # (0,0) = (n,n), (39)
and

-Y "9, (40)
J
where 255 = 2z; — 2k, 05 = aiz]_. The commutation relation between E, and E, is
[Ba Byl = (W™ —w™ M ™)Eq o, (41)
or in more common basis, let Ej; = 37, ((I%)i Ea, we have
[(Ejk, Eim] = Ejm0ki — Exdjm. (42)

This commutation rule can also be obtained from the quasiclassical limit of the
representation of the Sklyanin algebra.l?

Since the Wilson loops W1 and W> acting on the noncommutative covering torus
T is to shift z; to (z; + Z — din7) and (2 + % — ;) Tespectively, we can get the
automorphism of Eg € suz(T) by noncommutative gauge transformation w® € A

W1Eq(z)Wi ! = w2 Eq(2;), (43)
WaEq(2:)Wy ' = w™ Eqo(2). (44)
Let E, € g to act on V,, we find that
E,V, = Z )6aVa. (45)
Next, we know that
WoV, = Z )b Ve, (46)

so on H,, we establish the isomorphism:
sun(T) <= A; Eo +— W,. (47)

The operator form of the projection operators becomes
1
=3 W) = P = V) (Vi (48)

and the ABS operators is simply
B = Wi =) |Var1)(Val (49)
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3. The integrable models for the solitons on noncommutative
torus 7~

In this section, we will embed the su,(T) derivative operators as the “quantum”
operator factors in the representation of the transfer matrix (Lax operator) of the
various integrable models i.e.

The elliptic Gaudin model on noncommutative space® is defined by the transfer
matrix (quantum Lax operator):

Liw)= 3 wa(u)Ba(la)i (50)
a#(0,0)
where wq(u) = 8(00a(¥) and F, and I, are the generators of su(n) (or Ap_1
oa(0

Weyl) and Gy (n) rgspectively. This transfer matrix can also be obtained as the
nonrelativistic limit of the Ruijsenaars—Macdonald operators. The common eigen-
functions and eigenvalues of Gaudin model is solved in terms of the Bethe ansatz.?!
Now we substitute the difference representation of su(n) E, (39) into (50), we get
a factorized L of the Gaudin model

L) =Eo+ Y, Ealle)j
a7#(0,0)
= Z¢(u,z)};¢ u,z)k0, ~lZau¢ u, 2)40 " (u, 2)%, (51)
k

where the factors are the vertex face intertwiner
_ i
o(u, z)J 6[ ln] (u+mnz; — Zz;ﬁ— nT). (52)
2

For the Gaudin model on noncommutative torus, the z; is the origin (position) of
the 4-th soliton, J; as its infinitesimal translation is equivalently to [z;x, ].
Next, the elliptic Calogero-Moser model is defined by the Hamiltonian:

H=Y 87+ gp(z7) (53)
i=1 i#j
where p(z) = 8%0(z). The corresponding Lax operator is
. 1 { o olu+ z4)
L b= i — ———1 i — - L __‘7_
om(u)j = (p v n A(z))d; ~o "(0)(1 — & )a(u)o(zji)

This Lax operator can be gauge transformed into the factorized L (51) of the Gaudin
model by the following matrix:

(54)

b(u; 2)%
7 Ty 03,3 (20)

The C.M. model gives the dynamics of a long distance interaction between n-
bodies located at z; (¢ = 1,---,n). On noncommutative torus, it gives the dynamics
of n solitons and z; becomes the position of the center of the i-th soliton. According

Glu;2) = (55)
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to Ref. 9, the interaction between n-solitons is the Laplacian of a Kéhler potential
K, which is the logarithm of a Vandermonde determinant. Actually we have

Z p(z;7) = Z 82 log H o(z; — z) = Z 02K (u, z) (66)
i#£] J#k 4
and

K(u z) __ H O'(Z] —zk:) (nu+ _1) det((b‘;c) = a(nu+ Hg(zz 57)
ik i#£j

The variable u of the marked torus is the spectral parameter or evaluation param-
eter of Lax matrix K.

This Ruijsenaars operators are related to the quantum Dunkle operators and the
g-deformed Kniznik-Zamolodchikov-Bernard equations. The eigenfunctions could
be also expressed in terms of double Bloch wave as the algebraic geometric meth-
ods.?? We will show this in the more familiar formalism of the elliptic quantum

group.

4. The Z, x Z,, Heisenberg group in case of the general 6

For the generic @ case, as in paper 23 we find that 87 = n, here 7 is the crossing
parameter and the Z, x Z, Heisenberg group of shift of solitons is realized by
the Sklyanin algebra S, ,. The noncommutative algebra A is realized as Elliptic
quantum group E; ;. The evaluation module of E. , is expressed by the Boltzmann
weight of the IRF model.

Ru, ) =Y Eii®E;+ Y a(u, j)Eii ® Ejj + Y B(u, A\ij)Ei; ® Eji (58)
=1

i#£j i#5
where
B(u)8(A +n) O(u+ A)6(n)
alu,\) = —2~ 1 Blu,\) = —— 20 59
WX =gu—maoy PN = e (59)
It satisfies the dynamical YBE:
R(uy, ug, A — hNY 2 R(uy, \)*® R(ug, A — nh )23
= R(uz, ) R(u1, A — nh ) B R(u; — ug, X)1? (60)

where R(u, A — 7h(®)12 acts on a tensor v; ® v2 ® v3 as R(u, A — nu) ® Id if v3 has
weight p.

The elliptic quantum group E; ,(sl,) is an algebra generated by a meromorphic
function of a variable h and a matrix L(z, \) with noncommutative entries:

R(ug — ug, A — phNY 2 L(ug, N3 L(ug, A — nh(1))?
= L(ug, B L{ug, A — th@) B R(uy — ug, A)12. (61)
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here L(z, ) gives an evaluation representation of the quantum group

oo(u+ & —nd — nax; — %5 I oo(—4 +nar:)

L{u, A I =
(V) oo(u— 79 = =) P

(62)

i#]
The Transfer matrix of IRF is expressed by the Ruijsenaars operators which
gives the dynamics of solitons

N
T(w)f(N) =D Lis(u, A)f (A —nh) (63)

i=1

and the Ruijsenaars—Macdonald operator M is

(N — i +1
w=> T % e ! (64)
i JigA
So we have
Tif(A) = f(Ai —nb) (65)

Then the Hilbert space of non-commutative torus becomes the common eigen-
vectors of the transfer matrix.
The wave functions have the form

%= H e [ [ 6(z +ti —n) (66)

which will be twisted by 1 when 2; changed by Wilson loop Ui, Us.
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NEW RESULTS FOR SUSCEPTIBILITIES IN PLANAR ISING
MODELS*
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We briefly review recent progress on calculating susceptibilities in planar Ising models.

1. Introduction

First of all, a project like the current one cannot be undertaken by a single person.
We owe a lot to our collaborators, teachers, and colleagues, especially R.J. Baxter,
H.W. Capel, A.J. Guttmann, M. Jimbo, B.-Q. Jin, X.-P. Kong, T. Miwa, B.M.
McCoy, B.G. Nickel, W.P. Orrick, M. Sato, and T.T. Wu. The literature on the
two-dimensional Ising model also is very extended. Therefore, we shall only give
limited citations, and encourage the interested reader to consult the quotations in
these references. Most of the current work is a brief review of results in Refs. 1-4.
The symmetric two-dimensional Ising model is defined by

H=-J Z (Um,nom,n+l +0'm,n0m+1,'n)- (1)

m,n
For this model it is convenient to define elliptic modulus®
k =1/ sinh®(2J/ksT), (2)

which is < 1 for T < T; and > 1 for T > T, with k¥ — 1/k giving the Kramers-
Wannier duality transformation.
The spontaneous magnetization is simply given by%7

_ 1.271/8
{0 TSR

The calculation of the pair correlation function

C’(m, ’I‘L) = <0'0,00'm,n> (4)

*This work has been supported in part by NSF Grants No. PHY 97-22159, PHY 97-24788 and
PHY 01-00041.
tEmail address perk@okstate.edu
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is more involved and can be carried out using quadratic difference equations®

[C(m, n+1)C(m,n—1) — C(m,n)?]

+k [C*(m+1,n)C*(m—1,n) — C*(m,n)?] =0, (5)
[C(m+1,n)C(m—1,n) — C(m,n)?]
+k [C*(m,n+1)C*(m,n—1) — C*(m,n)?] =0, (6)

where C*(m,n) is the dual correlation function obtained by replacing ¥ — 1/k. For
the symmetric case (1), these two equations are equivalent. To solve them we need
initial conditions. For T' = T, we have

L'()*
L(G+3)r0—3)

C(n,n) =C*(n,n) = H

=1

(7

which form was already known to Onsager and Kaufman.® For T # T¢, C(n,n) and

C*(n,n) can be calculated by Toeplitz determinants!*7
—_— pu— n . .
Clm,m) = (-1)" | det ({ais1}), ®)
C*(nym) = | det({ai-s}), )
where
an= (2nk lan_1 +a_n)/(2n + 1), (10)
G_n_1= (2nka_n +an_1)/(2n + 1), (11)
for n =1,2,- .-, with the initial conditions
2 ) 2
a0 = — [E(k) — (1 - K)K(K)], a_1= —;E(k). (12)

However, it can be done faster by another set of quadratic difference equations
due to Jimbo and Miwa.0

2. High- and Low-Temperature Series for Susceptibility

Very recently, with the help of (5) the high- and low-temperature series for the
susceptibility were much extended by the authors of Ref. 2. In terms of the reduced
susceptibility,

X = kBTX = Z (<UO,00'm,n> - <0'0’()>2), (13)

they found for T' > T,

X = 1+4s, + 122 + 3283 + 76sf + 17657, + 40058 + - --
+ 20073302588291729914311665722841070356623232518453\
67545550226445723763406738301159160108585998318576 5323, (14)
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with s, = s/2 = sinh(2K)/2, and for T < Tg,

X = 4sf +165f 4+ 1045} + 416s{° + 2224512 + ...

+ 3051547724509044350855662072500389468463893273907)\
5732810211229434299420849612234517174982030845245\
5331887458424846630637797467206682914215700492366\
9271259707379855275224873707435550114462001144064 746, (15)

with s, = 2/s = 2/sinh(2K). The size of the coeflicients may look ridiculous at
first sight. However, it is well-known to series expanders that the new information
in each successive coefficient is often in the last few digits.

Near the ferromagnetic critical point, the susceptibility behaves asymptotically
as

B x4+

WV1+72+ T)l/

where (vV1+ 72 +1)1/2 = 1/,/5 and 7 = (1/s — 5)/2, and =+ stands for T above or
below T¢. In (16) the ferromagnetic background is given by?

= ~ Coy (2KoV2)4|r|~"/*Fy. + B, (16)

Br = (—0.104133245093831026452160126860473433716236727314
—0.074368869753207080019958591697995003280476320287
—0.008144713909119599537154285865572389326605774072
+0.00450410771223201592635502085298697059136452873
+ - —0.1627925364897461886188121656668674)

+(log |7])x
(0.032352268477309406090656526721221666637730948898T
—0.00577552937968846300914875640132010136771529807°
+ .-+ — 0.0414285864630528693568031441376207%)
+(log |7])% x
(0.00939156987114587213179533187270757706495136547*
—0.008695925462879238021564166451917529879129227°
+ - -+ — 0.00555710021511613080348969643146797'%)
+(log |7])*
(—0.0000157715691384518404800010126214617381787°
+0.00003442820662088875536477998568577533807!*
—0.00005244271774872261741615837791493937%), (17)

whereas, the ferromagnetic scaling amplitudes functions are given by?

By =1+472/2 - 74/12 — 0.12352922857520866637°
+0.1366109498090957% — 0.130438972137° + ..., for T > T, (18)

F_ =1+72/2 - 7%/12 — 6.3213068404959366230677°
+6.251997470460243297°® — 5.6896599756180710 + - - -, for T < T.. (19)
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More coefficients are given in Ref. 2. The last digit in each term above may not be
reliable. As we have normalized* Fy(7) — 1 for T — T (or 7 — 0), we need to
give also the leading susceptibility amplitudes:

Ci = 1.000815260440212647119476363047210\
236937534925597789 (2K .v/2)~7/4/2,
Cy = 1.000960328725262189480934955172097\

320572505951770117 (2K .v2)~7/4/2/(12%). (20)
Near the antiferromagnetic critical point, the susceptibility behaves as
-1
B~ "x 75 ~ Bat, (21)
(Vi+72+71)

where

B.s = 0.1588665229609474882333592313690210116925239008416
+0.1495668369385359051943820294335912863 747112072627
+0.01071222587983288033470968550659996 768542030678 7>
+ -+ +0.00712367768251120814903247637966 77

+(log|7|)
(—0.15531719015801105859341335389327345299921216003057
+0.03206714814586975221843437287457551882247161782 73
+ - - - — 0.00940562303807656077194 749250886497 %)
+(log |7])?
(0.011533714378823280279490114427612036406840438057%
—0.0113117349206915600675350565322078427164056847°
+ -+ — 0.00674470189451526288478200059343432714)
+(log |7])®
(0.00005789971947648772977600672211440622495417°
—0.000169915088240128902407964467449359088127 1
+0.00032664884687465587957270016883093909713). (22)

The difference of Fy and F_ in Egs. (18) and (19) implies that a suggestion
of Aharony and Fisher!! breaks down in higher order. They had brought up the
possibility that there are “no irrelevant variables.” This they concluded from the
speculation that the Ising model free energy in the critical region can be described
entirely by two nonlinear but “analytic” (thermal and magnetic) scaling fields. Then
the scaling amplitude can be found to be

1, 31 , 125

o 12 ol 120 ¢ 8
Fy =1+ 27' 384T + 30727' + O(7°), (23)

equal above and below T.2

2Note that we have a slight change of notation with respect to Ref. 2, as we have rescaled all B’s
and F’s with a factor /s.
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We now know that this simple picture is incomplete and that corrections to
scaling due to breaking of rotational symmetry must be considered. Indeed, the
correlation functions have a kind of multipole long-distance expansion,!? which can
explain the deviations from fourth order on. Very recently, a conformal field theory
explanation has also been given.!® To study the effect in more detail we shall have
to study the model on other lattices.

Another interesting feature discussed in Ref. 2 is that the susceptibility has a
natural boundary at the critical point, i.e. there exists a closed curve of (essential)
singularities fully prohibiting analytic continuation in the complex temperature
plane from high to low temperatures. The Ising susceptibility is not differentiably
finite, unlike the zero-field free energy and the spontaneous magnetization. This
then explains why there is no simple closed form expression available after half a
century of research. Yet, we now have algorithms of polynomial complexity, which
is as good for numerical analysis.

3. Baxter’s Z-invariant inhomogeneous Ising model

Baxter’s Z-invariant Ising model is defined in terms of a set of oriented straight lines
carrying “rapidity” variables u;, vj, - --. In the scaling limit the scaled correlation
function depends on a single distance variable R, as first discovered by Bai-Qi Jin,!

R= % [{ iﬂ cos(2uj)}2 + { % sin(2uj)}2] " (24)
=1 =

This is given in terms of the 2m rapidity variables crossing between the two spins in
question. Using the diagonal correlation length £4 to introduce the scaled distance

r=R/&, where £'=]|logk|, (25)
we have found the most general form of the scaled correlation functions to be
(o0") m |1 = k72Y4F(r), (00')* m |1 —k2MAG(r), (26)
where the functions F(r) and G(r) satisfy
FF' - F?=—"'GG, GG"-G?=—-r"'FF, (27)

and the front factor is the square of the spontaneous magnetization for T' < T, or
k > 1. F(r) and G(r) are the Painlevé functions for the uniform rectangular Ising
lattice,4 see Refs. 1,4 for more details.

4. Susceptibility in Z-Invariant Lattice
For a general ferromagnetic Z-invariant lattice with A/ sites, the susceptibility vy is

given by

%= ksTx = lim — (Gmr i Tmgma) — (T0.0)2), (28)
Noo N

mi,n1 Mma,nz
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where (m1,n1) and (m2,n2) run through the possible coordinates of the spins. In
periodic cases one of the two sums can be done trivially. In quasiperiodic cases this
can only be done asymptotically at the largest distance scale. Hence, in the scaling
limit and for both periodic and quasiperiodic Z-invariant lattices, ¥ becomes

oo too Py (kR
X & 9o / daM dNv —%(i%—), (29)
—oQ —o0
where
F_(kR _
R(1/4 ) =[1-k 2|1/4(G(R/§d) -1), (30)
F_ (kR _
41-2(1/4) =|1- k724 F(R/¢a), (31)
k=1/£4 = |logk|, and R reduces to
R=+/aM?+2bMN + cN2 (32)

with a, b, and c known constants that can be calculated choosing suitable integer
coordinates M and N. Also, go is the corresponding multiplicity factor counting
how many spin distance vectors fall exactly or asymptotically within a unit cell in
the (M, N) plane. Therefore,*

_ 27 gdo

X= Vac—b% Jo
with ¢t = |T — T¢| /T, giving the exact T > T, and T' < T; susceptibility amplitudes
for all periodic and quasiperiodic Z-invariant lattices.

Note that this result implies that the ratio A, /A_ is universal for all periodic
and quasiperiodic ferromagnetic Z-invariant Ising models. This may be the first
time that this is shown to this generality for the magnetic susceptibility. For the
analysis of the long susceptibility series in the isotropic square lattice A and A_
were evaluated to very high precision by Nickel.

Therefore, we can now give A, and A_ for the isotropic square (sq), triangular
(tr) and honeycomb (hc) lattices to many places, i.e.*

A% = 0.9625817323087721140443298094334694951671391947579365,

A% = 0.9242069582451643296971575778559317176696261520028389,

Aljf = 1.046417076152338359733871672674357433252295746539088,
A% = (0.02553697452202390538595345622639847192921968727077455,
AY = 0.02451890447700000489080855239719772023653022851422950,
Abe — 0.02776109842539704507743379795258285503609969877633251.  (34)

o0
dre¥Fy (r) 677/ o= AL 7T O, (33)

Also, more generally,

X \/% | log (k)| =™ /OoodT r¥ L (r) (35)

is a product of a factor depending on rapidities and the modulus and a factor
which is a universal integral over a Painlevé V function. Hence, the amplitudes
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are known—in principle—to this high accuracy for all Z-invariant (quasi)-periodic
cases. We plan to use these values later to analyze long series for the isotropic
triangular and honeycomb lattices, once they are available.

We note that the numbers given above agree to a few places with earlier series
extrapolations. Four of the six agree to about ten places with those of Wu et al.14
and of Vaidya.!5 For T above T, they agree to better than three places with those
obtained from the Syozi-Naya'® approximation, but this can be understood as this
approximation is precisely the x(<1) approximation in Wu et al.

5. Outlook

We are working to extend and analyze series for other lattices in order to get
more information on irrelevant variables in the corrections to scaling, having a
preliminary algorithm of polynomial complexity for the isotropic honeycomb and
triangular lattices which reproduces the known series coefficients. But more work
needs to be done to increase its efficiency, as we will need to go to one to two
hundred terms, before being able to see clearly the effect of the irrelevant variables.

We are also looking at the susceptibility of Ising models on Penrose tilings.
Finally, we also want to look at the effect of frustration, which occurs in the regime
where elliptic modulus % is purely imaginary.
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In this report, we study the algebraic geometry aspect of Hofstadter type models through
the algebraic Bethe equation. In the diagonalization problem of certain Hofstadter type
Hamiltonians, the Bethe equation is constructed by using the Baxter vectors on a high
genus spectral curve. When the spectral variables lie on rational curves, we obtain the
complete and explicit solutions of the polynomial Bethe equation; the relation with the
Bethe ansatz of polynomial roots is discussed. Certain algebraic geometry properties of
Bethe equation on the high genus algebraic curves are discussed in cooperation with the
consideration of the physical model.

1. Introduction

It is known for the past decade that algebraic geometry has played a certain in-
triguing role in certain 2-dimensional solvable statistical lattice models, a notable
example would be the chiral Potts N-state integrable model (see e.g., Refs. 1,3 and
references therein). In the note, we report the algebraic geometry aspect of another
model of physical interest in solid state physics. In the early 90’s, motivated by
the work of Wiegmann and Zabrodin!? on the appearance of U,(slz) symmetry in
problems of magnetic translation, Faddeev and Kashaev® pursued the diagonaliza-
tion problem on the following Hamiltonian by the quantum transfer matrix method
which was developed by the Leningrad school in the early eighties:

Hpg = p(oU + a7 U™ +v(BV + 87V 4 p(yW + W1 | (1)

where U, V,W are unitary operators with the Weyl commutation relation for a
primitive N-th root of unity w and the N-th power identity property, UV = wVU,
VW = wWV, WU = wUW; UN = VN = WV = 1. As a special limit case for
p = 0, the model is reduced to the (rational flux) Hofstadter Hamiltonian, a model

*e-mail: lin@math.ntu.edu.tw
tSupported in part by the NSC grant of Taiwan.
fe-mail: maroan@ccvax.sinica. edu.tw
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possessing several physical interpretations with the history which can trace back to
the work of Peierls!! on Bloch electrons in metals with the presence of a constant
external magnetic field. By the pioneering works of the 50s and 60s,2%7 %13 the
role of magnetic translations was found, and it began a systematic study of this 2D
lattice model. In 1976, Hofstadter® found the butterfly figure of the spectral band
versus the magnetic flux which exhibits a beautiful fractal picture. Here the phase
of w represents the magnetic flux (per plaquette). In Ref. 6, a general frame work
to determine the eigenvalues of certain quantum chains appeared in the transfer
matrix was presented. The method relies on a special monodromy solution of the
Yang-Baxter equation for the six-vertex R-matrix; this solution appeared also in
the study of chiral Potts model.® For a finite size L, the trace of the monodromy

matrix gives rise to the transfer matrix acting on the quantum space QLZ) CV; while
the Hofstadter type Hamiltonian (1) can be realized in the case L = 3. In general,
the diagonalization problem of the transfer matrix can be formulated into the Bethe
equation through the Baxter vector?, visualized on a “spectral” curve associated
to the corresponding model. In Ref.,'0 we presented a detailed and rigorous math-
ematical study on the Bethe equation associated to the Hofstadter type model. In
particular, we obtained the complete solution of the Bethe equation for models with
rational spectral curves for L < 3, among which a special Hofstadter type of Hpy
in Ref. 6 is included, and further expended to all the other sectors. In this note, we
explain the main results we have obtained in Ref. 10; detailed derivations, as well
as extended references to the literature, may be found in that work.

This paper is organized as follows. In Sect. 2, we first recall results in transfer
matrix relevant to our discussion; then introduce the Bethe equation (or Baxter
T-Q equation) through the Baxter vector on the spectral curve. In Sect. 3, we
consider the case when the spectral data lie on rational curves and perform the
mathematical derivation of the answer. We present the complete solutions of the
Bethe polynomial equations of all sectors for L < 3. In Sect. 4, we discuss the “de-
generacy” relation between the Bethe solutions and the eigenspaces in the quantum
space of the transfer matrix for L = 3; also its connection with the usual Bethe
ansatz technique in literature, in particular the result obtained in Ref. 6. In Sect.
5, we describe the algebraic geometry properties of the high genus spectral curve
arisen from the Hofstadter Hamiltonian.

Notations. The letters Z, R, C will denote the ring of integers, real, complex
numbers respectively, N = Z~o, Zy = Z/NZ. Throughout this report, N will
always denote an odd positive integer with M = [%] N=2M+1,M>Lwisa
primitive N-th root of unity, and ¢ := w? with ¢V = 1, i.e., ¢ = wM+!. An element v
in the vector space CY is represented by a sequence of coordinates, vg, k € Z, with
the N-periodic condition, vk = vk+n, i.€., v = (vk),c 7, - The standard basis of cy
will be denoted by |k), with the dual basis of C* by (k| for k € Zy. For a positive

21t is also called as the “Baxter vacuum state” in other literature.
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integers n, we denote Q% C" the tensor product of n-copies of the vector space CV.
We use the notation of p-shifted factorials: (a; p)n = (1 —a)(1 —ap)--- (1 —ap™ )
for n € N, and (a; p)o = 1.

2. Transfer Matrix and the Bethe Equation

We consider the Weyl algebra generated by the operators Z, X satisfying the Weyl
commutation relation with the N-th power identity, ZX = wXZ,ZN = XV =
I, and denote Y := ZX. In the canonical irreducible representation of the Weyl
algebra, the operators Z, X,Y act on CV with the expressions: Z(v), = whvg,
X(v)g = vg—1, Y(v)g = wFv_1. It is known that the following L-operator for an
element h = [a : b: ¢ : d] of the projective 3-space P? with operator-entries acting
on the quantum space C,

Y zbX
Lh(z):(maczwd )7 mec)

possesses the intertwining property of the Yang-Baxter relation,
R(z/z')(La(2) @ 1A Q) Lu(z") = (1 Q) Lu (=) (Ln(z) R DR(z/2") , (2)
aur aur aur aux

where R(z) is the matrix of a 2-tensor of the auxiliary space C? with the following
numerical expression,

Tw—z ! 0 0 0

_ 0 wz-z71 w-1 0

R(z) = 0 w—1 z—-z! 0
0 0 0 zw-—zgt

By performing the matrix product on auxiliary spaces and the tensor product of
quantum spaces, one has the L-operator associated to an element h = (hg, ..., hr_1)
e (P3)L, Ly(z) = ® Lh (x), which agam satisfies the relation (2). The entries

of Lj(x) are operators of the quantum space ® C", and its trace defines the com-
muting transfer matrices for € C, T;(z) = trous(L(z)). The transfer matrix
T;(z) can also be computed by changing L; to Ly, via a gauge transformation:

Eh].(m,gj,gﬁl) = Athj(a;)A]+1,O < j £ L -1, with A (1&5—1> and
J
A, = Ag. One has

f/hj(dl, gja&j-}-l) = (th (:17, gj - 1a€j+1) _th (CL‘, 6_7' - 1’£j+1 —_ 1)> ,

th (23, gja €j+1) -th (Q’J, gj) §j+1 - 1)

where Fj,(z,§,&') := §'aY — xbX 4 €'§xcZ — £d. Hence Ty (z) = trauz(zl—i(x,g)),

£:= (&0, .- -,€r—1) where
L-1

T A T £, - Zq;,( ,§)Z~ ( E) —
Ly(z, )"‘jZOth(a"5£J’£J+1)_(E;;ll( *)zg (@ E))’ €L :=¢&o -
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We consider the variables (z, &,...,£r-1) in the following spectral curve,

NN 0
CEI éjl :('—1) —'ZN—J'N—WV- y j:O,...,L—l, (3)
j+1T € — 4y

and denote p; = (z,&;,&+1). Then the operator Fj,(x,¢;,§;) has 1-dimensional
null space in CV generated by the vector |p;j) with the form:

(m|p;) §jr10;w™ — ab;
Olp;y =1, = .
(Oles) (m—1lp;)  —&(&1mc;w0™ — dj)

L
The Baxter vector |p) for p € C;; is defined by |p) = |po) ® ... ® |pr—1) €@ cv,
which possesses the following property:

- - =

Ly 1(2,8)lp) = I7-p) A= (p), Ly 5(2,&)Ip) = Im+0) A4 (p) , L1 (2,€)lP) = 0,

where A are functions of C;; defined by A_ (z, £) = Hfz_ol (dj—x&i11¢5), Ay (z, ) =

N cdi—p2hacs — -
Hf;ol %ﬁ:ﬁ, and 74 are the automorphisms, 7+(z,¢) = (¢¥lz,q71€). It
follows the important relation of the transfer matrix on the Baxter vector over the
curve Cg,

T;(2)Ip) = |7-p)A—(p) + |T4P)A+(p) , for p€C; . (4)

As Ty (x) are commuting operators for x € C, a common eigenvector (p| is a

L
constant vector of ® CV with an eigenvalue A(z) € C|z]. Define the function
Q(p) = (|p) of Cy, then it satisfies the following Bethe equation,

Az)Q(p) = Q(7-(p))A-(p) + Q(1+(p))A+(p) , forpe(y. (5)

By the definition of Ty (z),A(x), one can easily see that Ty(x) is an operator-

coefficient even z-polynomial of degree 2[£] with the constant term T = Hf__fol a;

L
Y + Hf:_ol d;. Hence the polynomial A(z) in (5) is an even function of degree

< 2[£] with A(0) = ¢ H]I-;_Ol aj + Hfz—ol d; for some ! € Zy. For L = 3, we have
T;(z) = Ty + #*T> where

To=bpc1a2X R ZRY +aph1caY X @ Z + cpa1baZ Y @ X (6)
+ coh1doZ @ X @ I +dpc1bol @ Z @ X + bod1co X QIR Z .

The above T; can be put into the form of the Hofstadter type Hamiltonian (1).%10

In the equation (5), Q(p) is a rational function of C; with zeros and poles. Hence
the understanding of the Bethe solutions of (5) relies heavily on the function theory
of C;, and the algebraic geometry of the curve inevitably plays a key role on the
complexity of the problem.
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3. The Rational Degenerated Bethe Equation

In this section, we consider the case when the spectral curve C;; degenerates into
an union of rational curves under the conditions:a; = ¢~1d;, b; = ¢~ '¢; for j =
0,...,L — 1. By replacing c;,d; by ;—j,l, we assume d; = 1 for all j with the
parameter c;s to be generic. In this case, Cj is the union of disjoint copies of the
z-(complex) line, containing the following 7-invariant subset of C;; which will be
sufficient for the discussion of Bethe equation,

C:={(z,60,-.-,€1-1)[6o = =&—1=¢', 1 € Zn}.
We shall make the identification ¢ = P! x Zy via (z,¢!,...,¢") & (z,0). The
automorphisms 74 on C become 74 (z,1) = (¢*'z,l — 1), by which the action (4) of
T(z)(:= Tz(x)) on the Baxter vector |z,l) now takes the form,

T(z)|z,1) = |g" z,l - VA_(z,1) + gz, — VA (z,1) , (7
where AL are the rational functions of z:A_(z,l) = HIf__l(l — z¢iq), Ay (z,1) =

L—-1 1-— —z2 c
I =0 TT«F’ Furthermore, one can express the Baxter vector |z, l) over the curve

C in the component-form: (k|z, 1) = ¢/ H %#L Here the bold letter
k denotes a multi-index vector k = (ko, .. .,kL_l) for k; € Zy with the square-

length of k defined by |k|? := Z]Ifz_ol k?. Each ratio-term in the above right hand
side is given by a non-negative representative for each element in Zy appeared in
the formula. We have the following result on the Bethe equation and its connection
with the transfer matrix T'(z):

. L-1 (z¢jw
Theorem 1: Denote f¢, f° the functions on C, f*(z,2n) = [[;5, %, and

fo(z,2n+1) = Hf;ol %. For z € P! | 1 € Zy, we define the following

. L N
vectors in ® C*,

N-1

D)f =Y |z, 20) (@, 2n)™ ,  |2)¢ = T |7, 20+ 1) f(z, 2n + 1w
n=0

lz)i = |z)§q "u(qz) + |z)§u(z); where u(z) := HJL a1- N eV ) (xeiq; )M

Then

(i) |z)fu(gz) = |z)fq'u(z), or equivalently, |z);" = 2¢7!|z)fu(qz) = 2|z)Pu(z).

(ii) The T(z)-transform on |z); is given by

(o))t = g~ a)f A (@, —1) + 2} Ay (2,0), 1€ Zw .
(iii) For a common eigenvector (| of T'(z) with the eigenvalue A(x), the function
F(z)(:= (plz)]) and A(z) are polynomials with the properties: deg.Q} (z) <
(3M + 1)L , deg.A(z) < 2[£], Alz) = A(~z), A0) = ¢* + 1, and the following
Bethe equation holds:
L-1

qa'A(z) Qf (z) = H(l — zc;q H)Q; (zg™!) + H(l + z¢;)Q; (zq) . (8)

Jj=0
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Furthermore for 0 < m < M, Qf(z),Q%_,.(z) are elements in
™ 152 (L — z¥elV) Clal.

By (iii) of the above theorem, the equation (8) for the sector m, N — m can be
combined into a single one. For the rest of this report the letter m will always
denote an integer between 0 and M: 0 < m < M. By introducing the polynomials
An(z),Q(z) via the relation,

(Am(2), ’"H(l—w ¢ )Q(x)) = (¢ ™Ax), Qm(x)), (@™A(2), QF_n(2)) ,

the equation (8) for I = m, N — m becomes the following polynomial equation of
Qz), Am():
L1 L-1
Am(@)Q) =g ™ [J (1 - 2¢;a7)Qzg™") + ¢™ [[ A + 2¢)Q(zq) ,  (9)
j=0 7=0
with deg.Q(z) < ML — m, deg.A,n(z) < 2[—’;‘-] , A(z) = A (—2), A (0) = g™ +
g~ ™. The general mathematical problem will be to determine the solution space of
the Bethe equation (9) for a given positive integer L.
For L = 1,2, we have the following result.

Theorem 2: (I) For L = 1, we have A,,,(z) = ¢™ + ¢~™ and the solutions Q,(z)
of (9) form an one-dimensional vector space generated by the following polynomial
of degree M —m,

M-m j m+i—1 —m—i
q —q i
Bm(z) =1+ Z (H g g — g™t — qm+i)(‘w°)]

j:l i=1

(IT) For L = 2, the equation (9) has a non-trivial solution Q,,(z) if and only
if deg.Qm(z) = M —m + m' for 0 < m’ < M. For each such m/, the eigenvalue
Ap(z) in (9) is equal to Ay m(z) == g% (™ =1 + ¢"™ ~2)z%coc; + ¢™ + ¢~™, and
the corresponding solutions of @, (z) form an one-dimensional space generated by
a polynomial By, m/(z) of degree M —m + m/ with By, ,,/(0) = 1.

For L = 3, this is the case related to the Hamiltonian (1). We consider the
N x N matrix,

Sy 1 un_qy O .- 0 o\
Uy_g Oy_z Uy O :
Wy_3 Vy_3 On_3 Un_3 - 0
A= 0 - e el e : (10)
-0

: 0w vy 01 Uy
0 .. 0 w5
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with the entries deijmed by u;;c =gkt ht_gm_gm, v;cs = (q’”'%a—q—k"% )(co+
c1+ca), 6 = (¢F 2 +q7 % 2)(coc1 +erca+caco), uf = (682 —g % %)cocico. Then
one can derive the following result.

Theorem 3: For L = 3, the condition of the eigenvalue A, (z) = A\pz?+¢™+q™ ™,
0 < m < M, with a non-trivial solution Qm(z) in the equation (9) is determined
by the solution of det(A — \,,) = 0, where A is the matrix defined by (10). For
each such A, (z), there exists an unique (up to constants) non-trivial polynomial
solution @Qnm(z) of (9) with the degree Qn(z) equal to 3M — m and Q,(0) # 0.

4. The Degeneracy and Bethe Ansatz Relation of Roots of Bethe
Polynomial

We first discuss the degeneracy relation of eigenspaces of the transform matrix T'(z)

L
in ® CV* with respect to the Bethe solutions obtained in the previous section. As
before, we denote A(x) the eigenvalues of T'(z), whose constant term is given by

L
To = D+ 1, where D := ¢~ ® Y; hence A(0) = ¢* + 1. For | € Zy, we denote

E! the NL~!-dimensional eigensubspace of Q% CN* of the operator D with the
eigenvalue ¢'. For 0 < m < M, the equation (9) describes the relation of A(z) and
its eigenfunctions with A(0) = ¢®™ + 1 or ¢*N~™) 1. We now consider the case
for L = 3, where T3 in (6) is now expressed by

To=q%cocrtXRZRY +c1cY ® X ®Z +cocaZ ®Y @ X)
+q o1 Z@ X QT +¢c162I @ Z® X +coc2 X @I ® Z).

We have gD = (Z@XQINXQIQZ)I®Z®X). We shall denote O3 the operator
algebra generated by the tensors of X,Y, Z, I appeared in the above expression of
T5. Then O3 commutes with D, hence one obtains a Os-representation on Eé for
each /. With the identification, U = D22 @ X @I,V =D"12X@I® Z, O3 is
generated by U, V which satisfy the Weyl relation UV = wVU and the N-th power
identity. Hence O3 is the Heisenberg algebra and contains D as a central element.
Then ¢D =T, has the following expression,

coc1(U + U1 4 coca(V 4+ V1) + ¢1c2(qD¥2UV + ¢~ 1D-52v-1y-1) . (11)

The above Hamiltonian is the same as Hpgx (1) with W = ¢q~'D-5/2y-1y-1
a = 3 =+ = 1. Our conclusion on the sector m = M is equivalent to that in Ref. 6
as it becomes clearer later on. There is an unique (up to equivalence) non-trivial
irreducible representation of Oz, denoted by Cf,v , which is of dimension N. For each
L, El3 is equivalent to N-copies of Cf,v as Oz-modules: Eé ~N Cf,v .For0<m <M,
we consider the space E4 with ¢ = ¢¥?™. The evaluation of E} on |z)1, gives rise
to a N-dimensional kernel in E}. By Theorem 3, there are N polynomials Qp, ()
of degree 3M — m as solutions of (9) with the corresponding N distinct eigenval-
ues Ap,(z). The N-dimensional vector space spanned by those @, (z)s becomes a
realization of the irreducible representation ijv for the Heisenberg algebra Os.
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Now we discuss the relation between the Bethe equation (9) and the usual
Bethe ansatz formulation in literature. For 0 < m < M, a solution Qm(z) in
(9) always have the property Qm,(0) # 0 by Theorem 3, hence one has the form
a5y Q) = [BM ™« - +) with z € C*. By setting « = z7 in (9), we
obtain the following relation among z;s, which is called the Bethe ansatz relation,

et [[ 2%~ ] B2 1< i< am
q 2 —ci u—qz T "
J=OQZ 5 n=1,n;éll qzn

For the sector m = M, the comparison of the x2-coefficients of (9) yields the
expression of eigenvalue,

2M
M= +qT)s+ (@ —gT)s Yzt (@ +aT —qt g 7)Y @
n=1 I<n

With the substitution, 4 = q%c(j V= q:'c1 P =q2 cy ', the above expression
coincides with (5.27) in Ref. 6. Note that the Bethe ansatz relation can be shown
to be equivalent to the Bethe equation (9) for the sector M. However, the parallel
statement is no longer true for other sectors m # M, i.e., it does exist some non-
physical Bethe ansatz solutions in the above form, while not corresponding to any
polynomial solution of Bethe equation (9). Some example can be found in the
(M — 1)-sector.

5. High Genus Curves for the Hofstadter Model

We are now going back to the general situation in Sect. 2. Note that the values §JN s
of the curve Cj, in (3) are determined by &Y and zV, denoted by y = zV, n = &}'.
The variables (y,n) defines the curve which is a double cover of y-line,

B : Cyly)n* + (A;(y) — Dy (y))n — By(y) =0

where the functions A, By, Cy, D; are the following matrix elements,

L-1
(—Aﬁ(y) Bi{(y) > - H (—ag yb;jv) '
Ci;(y) —D;;(y) i—o Yye; —dj
Now we consider only the case: L =3, ag = dp = 0,bp = ¢y = 1, with generic hy, hs.
The expression of T'(x) is given by
T(z) =2*(c162X ®ZQY + a1aZ @Y @ X + b1daZ @ X ® [ + d1ca X @ I ® Z),

equivalently, :1:_2D_TlT(:E) is equal to the Hofstadter Hamiltonian (1),—¢ with U =
DYV2ZeX®I,V=D'Y2XQI®Z and p,v,a,0 related to hi,hy by p? =
ghicrasde, o = g7 1bicT tag My, 12 = gardibacs, B2 = g la; 'dib; Lc,. By factoring
out the y-component of Bj;, the main irreducible component of B;; is the curve,

B: (yszcz +a1 ay M +(ay bN+bNd cl a2 dN 2 Y1 (yzc{vbév—l-df’dév) =
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which is an elliptic curve as a double-cover of the y-line. For the curve Cj, the
variables £ and ¢; are related by £ = & N which implies that Cj, can be identified
with W x Zy where W is a genus 6N —6N? + 1 curve with the following equation
in the variable p = (z, &9, £2),
W E_N_-évallv+wa{V ~&Nal 4+ Vol
C0 T NN g NN el — dff
By averaging the Baxter vectors |p,s) of C; over an element p of W, |p) :=

+ Zf{__‘ol |p, s)g*", which defines the Baxter vector on W. Furthermore, the transfer
matrix can be descended to one on W with the following relation,

z7*T(z)lp) = - (0))A-(p) + |7+ (1)) A1 (P) ,
where A are the functions on W: 5_(1:, &,62) = (zecr—d1)(méoca—da) Ay (z,&0,&2)

—x€o
_ &(ardi—z?bic1)(azdz—z baca) . 3 N _2
= e ety 2 For an eigenvector (p| €® C"* of 27T(z), the

eigenvalue is a scalar A.€ C, and the function Q(p) := (p|p) of W satisfies the
Bethe equation: AQ(p) = Q(7—(p))A—(p)+Q(7+(p)) A+ (p), where 7* are the trans-
formations of W with the same expression as before, but only in the coordinates

& =

(x,&o,&2). Consider the D-eigenspace decomposition of é CcN = Dz, ES. The
evaluation of the Baxter vector over W gives rise to the following linear transfor-
mation, g : E; — {rational functions of W} with &,(v)(p) := (v|p), for I € Zy.
One has the following result.

Theorem 4: For [ € Zy, the linear map ¢; is injective, hence it induces an iden-
tification of E} with a N?-dimensional functional space of W.

By the discussion in Sect. 4, as the Heisenberg algebra (O3 representations , Eé
is equivalent to NN copies of the standard one. Hence it induces an Oz-module
structure on the function space &;(E}), induced by the one of E§ by above theorem.
The mathematical structure of the functional space &;(E}) in terms of the divisor
theory of Riemann surfaces in corporation with the interpretation of Heisenberg
algebra representation remains an algebraic geometry problem for further study.
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In this note we give an introduction to the topic of Quantum Control, explaining what
its objectives are, and describing some of its limitations.

1. What is Quantum Control?

The objectives of Quantum Control are

¢ To determine quantum mechanical systems which will drive an initial given state
to a pre-determined final state, the target state.

e To describe—and hopefully implement—quantum systems which will through
time evolution optimize given operator expectations corresponding to observables
of the system.

Among a wealth of applications are those to Quantum Computing, where it is
clearly essential to be able to start off a quantum procedure with a given initial
state, and to problems involving the population levels in atomic systems, such as
the laser cooling of atomic or molecular systems.

The mathematical tools necessary for the theoretical investigation of these con-
trol problems are diverse, involving algebraic, group theoretic and topological meth-
ods.

The questions that one may ask include:

(i) When is a given quantum system completely controllable?
(i1) If a system is not completely controllable, how does this affect optimization of
a given operator?
(iii) How near can you get to a target state for a not completely controllable system?

*Permanent address: Quantum Processes Group, Open University, Milton Keynes MK7 6AA,
United Kingdom. Email: a.i.solomon@open.ac.uk
TEmail: s.g.schirmer@open.ac.uk
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The answer to the first question depends on a knowledge of the Lie algebra generated
by the system’s quantum hamiltonian, that to the second arises from properties of
the Lie group structure, while the last clearly involves ideas of topology.

Especially in the area of Lie group theory, there is a large corpus of classical
mathematics which can supply answers to questions arising in quantum control.
In particular, for the type of controllability known as Pure State Controllability
classical Lie Group theory has already given the basic results.

The quantum control system we shall consider is typically of the form

M
H=Ho+ Y fm(t)Hnm, )
m=1

where Hy is the internal Hamiltonian of the unperturbed system and H,, are in-
teraction terms governing the interaction of the system with an external field. The
dynamical evolution of the system is governed by the unitary evolution operator
U(#,0), which satisfies the Schrodinger equation

ihg—tU(t, 0) = HU(t,0) (2)
with initial condition U(0,0) = I, where I is the identity operator. By use of the
Magnus expansion, it can be shown that the solution U involves all the commu-
tators of the H,,. The operators Hp, 0 < m < M, in (1) are Hermitian. Their
skew-Hermitian counterparts iH,, generate a Lie algebra L known as the dynami-
cal Lie algebra of the control system which is always a subalgebra of u(N), or for
trace-zero hamiltonians, su(NN). The degree of controllability is determined by the
dynamical Lie algebra generated by the control system hamiltonian H. If L = u(N)
then all the unitary operators are generated and we call such a system Completely
Controllable. A large variety of common quantum systems can be shown to be Com-
pletely Controllable.!:? The interesting cases arise when L is a proper subalgebra
of u(N). Such systems may still exhibit Pure State Controllability, in that starting
with any initial pure state any target pure state may be obtained, as distinct from
the Completely Controllable case, when all (kinematically admissible) states—pure
or mixed—may be achieved.

2. Pure state controllability

We shall restrict our attention here to finite-level quantum systems with N discrete
energy levels. The pure quantum states of the system are represented by normalized
wavefunctions |¥), which form a Hilbert space H. However, the state of a quantum
system need not be represented by a pure state {¥) € H. For instance, we may
consider a system consisting of a large number of identical, non-interacting particles,
which can be in different internal quantum states, i.e., a certain fraction w; of the
particles may be in quantum state |¥;), another fraction we may be in another
state |¥2) and so forth. Hence, the state of the system as a whole is described by a
discrete ensemble of quantum states |¥,) with non-negative weights w,, that sum
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up to one. Such an ensemble of quantum states is called a mized-state, and it can
be represented by a density operator pg on H with the spectral representation

N
po = an|\1’n><‘1'n|a (3)

n=1

where {|¥,) : 1 < n < N} is an orthonormal set of vectors in H that forms an
ensemble of independent pure quantum states. The evolution of pg is governed by

p(t) = U(t,0)poU 2, 0)1, 4)

with U(¢,0) as above. Clearly if all the unitary operators can be generated we have
the optimal situation, complete controllability. However, classical Lie group theory
tells us that even when we only obtain a subalgebra of u(N) we can obtain pure
state controllability. :

The results arise from consideration® of the transitive action of Lie groups on
the sphere S*. The classical “orthogonal” groups ©(n, F) where the field F is either
the reals R, the complexes C or the quaternions H, are defined to be those that
keep invariant the length of the vector v = (v1,v2,...,v,); the squared length is
given by viv = S vy, where ¥; refers to the appropriate conjugation. These
compact groups are, essentially, the only ones which give transitive actions on the
appropriate spheres, as follows:

(i) ©(n,R) = O(n) transitive on S™—1)
(ii) ©(n,C) = U(n) transitive on §2»—1)
(iii) ©(n,H) = Sp(n) transitive on SE=1),

Since we may regard our pure state as a normalized vector in CV and thus as a
point on S@N-1) | we obtain pure state controllability only for U(N) (or SU(N) if
we are not too fussy about phases) and Sp(NN/2), the latter for even N only. (Note
that we cannot get O(2N) as a subalgebra of U(N).)

Complete controllability is clearly a stronger condition than pure state control-
lability. To illustrate our theme of the limitations on quantum control, we now
give two examples based on a truncated oscillator with nearest-level interactions
for which the algebras generated are so(N) and sp(N/2). Both these examples are
generic.

3. Examples
3.1. Three-level oscillator with dipole interactions.

Consider a three-level system with energy levels E1, E5, F3 and assume the inter-
action with an external field f; is of dipole form with nearest neighbor interactions
only. Then we have H = Hy + f(t)H;, where the matrix representations of Hy and
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H, are
Elo 0 0d10
Hy=)]0 E 0|, H = |d 0 da
0 0 Es3 0d; O

If the energy levels are equally spaced, i.e., Fs — E1 = E3 — Ey = p and the
transition dipole moments are equal, i.e., d; = d3 = d then we have

~100 010
Hy=p| 000|, H=d|101
001 010

where H} is the traceless part of Ho. Both iHj and iH; satisfy
A+At=0 AJ+JA=0

where

001
J=(0-10
100

which is a defining relation for so(3). The dynamical Lie algebra in this case is in
fact so(3). It is easy to show that the matrix B = UAUT is a real anti-symmetric
representation of so(3) if U = U*J. Explicitly, a suitable unitary matrix is given
by

1/v20 1/v2
U= |i/vV20—i/V2
0 2+ 0
Since the dynamical algebra and group in the basis determined by U consists of
real matrices, real states can only be transformed to real states; this means that for
any initial state there is a large class of unreachable states. This example is generic
as it applies to N-level systems, although for even N we need other than dipole

interactions to generate so(IV). The analogous dipole interaction generates sp(N/2)
in the even N case, as we now illustrate.

3.2. Four-level oscillator with dipole interactions.

Consider a four-level system with Hamiltonian H = Hy + f(t)Hi,

—-FE;, 0 0 0
o -EB0 0
Ho=| 4 o Ey 0|’

0 0 0E
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and
0d;, 0 0
|d10 d 0
=04 0 -4
00 —-d 0
Note that iHy and iH; satisfy
z=—zt, 2TJ+Jz=0 (5)
for
0 001
0 010
J= 0 —-100]°
-1 000
where J is unitarily equivalent to
0 |In 2]
) 6
BT 0

which is a defining relation for sp(/N/2). Consider an initial state of the form

po =iz + aln, (7)
where z satisfies (5), it can only evolve into states

p1 =iy + aly, (8)

where y satisfies (5), under the action of a unitary evolution operator in exponential
image of L. Hence, any target state that is not of the form (8) is not accessible from
the initial state (7). Note that the initial state

035 0 0 0
1003 0 0
PP=1 10 0 020 0

0 0 0 015

is of the form pg = = 4+ 0.25I; and that

010 0 0 0
0 005 0 0
0 0 —-005 0
0 0 0 -0.10

satisfies (5). Consider the target state

030 0 0 0
10030 0
PL=1 9 0 020 0

0 0 0 015
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which is clearly kinematically admissible since

0100 01007"

1000 1000
PL=10010|" o010

0001 0001

but note that py =y + 0.25I4 and

005 0 0 0

il 00w0 0 o0

Y='1'09 0 —005 o
Lo 0 0 -0.10

does not satisfy (5). Hence, p; is not dynamically accessible from pg for this system.

Given a target state p; that is not dynamically accessible from an initial state
Po, We can easily construct observables whose kinematical upper bound for its ex-
pectation value can not be reached dynamically. Simply consider A = p;. The ex-
pectation value of A assumes its kinematical maximum only when the system is in
state p;. Since p; is not reachable, the kinematical upper bound is not dynamically
realizable.

4. Conclusions

In this short introduction to Quantum Control theory, we have described the goals
of the subject briefly, and then illustrated the limitations by generic examples where
complete control is not possible. The tools we have used are, in the main, those of
classical Lie group theory. Theoretical problems that remain to be tackled include
to what extent these non-controllable systems can, in fact, be controlled; and, of
course, the paramount problem of implementing these controls in practice.
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In this talk, we shall briefly review some results on the strongly correlated electron
systems, derived recently by applying Lieb’s spin-reflection-positivity method. To explain
the basic ideas of this method to a wide audience, we emphasize the important role played
by Marshall’s rule in studying the many-body systems
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In the past several decades, the strongly correlated electron systems attract many
physicists’ interest. In particular, interplay between the itinerant magnetic orderings
and the quantum transport properties of these systems is a main focus of the
current research. To get insight into the strongly correlated electron materials,
various models have been introduced and investigated. The best known examples
are the Hubbard model,! the periodic Anderson model,? and the Kondo lattice
model.3

As a concrete example, let us consider the Hubbard model. On a lattice A with
Ny sites, the Hamiltonian of the Hubbard model has the following form

Hy=—-tY Y (agaaja + a}aaia) +UY (fm - —;-) (ﬁu - %) —uN, (1)
icA

o <ij>

where é;‘a (éis) denotes the fermion creation (annihilation) operator which creates
(annihilates) an electron of spin o at lattice site i. < ij > is a pair of lattice sites.
t > 0 and U > 0 are parameters representing the hopping energy and the on-
site Coulomb repulsion of electrons, respectively. In the following, we shall assume
that, in terms of the Hamiltonian, lattice A is bipartite. In other words, it can be
separated into two sublattices A and B, and electrons hops only from a site i in
one sublattice to a site j in another sublattice.

*Dedicated to Professor F. Y. Wu’s 70th birthday.
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These models enjoy some symmetries, which can be exploited to simplify their
analysis. For instance, the Hubbard Hamiltonian Hy commutes with the total par-
ticle number operator N = > (A4 + 74y ). Therefore, the Hilbert space of this model
can be divided into numerous subspaces {V(V)}. Each of them is characterized by a
conserved particle number N. Hy also commutes with the following spin operators

8u = dhtu S = dheu, 5= ';‘.Z (Agy — i) - @)
iceA ieA icA
Consequently, both $2 and S, are good quantum numbers.

Furthermore, when p = 0, the ground state of the Hubbard Hamiltonian in the
half-filled subspace with N = N, is actually its global ground state. In this case,
the Hubbard Hamiltonian has another symmetry: The pseudospin spin symmetry.
More precisely, Hy commutes with operators

j+ = ZE(i)éIT&L, J_= Ze(i)éuén, jz = % Z(’fln + gy — 1), (3)
ieA icA iceA
where €(i) = 1 for i € A and €(i) = ~1 for i € B. In literature, these operators are
called the pseudospin operators.*

In one dimension, the Hubbard model can be exactly solved by applying the
Bethe ansatz.® However, in higher dimensions, this approach fails. Instead, various
approximate analytical techniques were introduced and developed. Most of them
are based on the mean-field theories.® By applying effectively these methods, many
interesting results on the strongly correlated electron systems have been derived.
On the other hand, if it is possible, one would naturally like to re-establish some
of these conclusions on a more rigorous basis. It will deepen our understanding on
the electronic correlations in these models.

In a seminal paper published in 1989, Lieb introduced a powerful method, the
spin-reflection-positivity technique, to investigate the Hubbard Hamiltonian with
an even number of electrons.” With this method, Lieb proved that the ground
state of the Hubbard Hamiltonian at half-filling is nondegenerate and has total
spin § = (1/2)|N4 — Ng|, where N4 and Np are the numbers of the sites in
sublattice A and B, respectively. Later, this technique was also applied to both the
periodic Anderson model and the Kondo lattice model.®? Similar conclusions were
established.

Later, we applied this method to investigating the spin and the off-diagonal
correlation functions, as well as the excitation gaps of these strongly correlated
electron models. In a series of papers, we proved that

e The on-site pairing correlation function of the negative-U Hubbard model is
nonnegative.1® More precisely, for any pair of lattice sites h and k, inequality

(To(=U) | el tebicr | To(=U)) 20 (4)

holds true for the ground state of the negative-U Hubbard model in V(2M).
This inequality confirms that the Bose-Einstein condensation in the negative-U
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Hubbard model occurs at zero-momentum.

o At half-filling, the spin correlations in the ground states of the periodic Anderson
model and the Kondo lattice model are antiferromagnetic.!! Very recently, by ex-
tending the spin-reflection-positivity method to the case of nonzero temperature,
we also proved that, at any T" # 0, the antiferromagnetic spin correlation in these
models is dominant.!2

¢ On some special lattices subject to condition [N4 — Ng| = O(Ny), such as the
example shown in Fig. 1, the ground state of the Hubbard model has both the
antiferromagnetic and ferromagnetic long-range orders. In other words, it is a
ferrimagnet.!3

e Define qu = E()(NA + 1) + Eo(NA - 1) - 2E0(NA) and Ag = Eo(NA, S =
1) — Eo(Ny, S = 0) to be the quasi-particle gap and the spin excitation gap of
the Hubbard model, respectively. Then, relation Ay, > Ag holds true. Similar
inequalities were also proven for the periodic Anderson model and the Kondo
lattice model. 14

e Define A¢ = Eo(J = 1)—Eo(J = 0) = Eg(Na+2)—E(Na) to be the charged gap
of these strongly correlated electron models, then inequality A¢ > Ag holds.!®

Fig. 1. The lattice structure of organic conjugated polymers.

Due to the page limit of this paper, it is impossible to discuss the spin-reflection-
positivity method and its applications in details. In the following, we shall briefly
explain the basic ideas of it. As a matter of fact, this method is closely related to a
very simple but important observation: After a proper unitary transformation, the
ground state of a realistic quantum many-body Hamiltonian, in general, satisfies
Marshall’s rule,’ in a sense.

To begin with, let us first consider a simple quantum mechanical system: One
particle moving in a one-dimensional well, as shown in Fig. 2. The ground state
Wy(z) of this system satisfies the Schrodinger equation

G 716))
2m  dz?
When v(z) =0, ¥o(z) can be explicitly solved and we have ¥o(z) =+/2/Rsin(7rz/R)

> 0 for any 0 < < R. This is Marshall’s rule for ¥g in this special case. A direct
corollary of this rule is that the ground state ¥y(z) is nondegenerate.

+ ’U(%)‘I’o(l‘) = EQ\I/()(:E) . (5)
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Fig. 2. The potential function of a one-dimensional quantum well.

To show that Wo(x) also satisfies the Marshall’s rule when v(z) # 0, we notice
that ¥y(z) is a ground-state solution of Eq. (5), if and only if it is also a minimizing
function of the following energy functional
dip(z) |? R
W) dx + / [v(z)|?v(z)dz (6)

dz 0
in some function space H(0, R), requiring that both ||? and |dy/dz|? are inte-
grable over (0, R).
Assume that $o(z) has indefinite sign in the interval, as shown in Fig. 3. Then,

hz R

E(y) =

" 2m J,

Yi(x

Z Wy(x) A z [Pl (x) ;s

7 V=0 7 ; V=0

7 7 7 /4

VA 7 7/ A

7 7 7 7

7/ 7 A A

7 Z Z 7

7 7 .7 4 .
T » >

0o R x O R X

Fig. 3. The ground state wave functions ¥o(z) and |¥p|(x).

we construct a new function |¥p|(z) by taking the absolute value of ¥y(z). We
notice that replacement of Wy(x) with |¥q|(z) does not change the value of the
second term in Eq. (6). On the other hand, it can be shown

2

R d¥o(z) 2 R\d | g | (2)
- > - 7
/0 . dz /0 I dz (7
(See the appendix of Ref. 17). Consequently, we have
i = >
¢rx€1m1 E(W) =E(To) > E(] Ty |) (8)

In other words, | ¥ | (z) must be also a minimizing function of energy functional
(6) and hence, a ground state solution of Eq. (5).
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Next, we show that the ground state wave function ¥o(z) has no zero point in
(0, R). If this is not true, then, there must be, at least, one point z¢ € (0, R) such
that |¥o|(2z0) = 0. However, as a nonnegative solution of a second order elliptical
differential equation, |¥|(x) satisfies the so-called Harnack theorem, which tells us
that, on any open interval (a, b) C (0, R), there is a constant C(,, 5 such that
max Yo (2) < Clapy_min, | Yo | (2) ©)
holds true.!® Now, we take an open interval containing zo. Harnack theorem implies
that |¥g|(z) = 0 in this interval. Repeating this argument an appropriate number
of times, we find that | ¥y | must be identically zero in (0, R). This is certainly
absurd. Therefore, we reach the conclusion that ¥g(z) = |¥y|(z) > 0 in (0, R) and
is nondegenerate.

The same ideas can be also applied to study the strongly correlated electron
systems. First, let us consider a simple model: The antiferromagnetic Heisenberg
model on a bipartite lattice. The Hamiltonian of this model is of the following form

Hap = z J f S = — Z J ( 1+SJ__ +Sl_SJ+) + Z Jijgizgjz (10)
<ij> <ij>
with Ji; > 0. S is the spin operator at site i. The lattice A is assumed to be bipartite
and connected by these coupling constants.
Since Hamiltonian (10) commutes with s, = > S’iz, S, is a good quantum
number. A natural basis of vectors in subspace V (S, = M) is given by

Xa(M) =| m1, ma, -+, mn,) (11)

where m; represents the eigenvalue of S, at site i and they are subject to the
condition my +mg +---+mpy, = M. In terms of this basis, the ground state wave
function ¥o(M) of Hpop can be written as

To(M) = Y Caxa(M) (12)

The sum is over all the possible configurations {x.(M)}.

However, due to the positive sign of the coupling constants {Jj;}, it is difficult to
uncover directly the sign rule satisfied by {C,}. To remedy this problem, one needs
to introduce a unitary transformation f]l —=exp (T Zie B S’iz), which rotates each
spin in sublattice B by an angle m about its z-axis.!® Under this transformation,
Hr is mapped onto

Har = [A]IHAFﬁl = Z ( J,J/Q) ( ,+S_]_ + Sl_SJ.;_) + Z JijS'izgjz (13)
<ij> <ij>
Notice that the coupling constants in the spin-flipping terms of Hap have negative
signs.
For Hap, we are able to show that the expansion coefficients {C,} of its ground
state Ug satisfy the Marshall’s rule C’ > 0. First, by following the aforementioned
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steps, we re-write the ground state energy Ey as an expectation value of H AF in its
ground state ¥y and observe that, for any pair of indices « and o,

(Xa(0)| (81485- + 818y ) e (M)) 2 0 (14

holds true. Consequently, the state I\Tl0|, which is constructed by replacing each Ca
with |5’a| in Eq. (12), has a lower energy than ¥g. Therefore, it is also a ground
state.

Next, we consider the Schrédinger equation of |§Ivl0|. By inequality (14), it can
be shown that, if C, = 0 for some index «, then any vector x.s, which is related
to X by a spin-flipping exchange, must have a zero coefficient in the expansion of
|‘~AI;0|. On the other hand, since the lattice is connected by the coupling constants
{Jij}, any vector xg can be reached from x, by a finite number of spin-flipping
exchanges. Therefore, by repeating the above process an appropriate number of
times, we reach the conclusion that all the expansion coefficients are zero. That is
impossible.

As usual, the Marshall’s rule satisfied by {C,} implies that the ground state
Elo(M ) of H AF is nondegenerate in subspace V(M). On the other hand, since H AF
is unitarily equivalent to the original antiferromagnetic Heisenberg Hamiltonian,
we conclude that the ground state ¥o(M) of the antiferromagnetic Heisenberg
Hamiltonian Hap in V(M) is also nondegenerate.

Finally, we consider the Hubbard model. As explained above, we first introduce
a unitary transformation which maps the original positive-U Hubbard model into a
negative-U Hamiltonian. This can be achieved by the so-called partial particle-hole
transformation Uz," which is defined by

02Téi1~ﬁ2 = E(i)ég,r, [A];éuﬁz = ¢ - (15)

Under this transformation, the positive-U Hubbard Hamiltonian at half-filling (with
1 = 0) is mapped to

Hy(-U)=-t>_ > (égaéjd + é;aéio) Uy (fln - %) (ftu - %) . (16)
o <ij> icA

When N, the number of electrons in the system, equals an even integer 2M, the
ground state wave function ¥o(2M) of Hy(—U) can be written as

To(2M) =) Wagt] ® 4 (17)
o, B
where {12} are configurations of electrons of spin ¢ defined by
Y = otho e 10) (18)
In Eq. (18), (i1, i2, ---, ia) denotes the lattice sites occupied by fermions of spin
o. | 0) is the vacuum state. The total number of these configurations is C’I{‘,”A.

In the Hubbard model, electrons are itinerant. Therefore, we have the so-called
fermion sign problem. Consequently, the coefficients {W,g} do not satisfy the simple

266



Rigorous Results on the Strongly Correlated Electron Systems 2119

Marshall’s rule. However, Lieb proved that, if one takes index a for row index
and (3 for column index and writes the coefficients {W,zs} into a matrix W (with
TrW'IW = 1), then this matriz is, in fact, a positive-definite matriz. It is the
generalized Marshall’s rule for the ground states of the negative-U Hubbard model.

To prove this fact, we follow the above procedure and rewrite Eo(—U) as the
expectation of Hy(—U) in \PI}O(2M ). A little algebra yields

Eo(-U) =2T(TWW) - U Y W NWN) (19)
ieA

where T is the matrix of the hopping term of Hy(—U) and N; is the matrix of
operator 7; — 1/2. Since matrix W is Hermitian, we can find a unitary matrix V,
which diagonalizes it. Let {w,} be the eigenvalues of W and {| m)} be the column
vectors of the diagonalizing matrix V. Then, Eo(—U) can be further reduced to

Eo(-U) =2 (m|T |myw?, U Y wmwa|in| Ny | m)? (20)

icAm,n

Obviously, if we replace {w,,} with their absolute values, the summations on the
right hand side of Eq. (20) becomes less. In other words, by replacing the coefficient
matrix W of Ug(2M) with | W |, we obtain a new wave function |¥o|(2M), which
has a lower energy than the ground state @0(2M ). Therefore, it must be also a
ground state of Hy(—U). Furthermore, its coeflicient matrix | W | is a semipositive
definite matrix.

By substituting |¥o|(2M) into the Schradinger equation H 1 (=U)[o| = Eo| Tl
and noticing that the lattice A is connected by electron hopping, we can further show
that, if one eigenvalue w,, = 0, then all the eigenvalues of W are equal to zero. This
is impossible. Therefore, W is actually a positive definite matrix and the ground
state Wo(2M) is nondegenerate. Since Hy(—U) is unitarily equivalent to H. H(U)
at half-filling, the ground state of the latter Hamiltonian is also nondegenerate.

With the positive definiteness of the coeflicient matrix W of EIO(QM ), inequality
(4) can be proven as a direct corollary. Similarly, other results listed above are also
based on this fact, although their proofs require a little more effort.

In summary, the spin-reflection-positivity method reveals that the ground states
of some strongly correlated electron systems satisfy the Marshall’s rule in a more
sophisticated manner. In return, this rule enables us to establish several important
qualitative properties on the spin and superconducting correlations as well as the
excitation gaps in these systems.

Acknowledgements

I would like to thank Prof. Mo-Lin Ge for inviting me to the APCTP-Nankai Sympo-
sium. This work is partially supported by the Chinese National Science Foundation
under grant No. 19874004.

267



2120 G.-S. Tian

References
1. J. Hubbard, Proc. Roy. Soc. London A276, 238 (1963); M. C. Gutzwiller, Phys. Rev.
Lett. 10, 159 (1963); J. Kanamori, Pro. Theor. Phys. 30, 275 (1963).
2. For a review, see, for example, P. A. Lee, T. M. Rice, J. W. Serene, L. J. Sham, and
J. W. Wilkins, Comments Condens. Matter Phys. 12, 99 (1986).
3. For a review, see, for example, G. Aeppli and Z. Fisk, Comments Condens. Matter
Phys. 16, 155 (1992); H. Tsunetsugu, M. Sigrist, and K. Ueda, Rev. Mod. Phys. 69,
809 (1997).
4. C.N. Yang and S. C. Zhang, Mod. Phys. Lett. B4, 759 (1990).
5. E. H. Lieb and F. Y. Wu, Phys. Rev. Lett. 20, 1445 (1968).
6. For a detailed review on these methods, see E. Fradkin, Field Theories of Condensed
Matter Systems (Addison-Wesley, Redwood City, California, 1991).
7. E. H. Lieb, Phys. Rev. Lett. 62, 1201 (1989).
8. K. Ueda, H. Tsunetsugu, and M. Sigrist, Phys. Rev. Lett. 68, 1030 (1992).
9. T. Yanagisawa and Y. Shimoi, Phys. Rev. Lett. 74, 4939 (1995); H. Tsunetsugu,
Phys. Rev. B55, 3042 (1997).
10. G. S. Tian, Phys. Rev. B45, 3145 (1992).
11. G. S. Tian, Phys. Rev. B50, 6246 (1994).
12. G. S. Tian, Phys. Rev. B63, 224413 (2001).
13. S. Q. Shen, Z. M. Qiu and G. S. Tian, Phys. Rev. Lett. 72, 1280 (1994); G. S. Tian
and T. H. Lin, Phys. Rev. B53, 8196 (1996).
14. G.S. Tian, Phys. Rev. B58, 7612 (1998).
15. G. S. Tian and L. H. Tang, Phys. Rev. B60, 11336 (1999); J. G. Wang and G. S.
Tian, Commun. Theor. Phys. 34, 21 (2000).
16. W. Marshall, Proc. R. Soc. London A232, 48 (1955).
17. J. K. Freericks and E. H. Lieb, Phys. Rev. B51, 2818 (1995).
18. N. S. Trudinger, Comm. Pure Appl. Math. 20, 721 (1967).
19. E. Lieb and D. Mattis, J. Math. Phys. 3, 749 (1962).

268



International Journal of Modern Physics B, Vol. 16, Nos. 14 & 15 (2002) 2121-2127
© World Scientific Publishing Company

AN ALGEBRAIC APPROACH TO THE EIGENSTATES
OF THE CALOGERO MODEL

HIDEAKI UJINO

Gunma National College of Technology, 580 Toriba-machi
Maebashi-shi, Gunma-ken 371-8530, Japan

Received 9 November 2001

An algebraic treatment of the eigenstates of the (Ax_;-)Calogero model is presented,
which provides an algebraic construction of the nonsymmetric orthogonal eigenvectors,
symmetrization, antisymmetrization and calculation of square norms in a unified way.

1. The Calogero Model

In 1990’s, one-dimensional quantum integrable systems with inverse-square long-
range interactions!™ attracted renewed interests of mathematicians and physicists
since their relationships with the theory of multivariable orthogonal polynomials®®
are recognized. The (An_;-)Calogero model! with distinguishable particles®

. 1 82 1 - a? —ak;
A = = Wi g —atk weRsy, a€Rsg, (1)
2 dx? 32 j -

where (Kjnf)(--, @i, Thy ) = (oo, Tk, rT5-), Gk € {1,2,-+-, N}, is
known to have the nonsymmetric multivariable Hermite polynomial as the poly-
nomial part of the joint eigenvector of the conserved operators.”® We introduce a
transformed Hamiltonian whose eigenvectors are polynomials,

A . (¢éA)($)) —Ol(r}_z(A) - EéA)) o ¢é—4) (z), (2)

where the reference state and its eigenvalue are

N

oM (z) = H |z; — zx|® exp(—%w Z xfn),
m=1

1<j<k<N

EA) = %wN(Na +(1-a)).

We shall deal with the eigenvectors of the Hamiltonian (2) in C[z], the polynomial
ring with NV variables over C, while the eigenstates for the original Hamiltonian (1)
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is in Clz]gl™ = {f ()¢ (z)|f € Clz]}. The Hamiltonian (2) is Hermitian with
respect to the inner product on Clz],

© N .
(f,9)(a) = /_ Hdel¢§A)(w)l2f(w)g(w), f,9 € Clz], (3)

where f(z) denotes the complex conjugate of f(z). The inner product is induced
from the natural inner product on C|z] qbéA). The reference state corresponds to the
weight function in the inner product (-, -) 4.

The commutative conserved operators for the Hamiltonian are known to be the
Cherednik operators.1® To show this, we have to introduce the Dunkl operators,!?

T — Tk
k#3j
and the creation-like and annihilation-like operators,

o 1
V;A) ::éw_j+az (1—Kjk),
k=1

A 1 _a A 1 _a
ag " ::zl—%vg ), a§ ):%W ),

in € End(C[z]), where the superscript T on any operator denotes its Hermitian
conjugate with respect to the inner product (3). From these operators, a set of
Hermitian and commutative differential operators, d;A) € End(Clx]), [d;A), dch)] =
0, is constructed by

N
dg-A) = 2wa§A)Ta§~A) + az Kk,
k=j+1
which we call the Cherednik operators.!® 12 The Hamiltonian (2) can be expressed
as

N
HAD =03 (¢ — Lov — 1),
;(l 2¢ )

Thus we conclude that the Cherednik operators {d;A)| j=1,2,---,N} give a set of
commutative conserved operators of the Calogero model.

2. The Nonsymmetric Multivariable Hermite Polynomial

The Cherednik operators define inhomogeneous multivariable polynomials as their
joint polynomial eigenvectors, which are nothing but the nonsymmetric multivari-
able Hermite polynomials that form an orthogonal basis of the polynomial ring
Clz). ™' Let I := {1,2,---,N — 1} and I := {1,2,---,N} be sets of indices
and let ¥V be an N-dimensional real vector space with an inner product {-,-). We
take an orthonormal basis of V' {¢;]j € I} such that (¢;,ex) = d;5. The Ay_;-
type root system R associated with the simple Lie algebra of type Ay_1 is re-
alized as R = {e; — exlj, k € I,j # k}(C V). A root basis of R is defined by
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I := {a; = €; — €j41]j € I}, whose elements are called simple roots. Let R,
be positive roots relative to II and R_ := —R,. The root lattice ) is defined by
Q := @, Zo; and positive root lattice @, is defined by replacing Z with Z>.
A reflection on V' with respect to the hyperplane that is orthogonal to a root
a is expressed by sq(p) = p — (@¥,p)a, where' aV := ?%7 is a coroot corre-
sponding to a. The Ay_i-type Weyl group is generated by {s; := sq;|a; € II}
which is isomorphic to Gy. For each w € W, we define Ry, := B, Nw 'R_. We
denote by £(w) the length of w € W defined by {w) := |Ry|. When w € W is
expressed as a product of simple reflections, w = sj, --- 8,85, with k = £(w),

we call it reduced. By use of the reduced expression, the set R, is given by

R, = {O‘jl’ Si (ajz)v T 851852 1 Sq (ajz)}'
We introduce lattices P := @,y Zxoe; and Py := {u = 3>,y pj€j € Plp >
W2 > -+ 2 un > 0}, whose elements are called a composition and a partition,

respectively. The lattice P is W-stable. The degree of the composition and partition
is denoted by |u| := > ,c;pj. Let W(p) := {w(p)lw € W} be the W-orbit of
p € P. In a W-orbit of W(u), there exists a unique partition y+ € P, such that
p=w(pt)€ P (weW) Wedefine p:= 33 ,cp =133, (N—2j+1); and
IV =3 1 €. We introduce the following operator d4)* := 7. /\jd§-A), AeP,
j € I, which relates the Cherednik operators with lattice P, so that we can deal
with the eigenvalues of the Cherednik operators in terms of the lattice P.

We identify the elements of the lattice P with those of the polynomial ring over
C, ot =" zh? .. -2} € C[z]. We denote the shortest element of W such that

wy Yu) e Py by wy, and define p(p) := wy(p). We introduce an order < on P,

d
v=p (mpeP)e V' <p  vEWWE)
p—veEQyveWph),

d
where the symbol < denotes the dominance order among partitions,

!
d
v<p (mrePy)ep#X |ul=Ivand Y v <Y,

for all [ € I. The definition of the nonsymmetric multivariable Hermite polynomial
is summarized as follows.

Definition 1: The (monic) nonsymmetric multivariable Hermite polynomial hf{q) €
Clz], p € P, as the joint eigenvector for the commutative Cherednik operators
{dX X\ € P}, is presented by

h( =gz* + ZD(A)(a, )x¥ € Clz],
or [1€1u1
1
d(A)Ah‘(LA) = (A pu+ap(p) + éa(N - 1)1N)hLA). (4)
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Since d()* is a Hermitian operator with respect to the inner product (3)
and all the simultaneous eigenspaces of the Cherednik operators {d(4)*} are one-
dimensional in the sense that the eigenvalues of {d(9)*} are non-degenerate, it
proves that the polynomlals h( ) are orthogonal with respect to the inner prod-
uct, i.e., (h,(, ) 1S )(A) = ,“,Hh( )||2 Actually, the nonsymmetric multivariable
Hermite polynomlals form an orthogonal basis in C[z].

3. The Rodrigues Formula

Here we show the Rodrigues formula that generates the monic nonsymmetric multi-
variable Hermite polynomlal We introduce the Knop-Sahi operators {e(4), e(4)1}7,14
and the braid operators {S )| j € I} defined by

el4) .— agA’B)Kle K1, (AT — Kn_q-- KzKla(A B)T S(A) [K d(A)]

where K := Kj j+1, j € I. The operators {S; (4 e(M} intertwine the simultaneous
eigenspaces of {d(4)*}. The raising operators {ALA)T| i € Py} are defined by
A(A)T (A(A B)T)ul B2 (A;AvB)f)uz—ua . (A%LB”)MN

A(A)T (SIMEIGUE) | GAB) (4B T

Let Sy, be defined by S, := §j, ---S;,5;,, where w, = s;, - -+ 54,55, is one of the
reduced expressions of w,. Then we can show the following relations,
d(A)f\A(A)‘r = A(A)‘r(d(A)A + (), [A;(LA)TyA:(/A)T] =0, forp,ve€P,,
S(A)d(A))‘ d( A, O‘)S(A for 1 € P, (5)

which lead to the Rodrigues formula for the monic nonsymmetric Hermite polyno-
mial.”

Theorem 2: The monic nonsymmetric multivariable Hermite polynomial hfLA)
with a general composition 4 € P in the W-orbit of the partition u* € P, is
algebraically obtained by applying the raising operator Af"i) and the product of

braid operators S&A) to h(A) =1
(A) (C(A) (A)) IS(A)A(A)Th( ) h(()A»B) =1, pe W(,u+), /1'+ € Py,

where the coefficient of the top term is expressed as

(a 7/-") + 2 2
(A) - ala D= 1 (o aﬂ +ap)” —
: I | I I ,P)) = T
a€R;, =1 a€Ry, a s +ap>

Proof: Using Eq. (5), we can confirm that hELA) given by the above formula satisfies
definition 1. m|
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Using the square norm for h((,A) = 1,

I'(1+ ja)

(A4) p(4)
(ho " ho ") (a (2 );N(Na+(1 a)) H Fl+4+a)’

which is proved by a certain limit of the Selberg 1n‘cegra,l,15 and the Rodrigues for-
mula, we can calculate the square norm of the nonsymmetric multivariable Hermite
polynomial in an algebraic fashion.®

Theorem 3: The square norms of the nonsymmetric multivariable Hermite poly-
nomial A% with a general composition y € W (u™), u* € P, is given by®

(R, V) ()

s [0 (e +a(V —i) +1)
—a i€l

v

(2m) ¥ I (BY, 1t + ap)?
(2w) 3N (Nat(1-a)+u| oche, (BY, ut + ap)?

H LY, pt +ap) +1+a)T({(a",pt +ap) +1— a)
we R, I'((aV,ut +ap) + 1)

Proof: The above formula can be verified by use of relations among raising and
braid operators and evaluation of the eigenvalues of the Cherednik operators. O

4. Symmetrization and Antisymmetrization

The nonsymmetric multivariable Hermite polynomials with compositions u in the
same W-orbit of the partition pu* share the same eigenvalue of the Hamiltonian (2),

”H(A)hl(f‘) = w|,u+]h‘(;4), for pe W(ut), up*epy.

More generally, the polynomial with compositions 1 € W{ut) share the same
eigenvalue of an arbitrary symmetric polynomial, e.g., any of the power sums, of
the Cherednik operators. Thus any linear combinations of h{®, 1 € W(ub), ut €
P, are joint eigenvectors of the Calogero Hamiltonian (2) and its higher-order
conserved operators.

Among all such linear combinations, we consider eigenvectors of the Calogero
Hamiltonian (2) in W-symmetric and W-antisymmetric polynomial rings over C,
Cl[z]*". In our formulation, we do not use symmetrizer or anti-symmetrizer’” which
makes the coefficients of the top terms differ from unity. We introduce a sublattice of
Py by Py +6:={p+6|p € Py}, 6 := 3" (N —j)e; to describe the antisymmetric
eigenvectors.

Theorem 4: ° Let Hﬁﬁ“ for ut € P, and H‘(ﬁ)" for 4T € P, +6 be the following
linear combination of the nonsymmetric multivariable Hermite polynomials with
compositions p € W{ut),

HDE Z bA)ih(A) (6)
w
BEW (ut)
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whose coefficients are

*+ap) Fa
pAE - + (o, p .
w aell—{I (o, u* + ap) @
Wy

Then the polynomials are in symmetric or antisymmetric polynomial rings over C,
ie., Hﬁf)i € C[z]*". We call them the symmetric and antisymmetric multivariable
Hermite polynomials, respectively.

Proof: Requiring the linear combination of the nonsymmetric polynomial (6) to
i gt _ ()£ pAx _ . : (A)+

satisfy K;H, ™~ = £H, 7™, b . =1, we obtain the coefficients b, ;" as shown

in Eq.(7). i

The symmetric and antisymmetric multivariable Hermite polynomials are iden-
tified by the polynomial parts of the eigenstates for all the conserved operators

of the (An_1-)Calogero model with indistinguishable (bosonic or fermionic) parti-
cles, 117,18

2 4 dx? 3772 L=

Tj — Zl,‘k)

which is obtained by restricting the operand of the Hamiltonian (1) to the space
C[x]iw¢éA) (A) lxc Jaw ) = H(A)i(a)

From the square norms of the nonsymmetric polynomials (h&A),h,(lA))( 4) and

the coefficients bfﬁ)ﬂi, we can evaluate the square norms of the (anti-)symmetric
multivariable Hermite polynomials. To prove the formula of the square norms, we
need the following lemma, 6

Lemma 5: For p € Py, we have an identity,

Z H o, p+ap) Tao_ N ,H o', p+ap)
VW ) 2R, {(av,u+ap)ta aV p+ap)+a

The lemma is proved by use of an expression of the Poincaré polynomials.'?

Theorem 6: ° Let Hfﬁ_”’ for ut € Py and H [S/é)— for ut € Py + 4. The square
norms of the (anti-)symmetric multivariable Hermite polynomials are given by

N
(A)+ A+ _ (2m)z N! A .
<HM ,H,(, )(4) = Ouw (2w)%N(Na+(1—a))+lul ].:]I:F('UJ +a(N —j)+ 1)
Jj€

H L({(a¥,p+ap) +1Fa)T((a", n+ap) +a)
ser, Tl u+ap) +1)I((@V,ntap)

Proof: The proof is straightforward from theorems 3 and 4, and lemma 5. m|
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5. Concluding Remarks

We have presented the Rodrigues formula for the monic nonsymmetric multi-
variable Hermite polynomial which gives the nonsymmetric orthogonal eigenfunc-
tions of the (Ay_1-)Calogero model with distinguishable particles. Through (anti-
)symmetrization, we have constructed the (anti-)symmetric Hermite polynomials
that give the polynomial parts of the eigenfunctions of the (A4 _1-)Calogero model
with distinguishable particles. The square norms of the above three cases are calcu-
lated in an algebraic manner. Our formulation in this work is also applicable to the
By-Calogero models with distinguishable or indistinguishable particles and results
in the Rodrigues formula for the monic nonsymmetric multivariable Laguerre poly-
nomial and square norms of the nonsymmetric and (anti-)symmetric multivariable
Laguerre polynomials.?
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The energy eigenvalues of the superintegrable chiral Potts model are determined by the
zeros of special polynomials which define finite representations of Onsager’s algebra. The
polynomials determining the low-sector eigenvalues have been given by Baxter in 1988.
In the Zz—case they satisfy 4-term recursion relations and so cannot form orthogonal
sequences. However, we show that they are closely related to Jacobi polynomials and
satisfy a special “partial orthogonality” with respect to a Jacobi weight function.

PACS: 02.30.1, 75.10.J, 68.35.R
Keywords: Chiral Potts model, Integrable quantum chains, Onsager’s algebra

1. Introduction

F.Y.Wu and Y.K.Wang! were the first to consider the Potts model with chiral
interaction terms. Their interest in this generalization arose from duality consid-
erations, but the idea proved to be very fruitful in many respects: Ostlund? and
Huse® proposed the chiral Potts (CP) model for phenomenological applications: it
allows to describe incommensurate phases using nearest neighbor interactions only.
We give a few references* 7 from which the subsequent development can be traced,
and turn directly to the superintegrable chiral Zy Potts quantum chain.® This is a
particularly interesting model, because it provides some of the rare representations
known for Onsager’s algebra® and in this sense generalizes the Ising quantum chain
(for N = 2 it is the Ising model). Integrability by Onsager’s algebra entails that
all eigenvalues of the hamiltonian are determined by the zeros of certain polynomi-
als, which for the chiral Potts model were first derived by Baxter.'® Although the
definition of Baxter’s polynomials looks very simple, the properties of these polyno-
mials turn out to be quite non-trivial and interesting.!! The main part of this note
deals with the properties of these polynomials. They satisfy N + 1-term recursion
relations, therefore for N > 2 they cannot form orthogonal sequences. However,
as found recently,!! several properties which characterize orthogonal polynomials

*e-mail: gehlen@th.physik.uni-bonn.de
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are almost true for Baxter’s polynomials (e.g. the zero separation property is true
except for one extreme zero).

We first recall the definitions of the superintegrable CP-hamiltonian and Onsager’s
algebra and then, following B.Davies,'? we sketch how the formula for the energy
eigenvalues emerges. We consider Baxter’s polynomials and their recursion rela-
tions. Equivalent polynomials with their zeros in (—1,+1) for N = 3 are written
in terms of a determinant. Their expansion in terms of Jacobi polynomials gives
the surprising result that many of the expansion coeflicients vanish, leading to the
notion of “partial orthogonality”.

The hamiltonian defining the Zy-superintegrable chiral Potts quantum chain®8 is:

L N-1

—— (Xj + kZ;Z35"). (1)
j=1 I=1

Here w = e**/N and Z; and X; are Zy-spin operators acting in the vector

spaces CV at the sites j = 1,2,...,L (L is the chain length). The operators obey
ZiX; = X;Z; Wl ZN XN =1 and we assume X141 = X; (periodic b.c). A
convenient representatlon is (X Jim = O;m+1 mod N and (Z;);,m = 6 mw™. For
N > 3 the complex coeflicients make the chain hamiltonian parity non-invariant.
For N = 2 we get the Ising quantum chain. For fixed N there is only one parameter,
the temperature variable k. Incommensurate phases arise due to ground state level
crossings. H commutes with the Zy-charge @ = Hfﬂ Z;. We write the eigenvalues

of @ asw® Q=0,1,..., N — 1 labels the charge sectors of .

We split H into two operators writing H() = -3 1 N(A4p + kAi). A remarkable
property of H is that Ag and A, satisfy® the Dolan Grady!? relations

[Ao, [Ao, [Ao, A1]]] = 16 [Ag, Aa]; [A1, [A1, [A1, Ao]]] = 16 ][44, Ao],

which are the conditions'* for Ay and A; to generate Onsager’s algebra A, which
is formed® from elements A,,, G;, m € Z, | € N, | > m, satisfying

[AL, Am] =4Gi_m; (G, Am] =2Ami1 —2Am—i;  [G1,Gn] =0. (2)
From (2), there is a set of commuting operators which includes H:

Qm=3Amn+Am+k(Ani1 +Ami1));  [Qy, Qml=0; Qo=*H

To obtain finite dimensional representations of .4 we require the A,, (and analo-
gously the G;)'*15 to satisfy a finite difference equation: Y ax Ak =0,
This is solved introducing the polynomial (the main object of the present paper):

F(z) = Z ay 25t (3)

k=-mn
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(from A the oy are either even or odd in k). Now the A,,, and G, can be expressed
in terms of the zeros z; of F(z) and the set of operators E]?t, H;:

n n
m=2Y (P E} +2;™Ey); Gm = -™) Hj. (4)
j=1 7=1
From A these operators obey sl(2, C')-commutation rules:
[E;—,Ek_] = Ojk Hy; [Hj, Eki] = :i:25jk E;:t

So A is isomorphic to a subalgebra of the loop algebra of a sum of sl(2, C) algebras.

From the first of egs.(4) we can express H in terms of the z; and the operators Ei
Writing E = Jz,; + iJy,;, then in a representation Z(n,s) characterized by the

polynomial zeros zi,..., 2, and a spin-s representation J;(.") of all the fj, we get:

(Ao + kA1) z(na) =2 D {(2 + k(2 + Zj_l))J,(f])- +i(z; — 27 1) Jésj)

j=1
n
=43 (142 +k2 T
j=1
where J'; ; is a rotated SU(2)-operator, and ¢; = cosf; = 3(z; + zj_l).

For the CP-hamiltonians (1) the spin representation turns out to be s = % Accord-
ingly, all eigenvalues of (1) have the form

o=

E® = _N (a+bk+22?:1mj\/1+2kcosaj+k:2), mj=+L. (5

a and b are non-zero if the trace of Ay and A; is non-zero.

2. Baxter’s polynomials

No direct way is known to find the polynomials F(z) from the hamiltonian H. How-
ever, the invention of the two-dimensional integrable CP model, 1617 which contains
H as a special logarithmic derivative, and functional relations for its transfer ma-
trix have enabled Baxter'® to obtain the polynomials for the simplest sector of
‘H, which at high-temperatures contains the ground state (the polynomials corre-
sponding to all other sectors have been obtained subsequently in!®-20). Here we
shall consider only the simplest case. Baxter'? finds that in terms of the variable ¢
or s=tV =(c—1)/(c+1) (recall c=cos of (5)) these polynomials take the
form

NNE
PC(QL) N (1 th) (th) QL. UQ,LZ(N—l)(L—I—Q) mod N. (6)

Here (@ denotes the Zy-charge sector. For Zs eq.(6) is, written more explicitly:
PP(s) = {(t2 14+ D+t + 0t 4 )+ w U + wt + W)
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Due to their Zy-invariance ¢t — wt, the Pc(f) depend only on s = tV. The
degree of the PéL)(s) in the variable s is br g = [((N —1)L — Q)/N] where [z]
denotes the integer part of z. Considering sequences of these polynomials for fixed
Q@ and L € N, we notice that the dimensions bz, g do not always increase by one

when increasing L by one: at every Nth step the dimension stays the same: e.g. the
dimensions of the Pé‘=0 for L mod N =0 and L mod N =1 coincide, see Table 1.

The polynomials (6) have their zeros all on the negative real s-axis: H is hermitian
and so in (5) we must have —1 < ¢; < +1 which means negative s;. We will prefer
to deal mostly with equivalent polynomials in the variable ¢, defining

5 (¢) = (e+1)*2P§ (s = 54 ). (7)

Our main concern in this paper is to learn about the properties of the Hg')(c) or
Pc(zL) (s), e.g. whether these can be arranged into orthogonal sequences etc. We will
find that the Hg) (c) are polynomials with quite remarkable properties. A number
of special features of the Hg‘) have been discussed recently.!! Here we give some

more detailed results for the Zs-case. As the recursion relations for the HEQL )

a lot of information, we now show how to obtain these.

contain

3. Recursion relations

We start with the observation that the coefficients of the P((QL) (s) can be obtained
from the expansion of (1+t+t2+...+tN~1)L simply by taking every N —th term
of the expansion, starting with the coefficient of t(V-DIL-Q  More precisely, we
claim that we can define the P( by the decomp051t10n

2 N-1 1tV = or,ep(L)
(I+t+2+... +tV Dl = — :Zt 2P5(s) (8)
Q=0

demanding the Pg) to depend on s =tV only. Proof: Insert (6) into (8) to get:

N-1N-1
1— tN (1 B tN L i wJ(L+Q)
1-t N 1= wit)
Q=0 j=0
Interchanging the (- and j-summations we see that the @Q-summation gives zero
for j # 0, leaving only the j = 0 term, which is (8).
Eq. (8) can now be used to obtain recursion relations: Write

N-1 N-1
(+t+ 4+ NS e PP(s) = S s PEY(). (9)
Q=0 Q=0
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Comparing powers of t, e.g. for L mod N =0 this gives

piEFy 1 1 1 ... 1 M
sz“‘? 1 s 1 1 P
EECl N PRI | NN a0
L+l L, ' L
PI(V—I) 1 s s ... s P](V—)l

For L mod N = k replace Py — Pp—_ cyclically in both column vectors, keeping
the same square matrix. Recursion relations not coupling Pg‘) with different @
follow by the N —fold application of these relations, leading to N + 1-term recursion
formulae. These can be transcribed into the corresponding formulae for the Hg).
For the Ising case Zg these are of the Chebyshev type

9+ — 4y *? +any’ =o, (11)

and so for N = 2 the Hg’ ) form orthogonal sequences. However, for Z3 we havel!
(valid for all L > 0 and all Q):

g™ =396 - 5™ + 48T ™ — 641y = 0. 12

These Hg) form 9 sequences, each labeled by (Lg, }), where Q = 0,1,2 and L =
3j+Lg where Lg = 0,1,2, j=0,1,2,.... The degrees of the polynomials appearing
in this relation increase by two from the right to the left, but since the recursion
is four-term, not three-term, these are not orthogonal sequences®'. However, like
(11) also (12) are of the most simple typeP: all coefficients are independent of L.

4. Expansion in terms of Jacobi polynomials

As the zeros of our HEQL ) are confined to and dense in the interval (—1,41) we
call this the basic interval like for orthogonal polynomials. Trying to determine
(numerically) a weight function by the ansatz f_ll(l +c)*(1 - c)ﬂc’“H(QL ) () =0
for k < bg, fitting o and g, we find (in the following we concentrate on the
Z3-case) that there is an approximate solution very close to « = —3 = %, but o
and 8 come out to be slightly L and k-dependent, in contrast to what is needed
for orthogonality. However, for L. — oo and small fixed k, the solutions converge

L1
towards a = —3 = % So the HE?L ) seem to be close to Jacobi polynomials P,£3’ 3),
but can we formulate an exact relation valid for finite L? Is there an exact property
of the Hg’) which replaces orthogonality?

Numerical calculations'! gave the surprising result that seemingly complicated Hg‘ )

a1f we consider Q@ = L mod 3, then we have only polynomials in ¢2, and the degrees br g are
consecutive in powers of z = ¢Z (“simple sets of polynomials”) with integer coefficients.

PFor higher N we get similar N + 1-term relations, e.g. for Zj:

4+ — a(64c® — 560 ISV ISP — 128142 — 17)IG T — 2048e0 T 4 4096 1Y) = 0.
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Table 1. Examples of Z3—polynomials Hg‘)(c) and their Jacobi-components.

Zs, Q=L+1 mod3, (aaﬁ) (— —_
L L
L 1 (0 l2L/31 1) (0)
3 9c¢+3 [o, g]
27 9
4 27c2-18¢-5 [»“T=§
5 813427¢%2—57¢—11 [0,-3,0,%
6 35¢3+8lc2—135¢—-21 [000,’%4403
7 3%ct—2.35¢% —540c% +270c+43 [3,—27, 1Tl 720 729
8 37c®+3%¢* —2754¢3 — 702¢2 + T1lc + 85 [0,0,0,— 37,0, 222
9  3%c5 +37ct —7290c3 - 1782¢% +1593¢+ 171 [0,0,0, — 2}, ,0, 22
10 3%¢8 —2-3%¢5 —25515¢% + 14580 ¢3 (3,27, 188, — 22%37%%7’
37
+7965 ¢ — 3186 ¢ — 341 -3 308]

can be written as a combination of just very few Jacobi polynomials, e.g.

n{'? = 311c7 +31068 _5.31005 _ 809192 + 140697¢3 4+ 27459¢% — 16839¢ — 1365 —

1.1
7628 ( P73’ %) Péa’ 3) ) . For polynomials 7(c) of degree n we use®:

w(e) = [mo, M1y vvy Tn] = Zﬂ'k PIS%’_%)(C) (13)

and define a scalar product with Baxter’s variable ¢ = (1 —¢)/Q+ )3 (see
(6)) as the weight function (here we will not need to specify the normalization):

+1 _on\1/8
1) = [ e (152) 700 = [t O n (6 5 (el

The second part of this definition shows that it makes sense also if we prefer to use
polynomials in the variable s, and that it preserves the original Zz—symmetry.

Since the H(QL ) satisfy the recursion relations (12) they can be written as determi-
nants of band matrices with a bottom line specifying the initial conditions (which
are the lowest L polynomials). Omitting the bottom line, we define § X j—band
matrices and their determinants R; = det |band ([64, 48, 3p, 1, 0], )| , e.g.

3p 1 0 0 0 0
483 1 0 0 0
64 48 3p 1 0 0
0 64 48 3p 1 0
0 0 64 48 3p 1
0 0 0 64 48 3p

where p = 9¢? — 5, so that the polynomials R; depend only on ¢?. Now we get the
nine sequences of the IIEQL ) as linear combinations of the R; which satisfy appropriate

For Jacobi series as a generalization of Taylor series, see Ch.7 of Carlson.?3 We use the standard
normalization of Jacobi polynomials, see e.g. Rainville.22
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initial conditions. Abbreviating @Q; = R; +8R;_; these are found to be:

I§Y = 1(Q; - 8Qj-1 +16Q52); H(;gj) =9cR;j—1 £3Q;-1;
O = £18cR; ) + Q; +2Q,_1; I3 = Q- 4Q;-1; (14)

2
MG = 3e(R; —4R;1) £ (@ —4Q;-1); 157+ = 3Q;.

For j=1,2use Ry=1; R_y = R =0. From (14) we see that only two of the 9
sequences are independent. There are relations like e.g. II(()E‘J +1)—1'[(137 + 21'[537 ),

To get the Jacobi-expansion of the Hg), we only need to expand R; and cR;. Us-
ing Jacobi-components defined in (13), from explicit calculation (for 7 < 36), we
find that for k& < j (only there) the j-dependence of the (R;), obeys the simple rule:

(Rj),, = (=3)F k! (2k + 1) {(—8) ox + 47 Tk}

S SRR | o) LA _2(=3)m?
k 3Hfb___0 (3n+ 1)7 k=2m 3H731:m(2n+ 1); k=2m—1 Hi:;l(2n)

It follows that the o4 do not contribute to the k¥ < j-components of @Q;, and, using
1_1
the recursion relations for the P,§3’ 3)(c), we conclude that for £ < j we have
3(Qi), = —(cRj), = $(Rj11), = 4 (—3)F k! (2k + 1)7. It further follows that
(57" = (M), = @), = @YD) = (@) =0 for k<
1 1
All k <j components of Hgsj ), Hé3j *) and HgSj *2) are proportional to (Qj)-
We get zero overlap between a polynomial I'I(QL) of degree by, g with all polynomials
Hgi) which have at least bz ¢ vanishing low-k components (these can only be
polynomials which have by g > 2br,g). One of many such relations is e.g.
Mm@y 0 for Q=@ =1 and 2j<j —1.
Q Q

This property may be called “partial orthogonality”.
Further rules, this time valid for all k, regard the vanishing of many components
for particular linear combinations: Defining

QSf) Eﬂg‘q’j) =9¢cR;_1+3Qj1 = [a((,+), a§+), . ag;ll];
Q(_j) = Qi +9cR;j1—-Q;1 = [a(()_), ag_), el ag]_-) I,

we have checked up to j = 30 that asci) = 0 for k < j and that all even (odd) k

Jacobi components of QSf) (Q(_])) vanish. So we conjecture for all j, j'
(e?19"7) =0.

One can check some special cases of these results in Table 1. It has been found

numerically!! that a similar partial orthogonality appears also for the Zp-Baxter

polynomials with N = 4, 5, 6. For even values of N further relations emerge, but
these will not be discussed here.
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5. Conclusion

The polynomials which play a central role for the calculation of the energy eigenval-
ues of the superintegrable Zg—chiral Potts model are found to be related to Jacobi
polynomials in a very peculiar way. Many integrals giving the Jacobi-coeflicients of
Baxter’s polynomials are found to vanish. These observations should have a deeper
group-theoretical background, but the underlying symmetry is not yet clear to us.
By reducing the formulation of the problem to some basic facts, the present analysis
tries to prepare the ground for clarifying the symmetry involved.
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On the basis of Bethe ansatz solution of two-component bosons with SU(2) symmetry
and d-function interaction in one dimension, we study the thermodynamics of the system
at finite temperature by using the strategy of thermodynamic Bethe ansatz (TBA). It
is shown that the ground state is an isospin “ferromagnetic” state by the method of
TBA, and at high temperature the magnetic property is dominated by Curie’s law. We
obtain the exact result of specific heat and entropy in strong coupling limit which scales
like T' at low temperature. While in weak coupling limit, it is found there is still no
Bose-Einstein Condensation (BEC) in such 1D system.

1. Introduction

A two-component Bose gas has been produced in magnetically trapped 37 Rb by
rotating the two hyperfine states into each other with the help of slightly detuned
Rabi oscillation field.! It was noticed? that the properties of such Bose system can
be different from the traditional scalar Bose system once it acquires internal degree
of freedom. Bethe ansatz solution of SU(2) two-component bosons in one dimension
was obtained.?# It was pointed out that the ground state of such a system is an
isospin “ferromagnetic” state* which differs from that of spin-1/2 fermions in one

dimension, such as SU(2) Hubbard model,® etc.

An interacting SU(2) boson field trapped in a one dimensional ring of length L
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can be modeled by the following Hamiltonian

H= [do |3 0:5:0000 +5 X vivatie e
a a,b

where a,b = 1,2 denotes the z-component of isospin. The Bethe ansatz equations
(BAE) of eq. (1) are obtained as follows

N .M .
L _ _ij—kl-l-zc ki — A, —ic/2
l

Lk =k —ic 1 by — A, Tic/2

N M .
_ Ay —ki—ic/2 17 A\ — Ay +ic
1= _ll;IlAy—kl-l-ic/?';[;[l)\,,—)\,,—ic @

where M denotes the total number of down isospins. Eq. (2) differs from the BAE
of scalar bosons with periodic condition.® The second equation of egs. (2) of isospin
rapidity A arises from the application of quantum inverse method,” which can be
inferred from spin-1/2 fermions® too. However, the symmetry of bosonic wave func-
tion gives the first term on the right side of first equation of egs. (2), which does
not appear in the BAE for fermions.

2. Thermodynamics at Finite Temperature

The strategy we use here is the thermodynamic Bethe ansatz (TBA) which was
pioneered by C. N. Yang and C. P. Yang for the case of the delta-function Bose
gas.10 It is used to derive a set of nonlinear integral equations called TBA equations,
which describe the thermodynamics of the model at finite temperature. Moreover,
the As can be complex roots which should form a “bound state” with other As!!
when T s 0, which arises from the consistency of both sides of the BAE. For ideal
A strings of length m the rapidities are A% = A7 + (n + 1 — 24)iu + O(exp(—éN)).
Here u = ¢/2, a enumerates the strings of the same length m, and j = 1,...,m
counts the As involved in the ath A string of the length m, A? is the real part of
the string.

Taking logarithm of the BAE (2) by using string hypothesis we arrive at the
following discrete Bethe ansatz equations

orl; =k;L+2) Oa(k; —ki)— > On(k; — )
! an

ot =2 El: On(A? — k) —2 blg AnitO: (A7 — AL) (3)
A0

where O,,(z) = tan~!(z/nu) and
1l,fort=n+1,|n~1

Apg =< 2, fort=n+1-2,---,In—-1|+2
0, otherwise.
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I and J7 play the role of quantum numbers for charge rapidity and isospin rapidity
respectively. In order to guarantee linear independence of wave function, all quan-
tum number within a given set of {I} as well as that in {J} should be different. An
arbitrary quantum number may be either in the set or not in the set. The former is
called a root, the later is called a hole. In thermodynamic limit, the distribution of
charge rapidities becomes dense and it is useful to introduce the density function
for charge roots and holes respectively. We denote with p(k) and p"(k) the density
function of charge roots and holes, in a similar way, with 0,,(1) and o the density
function of n-strings roots and holes on real axis. They are defined by

p(k) + p"(k) = (1/L)dI(k)/dk
on(A) + oAy = (1/L)dJ™(N)/d. (4)

Then from egs. (3) we obtain a set of coupled integral equations.

ptph = 51—+K2(k)*p(k) —ZK (k) % o (k)

On+0h = )% p(A) = Y AnKi(M) x ou() (5)
1,440
where K, (z) = nu/n(n?u? + z2), and * denotes the integral convolution.

In terms of the density functions of charge and isospin roots, the kinetic energy
per length has the form Ej/L = [k2p(k)dk, the total number of down isospins
is M/L =3, n [on(A\)dX and the particle density of the model is D = N/L =
[ p(k)dk. If we consider the energy arising from the external field Q which is the
Rabi field in two-component BEC experiments, the internal energy of the model is

E/L= / (K2 — ) p(K)dk + 3 200 / ondA. 6)

And with the help of the approach first introduced by Yang and Yang,!® the entropy
of the present model at finite temperature is

S/L= / [(o+ oM In(p + o) — plnp — p* In o]k ()
+ Z /[(an + oM In(oy, + 0l) — onInoy, — o Ino?d.
n

The Gibbs free energy of the model then is defined by F = E—TS8 —uN, where p is
the chemical potential. In order to obtain the thermal equilibrium, we minimize the
free energy with respect to all the density functions subjects to the constraint (5).
In addition, the total number of particles, the magnetization are kept to constant.
For this purpose, the chemical potential pu and external field Q play the role of
Lagrange multipliers.

It is useful to define the energy potential for charge sector and isospin sector:

K(k) = e BT = ph(k)/p(k)
Mm(A) = h(N)/on(A). (8)

287



2140 S.-J. Gu et al.

Applying the minimum condition § F' = ( gives rise to a revised version of Gaudin-
Takahashi equations
Tk = e(k) =k% — p— Q- TKo(k) *xIn[l + 7]
—TY  Kn(k)xIn[1+77"]
n

Iny = gosech(md/2u) « Inf(1 + K~)(1 4+ m2)

Inn, = 4—1&sech(7r/\/2u) * In[(1 + 9p—1)(1 + Dnt1)]- 9)

And these equations are completed by the asymptotic conditions
nll)néo[ln M/} = 2z (10)

where z = Q/T. Eqgs. (9) can be solved by iteration. Note that egs. (5) together
with eqgs. (9) completely determine the densities of charge roots and isospin roots
in the state of thermal equilibrium. The Helmholtz free energy F' = E—T'S is given
by

F= uN — L /ln[l + e~¢/T)dk. (11)
i

The above approach called TBA is universal for discussing the thermodynamics
of one dimensional integrable model. Once egs. (9) are solved, all thermodynamic
quantities can be obtained from eq. (11) in principle.

3. Magnetic Property: Zero and High Temperature Limit:

The state at zero temperature is the ground state. The Fermi surface is determined
by e(kr) = 0. Since there is no hole under Fermi surface, we can take the energy
potential K = p"/p as zero. As a result, from egs. (9), it is easy to see 1, — 0o, and
M =0, the “ferromagnetic” ground state. The first equation of egs. (9) becomes

co(k) = k% — p — Q + Ka(k) * eo(k) (12)

which gives the solution of dressed energy, and the ground-state energy may be
given in terms of €g

kr
Eo/L = % /_ col)dk. (13)

Consequently, the ground state of 1D SU(2) bosons is an isospin “ferromagnetic”
state, which coincides with the analysis of Li et al.* Then the property of the
model at T' = 0 is the same as that of scalar bosons in one dimension which has
been discussed extensively by Lieb and Liniger.® In the isospin space, however, the
SU(2) symmetry of whole system around the ground state is broken.
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In the high temperature limit 7' — oo (free isospins), however we can assume
that all functions 7,()) are independent of A. Then egs. (9) can be written as
follows,

n = (1+n)
M = (14 0n-1)(1 + hns1) (14)

where we have neglected the term (1+ 1) in the second equation of egs. (9). The
solution of 7,, are then constants fixed by the field boundary condition (10) to be

[sinh(n+ 1)3:]2
n= | ————| -1
sinh z

(15)

After perform the Fourier transformation on egs. (5), we get the solution of the
densities of A n-strings,

1
o1+ 0t = Eseeh[ﬂ)\/Zu] % [p+ ob]
1
on+olt = Esech[m\/2u] x[oh,  +al ] (16)

If we assume that o, and o are independent of ) or let ¢ = 0, the total number of
down isospins has the form,

1
Znan = g - nm2+ onmean/T (17)
n

where n,, is maximal length of A strings. In the absence of Rabi field, we have
M/N = 1/2, the system at high temperature is a quasi “paramagnetic” state. If
the external field €2 is small, expanding eq. (17) for small field z and integrating
the equation over A space, we get the magnetization of the model. Let M, be the
total number of isospin rapidities in all n,,-strings,

S, M, ( nml  nZ,02 )
+

L= Mt Tt

T ~ 2T? (18)

where the first term in the parentheses arises from self-magnetization, while the
others are contributed by Rabi field. Eq. (18) indicates that the magnetic property
of the model in high temperature regime dominated by Curie’s law x oc 1/T.

4. Strong and Weak Coupling Limit:
When 1 — oo, K,(k) = 0, from eqgs. (9) we have
e=k*-Q—p (19)
The free energy of the system (11) at low temperature now can be solved by

integration by part,

F/L=puD ~ %[lu‘w L I }

3 24p1/2 (20)
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where the external field is set to zero.

We can not deduce the specific heat directly from the free energy obtained
above because the chemical potential is a function of temperature. From egs. (5),
the density of charge rapidity has the form

1 1
21+ e®-w)/T"
Clearly, at zero temperature, the Fermi surface is just the square root of the chemical
potential, so we have pg = 72D?. At low temperature, however, it is determined
by D = N/L = [ p(k)dk. After integration, we have a temperature dependent
chemical potential

p= (21)

7T2T2 -2
B = po [1 - —'] . (22)
24y
Then the free energy becomes
7T2T2 2 3/2 7T2T2
F/L = D[l 257N —]
/L =hoD|1+ 12;;3] 30 1+ 43 (23)

Since by thermodynamics & = —0F/0T and C, = T0S/8T, we find the specific
heat at low temperature is Fermi-liquid like

T

S=C, = D" (24)

It is the same as the result of one-component case, since for the strong coupling limit

the isospin and the charge are decoupled completely, the contribution of isospin to
the free energy vanishes.

In order to discuss the possibility of the existence of BEC, we consider the
problem in weak coupling limit ©+ — 0. And isospin-isospin reaches its maximal
correlation. At low temperature, however, we do not take string hypothesis for
simplicity. Because lim. o Kn(z) = d(z), together with egs. (5) and egs. (9), we
obtain
1 (3efo —1)(e %0 +1)
27 (3e220 + 1)(1 — e=*0)

where g9 = (k% — u)/T. The positive definition of p(k) requires that the chemical
potential is negative. As we known the density of scalar boson is 2rp = 1/(1 —e~*°)
which prevents the BEC in 1D and 2D system because of the infrared divergence.
However, the density function (25) still does not resolve this problem. Consequently,
BEC does not happen in this model yet.

p(k) = (25)

5. Conclusion and Acknowledgment

To summarize, we discussed the general thermodynamics of one dimensional SU(2)
bosons with d-function interaction by using the strategy of TBA. It was shown that
the ground state is an isospin “ferromagnetic” state which differs from the ground
state of 1D fermions, while at high temperature, it is “paramagnetic” state and
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the magnetic property is dominated by Curie’s law. In strong coupling limit, we
obtain the exact expression of the dependence of chemical potential, entropy and
specific heat on temperature which are Fermi-liquid like, while in weak coupling
limit, we found the infrared divergence of charge roots density function prevents
the existence of BEC.

This work is supported by Trans-Century Training Program Foundation for the

Talents and EYF98 of China Ministry of Education. SJG thanks D.Yang for helpful
discussions.
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A systematic method for constructing trigonometric R-matrices corresponding to the
(multiplicity-free) tensor product of any two affinizable representations of a quantum
algebra or superalgebra has been developed by the Brisbane group and its collaborators.
This method has been referred to as the Tensor Product Graph Method. Here we describe
applications of this method to untwisted and twisted quantum affine superalgebras.

1. Introduction

The (graded) Yang-Baxter equation (YBE) plays a central role in the theory of
(supersymmetric) quantum integrable systems. Solutions to the YBE are usually
called R-matrices. The knowledge of R-matrices has many physical applications.
In one-dimensional lattice models, R-matrices yield the Hamiltonians of quantum
spin chains.! In statistical mechanics, R-matrices define the Boltzmann weights
of exactly soluble models? and in integrable quantum field theory they give rise
to exact factorizable scattering S-matrices.® So the construction of R-matrices is
fundamental in the study of integrable systems.

Mathematical structures underlying the YBE and therefore R-matrices and in-
tegrable models are quantum affine (super)algebras. A systematic method for the
construction of trigonometric R-matrices arising from untwisted and twisted quan-
tum affine (super)algebras has been developed in Refs. 4-9 (see also Ref. 10 for
rational cases). This method is called the Tensor Product Graph (TPG) method.
The method enables one to construct spectral dependent R-matrices corresponding
to the (multiplicity-free) tensor product of any two affinizable representations of a
quantum algebra or superalgebra.

In this contribution, we describe the TPG method in the context of untwisted
and twisted quantum affine superalgebras. Quantum superalgebras are interesting
since the tensor product decomposition often has indecomposables and integrable
models associated with them may in some instances be interpreted as describing
strongly correlated fermion systems.!1:12
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2. Quantum Affine Superalgebras and Jimbo Equation

Let us first of all recall some facts about the affine superalgebra G*), k = 1,2. Let
Go be the fixed point subalgebra under the diagram automorphism of G of order k.
In the case of k = 1, we have Gy = G. For k = 2 we may decompose G as Gy & Gi,
where [Gg,G1] C G1. Let 9 be the highest root of Go = G for k = 1 and 6 be the
highest weight of the Gy-representation G; for k = 2.

Quantum affine superalgebras U,[G(¥)] are g-deformations of the universal en-
veloping algebras U[G®)] of G(¥). We shall not give the defining relations for U,[G*)],
but mention that the action of the coproduct on its generators {h;, e;, fi, 0 <i <
r} is given by

Alhi) = h; ® 1+1® hi,

Ale)=e;®qF +0F ®e;, Af)=FL®dF+a 70k (1)
Define an automorphism D, of U,[G®] by
D,(e;) = 2%%0e;, D, (fi) =2z""ef  D,(h) = hs. (2)

Given any two minimal irreducible representations 7 and =, of Uy(Go] and their
affinizations to irreducible representations of Uy [g(k)], we obtain a one-parameter
family of representations A%, of U, [6*)] on V(A) ® V(u) defined by

w@ =mer. (D ®1)A), Vae Uq[g(k)]a @)

where z is the spectral parameter. Let R*(z) be the spectral dependent R-matrices
associated with 7 and m,, which satisfies the YBE. Moreover it obeys the inter-
twining properties:

RM(2) 83,(a) = (AT)3u(a) RM(2) (4)

which, according to Jimbo,'3 uniquely determine R*(z) up to a scalar function of
z. We normalize RM(z) such that R (z)R¥A(271) = I, where R (z) = P RM(2)
with P: V(A) ® V(u) —» V(1) ® V(A) the usual graded permutation operator.

In order for the equation (4) to hold for all a € U,[G™®)] it is sufficient that it
holds for all @ € U, (ﬁo) and in addition for the extra generator ey. The relation for
ep reads explicitly

B (2) (2ma(e0) @ mu (/%) + ma(g /%) @ mu(eo))
= (muleo) @ mA(@"72) + 2 mu(a7") @ ma(eo) ) RM(2). (5)
Eq.(5) is the Jimbo equation for U,[G®*)].

3. Solutions to Jimbo Equation and Tensor Product Graph
Method

Let V(A) and V(u) denote any two minimal irreducible representations of U,[G®].
Assume the tensor product module V() ® V(u) is completely reducible into irre-
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ducible U,[Go]-modules as
VeV =Vv) (6)

and there are no multiplicities in this decomposition. We denote by P the projec-
tion operator of V(\) ® V(i) onto V() and set Pp# = RM (1) PM* = P\ RM(1).
We may thus write

B¥2) =Y a()PY, p(1)=1. ™)

Following our previous approach,’ the coefficients p, (z) may be determined accord-
ing to the recursion relation

qC2 4 ee,2qC¢N/2 (2) (8)
2qCO2 1 eye,, CN2PY )

pu(2) =
which holds for any v # ¢’ for which
P (ma(eo) ® mu(a"®/%)) P} # 0. (9)

Here C(v) is the eigenvalue of the universal Casimir element of Gy on V(v) and ¢,
denotes the parity of V() C V(A) @ V(u).

We note that ep ® ¢"/2 transforms under the adjoint action of U,[Go] as the
lowest weight of Go-module V() [resp. V(0)] for k = 1 (resp. k = 2) (i.e. as the
lowest component of a tensor operator). Throughout we adopt the notation

1+ 249"

<a>4=
+ Ziqa”

(10)

so that the relation (8) may be expressed as

pu(2) = <Q(L;EQ> o (2). (1)

To graphically encode the recursion relations between different p, we introduce

the Extended TPG for U,[G™V)] and Extended Twisted TPG for U,[G(?].

Definition 1: The Extended TPG associated to the tensor product V(A) ®
V(u) is a graph whose vertices are the irreducible modules V (v) appearing in the
decomposition (6) of V() ® V(u). There is an edge between two vertices V(v) and
V(') iff

V) C Ve @V (v) and e(v)e(v') =-1. (12)

The condition (12) is a necessary condition for (9) corresponding to Uy[G(!)] to
hold.

Definition 2: The Extended Twisted TPG which has the same set of nodes as
the twisted TPG but has an edge between two vertices v # 1/ whenever

VY CVe) V() (13)
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and

e = { +1 if V(v) and V() are in the same irreducible representation of G
vt —1 if V(v) and V(') are in different irreducible representations of G.
(14)
The conditions (13) and (14) are necessary conditions for (9) corresponding to
U,[6@)] to hold.
We will impose a relation (8) for every edge in the extended (twisted) TPG
but we will be imposing too many relations in general. These relations may be
inconsistent and we are therefore not guaranteed a solution. If however a solution

to the recursion relations exists, then it must give the unique correct solution to
the Jimbo’s equation.

4. Examples of R-matrices for Uy[gl(m|n)M)]

Throughout we introduce {e;};2; and {d;}7_, which satisfy (e;, ¢;) = di5, (8,05)
= —d;; and (,d;) = 0. As is well known, every irreducible representation of
U,lgl(m|n)] provides also an irreducible representation for U,[gl(m|n)V)]. Here,
as examples, we will construct the R-matrices corresponding to the following ten-
sor product: rank a antisymmetric tensor with rank b antisymmetric tensor of the
same type. Without loss of generality, we assume m > a > b and the antisymmetric
tensors to be contravariant. The tensor product decomposition is

V()@ V() = P V(A (15)
where, when a + b < m,
b a+c
Abzze,',, Z €4y CZO,l,"‘,b (16)
i=1 i=1

and when a + b > m,

o
|
o

.
Il
-

a+tc

A, —2614—261, c=0,1,---,m—a
Ac:Zei—l-Zei—i—(a,-i—c—m)él, c=m—-a+1,---,b (17)
The corresponding TPG is

V)@ V0w = Q—Q— —Q—Q (18)

Ay
which is consistent; such is always the case when a graph is a tree ( i e contains no
closed loops). From the graph we obtain

b ¢
R (z) = [[(2i+a—b)_ Py (19)
c=01i=1
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The a = b =1 case had been worked out before, which is known to give rise to the
Perk-Schultz model R-matrices.14 15

5. Examples of R-matrices for Ug[gl(n|n)®)]

To begin with, we introduce the concept of minimal representations. By minimal
irreducible representations of G, we mean those irreducible representations which
are also irreducible under the fixed subalgebra Gs. We can determine R-matrices
for any tensor product V(A\q) ® V(As) of two minimal representations V(A,), V(Ap)
of Uy[gl(m|n)®)], where V(),) is also irreducible model under U,[osp(m|n)] with
the corresponding U,[osp(m|n)] highest weight A, = (0|a,0). Recall that for our
case Gg = osp(m|n) and 6 = &; + do. Below we shall illustrate the method for the
interesting case of & = b, m = n > 2, where an indecomposable appears in the
tensor product decomposition.

The decomposition of the tensor product of two minimal irreducible represen-
tations of U,[osp(m|n)]:°

V() @ V(Xp) = @@V(ka+b 2); (20)

c=0 k=0

here and throughout V(a, b) denotes an irreducible U,[osp(m|n)| module with high-
est weight A\, p = (0la + b,a,0). Note that one can only get an indecomposable in
(20) when m =n > 2 and a +b—2c = 0. Since a < b, ¢ < g, this can only occur
when a = b and ¢ = a. In that case the Ug[osp(m|n)]-modules V' (k,0), k = 0,1,
will form an indecomposable. From now on we denote by V this indecomposable
module, and write the U,[osp(n|n)] module decomposition (20) as

V() EBV )PV, (21)

where the sum on v is over the irreducible highest weights. Note that V' contains
a unique submodule V(8; + d,) which is maximal, indecomposable and cyclically
generated by a maximal vector of weight &; 482 such that V/V (6;+62) = V(0|0) (the
trivial Ug[osp(nin)]-module). Moreover V contains a unique irreducible submodule
V(0|0) € V(61 + d2). The usual form of Schur’s lemma applies to V(d; + d2) and so
the space of Ugy[osp(n|n)] invariants in End(V') has dimension 2. It is spanned by
the identity operator I together with an invariant N (unique up to scalar multiples)
satisfying

NV =V(0/0) C V(61 +d2), NV +62)=(0). (22)

It follows that N is nilpotent, i.e. N2 = 0.

We can show? that the minimal irreducible Ug[osp(n|n)] modules, V(A,), with
highest weight \,, are affinizable to carry irreducible representations of U, [gl(n|n)®)].
We now determine the extended twisted TPG for the decomposition given by (21).
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We note that V can only be connected to two nodes corresponding to highest
weights

_ {251 (opposite parity), (¢,k) = (a—1,0) (23)

~ | 2(61 +d2) (same parity), (c, k)= (a,2).

We thus arrive at the extended twisted TPG for (21), given by Figure 1.

k=0
c=0
c=1
c=2
k=a-—1
c=a—-—1
k=a
c=a

Fig. 1. The extended twisted TPG for Uq[gl(nln)(2)] {(n > 2) for the tensor product
V(Xe) ® V(Xa). The vertex labelled by the pair (c, k) corresponds to the irreducible
Uq[osp(n|n)] module V(k,2a — 2¢) except for the vertex corresponding to ¢ = a, k = 1,
which has been circled to indicate that it is an indecomposable Ug[osp(n|n)}-module.

It can be shown that the extended twisted TPG is consistent, i.e. that the
recursion relations (8) give the same result independent of the path along which
one recurs. To prove this it suffices to show for each closed loop of four vertices in
the graph, that the difference in Casimir eigenvalues for osp(n|n) along one edge
equals the difference along the opposite edge.

Let Py = P{)“’\“ be the projection operator from V(A\,) ® V();) onto V and

, = P)ee the projector onto V(). Then the R-matrix R(z) = R*s*+(z) from
the extended twisted TPG can be expanded in terms of the operators N, Py and
P,:

R(z) = pn(2)N + pv(2)Py + > pu(2)P,. (24)
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The coefficients p,(z) can be obtained recursively from the extended twisted TPG.
However, the coefficients py(2) and py(z) cannot be read off from the extended
twisted TPG since the corresponding vertex refers to an indecomposable module.
Rather they are determined by the approach'® to U,[gl(2|2)®®). The result is®

a'’! c'c—k
R(z) = pn(2)N +pv(2)Pv + > > [[(25 - 20)4
c=0 k=0 j=1
116 - 2a - 1)— Paa—sctiysy+ksss (25)

i=1
where the primes in the sums signify that terms corresponding to ¢ = a with k = 0,1
are omitted from the sums, and pv(z) pn(z) are given by

= a—1
,DV( <’i—2(1—1>_,
i=1 i=1
a,—a? 21—z
pr(z) = (-1)%* 1 pv(2). (26)
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Free field and twisted parafermionic representations of twisted su(3)£2) current algebra
are obtained. The corresponding twisted Sugawara energy-momentum tensor is given in
terms of three (3, v) pairs and two scalar fields and also in terms of twisted parafermionic
currents and one scalar field. Two screening currents of the first kind are presented in
terms of the free fields.

1. Introduction

Infinite dimensional algebras, such as Virasoro algebra and affine algebras are alge-
braic structures in conformal field theories (CFT) in two dimensional spacetime.!™
They also play a central role in the study of string theory.*

It is well-known the untwisted current algebra can be realized by at least two
different ways: one is the free field representation,® and the other is the parafermion
representation.® The free field realization is a common approach used in conformal
field theories.®> The free field representations for untwisted affine algebra have been
extensively studied. The simplest untwisted case su(2)") was first treated in Ref. 5,
and the generalization to su(n)(!) was given in Refs. 7-17. The Z;, parafermions are
generalizations of the Majorana fermions, and the Z; parafermion models are ex-
tensions of the Ising model, which corresponds to the case k = 2.19:20 Parafermions
are related to the exclusion statistics introduced by Haldane.?!

The recently study shows that twisted affine algebras are useful in the descrip-
tion of the entropy of Adsz black hole.!® However, little is known for free field
and parafermionic representations of twisted affine algebras. So it is an interesting
problem to investigate such realizations.

In this contribution we consider the simplest twisted affine algebra su(3)§c2). We
construct two different realizations for this algebra: one is free field representation,

*Permanent address: Institute of Applied Mathematics, Academy of Mathematics and System
Sciences; Chinese Academy of Sciences, P.O.Box 2734, 100080, China.
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which is another version of one given in Ref. 22, and another is twisted parafermionic
representation by using the twisted parafermionic currents proposed in Ref. 23.
Moreover we give the screening currents in terms of the free fields.

(2)
k

2. Twisted current su(3),”’ algebra

We consider the simplest twisted affine Lie algebra su(3)§f) . We decompose su(3)
as

su3) =go®q (1)

where go = su(2) is the fixed point subalgebra under the automorphism and g is the

five dimensional representation of go; go and g1 satisfy [gi, g;] C 9(i+3) mod 2- Using

the notation in Ref. 22, we chose ¢, f and h to be the bases in go and €, f, E, F

and h the bases of g1. Then the commutators of su(3)§c2) can be expressed as
X1Y)

"®X,z2"®Y] =2 ®[X,Y] + 2kmémino 5 (2)

Where m € Z if X € go, andeZ—}—%ifXEgl.
Denote the currents corresponding to e, h, f by it (2), 7°(z), j(z), and to
é, h, f, respectively. Then (2) can be written in terms of the following OPE’s:

W) = o + W) e

THEAT™(w) = o + g0

JtH(2)J ™ (w) = G fkw)g + (Z*w)jo(w)-f-...,

PN 0) = o) s ) = [y

PRI W) = o W)+, P 0) = T T w)
THAT () = i (W) 4 T ) = i ) 4
FHETW) = s T W) s T EI0) = o W)
FHET W) = gy W)+ THE () = g T+
P (w) = W)+ T AT W) = s )
PETEW) = o ) + oy PETHw) = 2 T )
TO(2)J0 (w) = (2—2_%—)2 +
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All other OPE’s contain trivial regular terms only. Here and throughout “...” stands
for regular terms.

3. Wakimoto free field realization of the twisted affine currents

To obtain a free field realization of the twisted su(3)§f) currents, we follow the
procedure adopted in Ref. 22 but begin with a different Fock space. The Fock space
is constructed by the repeated actions of f, f, F' on the highest weight state va
with highest weight A. The highest weight states are determined by

evp = éup = Evp = 0, hvpa = (A, 01)va, hup = (A, az)va (3)

where a1 and ag are roots associated with h and h.

Set |n,m,l >= f"ﬁ’mflw\. This choice is different from the one used in Ref. 22.
As we shall see, this choice gives another free field realization of the twisted current
algebra. Introduce three 37 pairs and two scalar fields ¢q, a = 1, 2. (8;; ;) pairs
have conformal dimension (1; 0).

Bieo) =~ (i) =~ 05 =0,1,2
a(2)pp(w) = ~284 In(z —w), a,b=0,1 4)

Introduce the notation € = 1(1,1); & = 3?(1,—1); and ® = (¢, ¢1). Then we
have
& - B(z)er - B(w) = —In(z —w); & B(2)é - B(w) = —3 In(z — w);
&(z)é, - ®(w) = 0.

e -
We find the Wakimoto free field realization of su(3 )Ec in terms of the eight free
fields:

it(z) = Bo(2) +262(z)n(2),
) = 20(@0(e) + 2612 () + el ) + (@ - 108(),
7(2) = —ol(2) (1R(2) + 373()) — 2B(2) (Br0(2)71 (=) — 72(2))

~26(2) (1E(2)n(2) + 1 (2)) - 4k + Dvo(2)

(@ D8(:)0(2) — 5 (@ DI (2)
1) = Gﬂo(z)%( )+ 661(2)0(2) + 682(2) (18(2) +1(2))

(- i0B(2)); (5)

T = (o)

T~ (2) = ~2060(2) (vo(2)(2) +72(2)) = B1(2) (378 (2) + i (2))

—48(2) (75(2) + 71(2)2(2)) — 4k071(2),
—5;(61 - i08(2))7 (2) - %(62 i98(2))70(2);
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J++(Z) = /32(2:)7

I (2) = 260(2) (B (2)m(2) + 73 (2) — 270(2)72(2))
~261(2) (45(2) — 3%(2)73 (2) + 271 (2)¥2(z))
—B2(2) (375(2) — 711 (2) — 675 (273 (2) + 43 (2))

+£(61 - i98(2)) (0(2)m1 (2) — 12(2)) — 4kd1a(2)

—(—j:(éz  108(2)) (4(2) — 13(2)) + 8(k + 1) (2)070(2).

Here oy = 1/4/8k + 24, and normal ordering is implied in the expressions. It is
straightforward to check that the above currents satisfy the OPE given in last
section. We remark that the twisted currents have the following mode expansions:

n—1

ja(Z) = Znezj,zz_ - 3 Ja(Z) = 2,,,,624_1/2;];:2’—_”_1. (6)

4. Twisted parafermions and parafermionic realization

In this section we use the twisted parafermionic currents proposed in Ref. 23 to
give another realization of the twisted su(3),(62) currents. First, we recall the twisted
parafermion current algebra given in Ref. 23 reads,

() (w)(z — w) /% = (jljl;l’)o)z + ;il;uwlw(w) 4

) 07, i
Vi) —w) /% = S g @), ()
() —0) 1 = g+

where [, I’ = £1 and f, I = 0,41, +2: Ll Eip and £, j» are structure constants. If
we denote 9; or i; by ¥,, then we can rewrite the above relations as:

)
To(2)Tp(w)(z — w)®/%* = N~ (2 — w)* [T W], (8)
n=—2
For consistency, £4,5 must have the properties: €, = —€p0 = —€—g,-b = £—a,a+b
and €5, = 0. As a CFT, we can set the structure constants as
1
€3 =€, 1 =€13= v
€1,-1 = 65,1 = % (9)

Then we may obtain a representation of the twisted su(3)f) current algebra
with the help of the twisted parafermionic currents. The result is

i (2) = V1 (2)em PP 7 (2) = 2VEp_y (2)e VPG,
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P2) = 2V2idgo(2), T (2) = 2y (2)e TP,
T (2) = 2Vhp_i(2)e 7m*E | g (z) = 2vEys(2)eVES),
T (2) = 2Vko_5(2)eVERG | JO(z) = 2v/6kys(2).

where ¢ is an U(1) current obeying ¢o(z)¢o(w) = —In(z — w). It can be checked
that the above currents satisfy the OPEs of the twisted su(3)§c2) currents algebra.

5. T'wisted stress energy tensor

It is well known that Virasoro algebras are related to currents algebras via the so
called Sugawara construction. In the present case, the twisted Sugawara construc-
tion of the energy-momentum tensor is given by

= _1__ . 1 -0 -0 1 0 0 . — .+
T() = giry 30O + g +2 (5% (@)
+2J7(2)J T (2) + 20 (2)J T (2)] 1, (10)
where : : implies the normal ordering. The above expression can be rephrased

through the (B~ pairs and the scalar field &. We obtain

T(z) = —:[Bo(2)070(2) + B1(2)011(2) + B2(2)072(2)] :
- 2 . 2
+% (& i08(2)) " : +% (& i8<I>(z)) :
_day (é’1 -z'a%?(z)) . (11)

On the other hand, the energy-momentum tensor in the twisted parafermionic
realization is given by

T(z) =Ty — :0¢9(2)0¢o(z): . (12)

where

k
Ty = —— U, U_ 13
P 2 k + 6 - [ a a]O ( )
is the energy-momentum tensor of the twisted parafermion currents obtained in
Ref. 23. Following the standard practice, we get the OPE of the energy-momentum
tensor,

c/2 n 2T{(w) N OT (w) .

T(@)T(w) = (z—w)yt (z—w)? z—w

. (14)

where ¢ = 8k /(k + 3) is the central charge for the Virasoro algebra.
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6. Twisted screening currents

An important object in the free field approach is the screening current. Screening
currents are a primary fields with conformal dimension 1, and their integration
give the screening charges. They commute with the affine currents up to total
derivatives. These properties ensure that screening charges may be inserted into
correlators while the conformal or affine Ward identities remain intact. For the
present case, we find the following screening currents

S1(2) =t [282(2)70(2) + Bu(2) = Bo(2)] S(2) 5, (15)
where
S.i(z) = e 20+ (81i8(2) 4828 (2)) (16)
The OPE of the twisted screening currents with the twisted affine currents are
T(2)S+(w) = Oy (z — wSi(w)) +.o
it (2)Sx(w) = ...,
7%(2)S+(w) = ...,
. 1 1 -
7@ (w) = 0 (g o 5sw)) 4o
JtTH(2) St (w .

J7(2)S+(w) = By (ﬁziwgi(w))—{-..., (17)
T (@)850) = 80 7 7= F00) F () Saw)) +.

The screening currents obtained here are the twisted versions of the first kind
screening currents.’

Acknowledgements

This work is financially supported by Australian Research Council. One of the
authors (Ding) is also supported partly by Natural Science Foundation of China,
and a Foundation from AMSS.

References

1. A. A. Belavin. A. M. Polyakov, A. B. Zamolodchikov, Nucl. Phys. B241, 333 (1984).

2. V. G. Kac, Infinite Dimensional Lie Algebras, third ed., (Cambridge University press,
Cambridge 1990).

3. Ph. Di Francesco, P. Mathieu and D. Senechal, Conformal Field Theory, (Springer,
1997).

306



21.
22.

23.

Free Field and Parafermionic Realizations 2159

J. Polchinski, String Theory, (Cambridge University Press, Cambridge 1998).
M. Wakimoto, Commun. Math. Phys. 104, 605 (1986).

D. Nemeschansky, Phys. Lett. B 224, 121 (1989).

M. Bershsdsky and H. Ooguri, Commun. Math. Phys. 126, 49 (1989).

B. Feigin and E. Frenkel, Russ. Math. Surv. 43, 221 (1988).

B. Feigin and E. Frenkel, Lett. Math. Phys. 19, 307 (1990).

B. Feigin and E. Frenkel, Commun. Math. Phys. 128, 161 (1990).

. P. Bouwknegt, J. McCarthy and K. Pilch, Phys. Lett. B234, 297 (1990).

P. Bouwknegt, J. McCarthy and K. Pilch, Commun. Math. Phys. 131, 125 (1990).
P. Bouwknegt, J. McCarthy and K. Pilch, Prog. Phys. Suppl. 102, 67 (1990).

. K. Ito, Phys. Lett. B252, 69 (1990).

G. Kuroki, Commun. Math. Phys. 142, 511 (1991).

E. Frenkel, Free field realizations in representation theory and conformal field theory,
hep-th/9408109.

J. L. Petersen, J. Rasmussen and M. Yu, Nucl. Phys. B502, 649 (1997).

S. Fernando and F. Mansouri, Phys. Lett. B505, 206 (2001).

A. B. Zamolodchikov and V. A. Fateev, Sov. Phys, JETP 62, 215 (1985).

J. Lepowsky and R. Wilson, Comm. Math. Phys. 62, 43 (1978); Invent. Math. TT7,
199 (1984); Invent. Math. 79, 417 (1985); in: Vertez Operators in Mathematics and
Physics, Proc. 1983 M.S.R.1. conference, ed. by J. Lepowsky et. al, (Springer-Verlag,
New York, 1985), P.97.
F. D. M. Haldane, Phys. Rev. Lett. 67, 937 (1991).

X. M. Ding, M. D. Gould and Y. Z. Zhang, Twisted sl(3)§c2) current algebra: Free field
representation and screening currents, hep-th/0109009.

X. M. Ding, M. D. Gould and Y. Z. Zhang, Twisted parafermions, hep-th/0110165.

307



	Front matter
	Star-Triangle Equations And Identities In Hypergeometric Series
	Happer's Curious Degeneracies And Yangian
	Fractional Statistics In Some Exactly Solvable Models With Pt Invariant Interactions
	The Rotor Model And Combinatorics
	Phase Transitions In The Two-Dimensional O(3) Model
	The 8v Csos Model And The sl<sub>2</sub> Loop Algebra Symmetry Of The Six-Vertex Model At Roots Of Unity
	The Chern-Simons Invariant In The Berry Phase Of A Two By Two Hamiltonian
	Mutually Local Fields From Form Factors
	Deformation Quantization: Is C<sub>1</sub> Necessarily Skew?
	Generalized Ginsparg&ndash;Wilson Algebra And Index Theorem On The Lattice
	Spectral Flow Of Hermitian Wilson-Dirac Operator And The Index Theorem In Abelian Gauge Theories On Finite Lattices
	Dimers And Spanning Trees: Some Recent Results
	Hyperbolic Structure Arising From A Knot Invariant Ii: Completeness
	Exotic Galilean Symmetry And The Hall Effect
	The Three-State Chiral Clock Model
	Stochastic Description Of Agglomeration And Growth Processes In Glasses
	Fusion Construction Of The Vertex Operators In Higher Level Representation Of The Elliptic Quantum Group
	Quantum Dynamics And Random Matrix Theory
	Integrable Coupling In A Model For Josephson Tunneling Between Non-Identical Bcs Systems
	Finite Density Algorithm In Lattice Qcd&mdash;A Canonical Ensemble Approach
	Short-Time Behaviors Of Long-Ranged Interactions
	Generalized Supersymmetries And Composite Structure In M-Theory
	Gaussian Orthogonal Ensemble For The Level Spacing Statistics Of The Quantum Four-State Chiral Potts Model
	Comments On The Deformed W<sub>N</sub> Algebra
	The Peierls Substitution And The Vanishing Magnetic Field Limit
	Applications Of A Hard-Core Bose-Hubbard Model To Well-Deformed Nuclei
	Elliptic Algebra And Integrable Models For Solitons On Noncommutative Torus $\mathcal{T}$
	New Results For Susceptibilities In Planar Ising Models
	Algebraic Geometry And Hofstadter Type Model
	Limitations On Quantum Control
	Rigorous Results On The Strongly Correlated Electron Systems By The Spin-Reflection-Positivity Method
	An Algebraic Approach To The Eigenstates Of The Calogero Model
	Onsager's Algebra And Partially Orthogonal Polynomials
	Thermodynamics Of Two Component Bosons In One Dimension
	R-Matrices And The Tensor Product Graph Method
	Free Field And Parafermionic Realizations Of Twisted $su(3)

